Vestibular schwannoma treatment

Vestibular schwannoma treatment

Optimal decision making in new diagnosed vestibular schwannoma remains a matter of debate. For small- to medium-sized lesions (Koos grading scale I–III), the options are radiosurgery (RS), microsurgery, or a “wait and-scan” approach 1).

This is mainly based on the hospital setting, as well as surgeon’s preference. It is worth noting that comparative studies advocate that GKS compares favorably with microsurgery, with high local tumor control, much lower rate of facial nerve palsy, and much higher rate of serviceable hearing preservation 2) 3) 4) 5) 6).

see Vestibular schwannoma conservative treatment.

see Fractionated stereotactic radiotherapy for vestibular schwannoma

see Vestibular schwannoma radiosurgery.

see Vestibular schwannoma surgery.


Subjects presented to the Department of Otolaryngology-Head and Neck Surgery and the Department of Neurosurgery at the Johns Hopkins University, Baltimore, Maryland for management of unilateral vestibular schwannoma from 1997 through 2007, with at least two visits within the first year of presentation. The proportion of patients for whom initial management consisted of observation, surgical resection, or radiation therapy was determined, and the relative influence of study year, patient age, hearing status, and tumor size was analyzed.

RESULTS: Over the study period there was an increase in the proportion of cases that were observed with follow-up scanning (10.5% to 28.0%) and recommended for radiation (0% to 4.0%), whereas the proportion of operated cases declined (89.5% to 68.0%). There were no changes in mean age or hearing status at diagnosis, but mean tumor size declined significantly. Compared to those undergoing surgery, patients choosing observation and radiation therapy were on average 11.7 and 4.5 years older, respectively. Tumors that were surgically removed were on average 11.6 mm larger than those that were observed. The increasing frequency over time of observation relative to surgery was significant even after controlling for age, hearing status, and tumor size.

CONCLUSIONS: Among patients managed by our center, there has been a significant shift in management of vestibular schwannomas over the last decade, with increasing tendency towards observation. This trend implies changing provider philosophy and patient expectations 7).


Patients with VS completed a voluntary survey over a 3-month period. Setting Surveys were distributed online through email, Facebook, and member website. Subjects and Methods All patients had a diagnosis of VS and were members of the Acoustic Neuroma Association (ANA). A total of 789 patients completed the online survey. Results Of the 789 participants, 474 (60%) cited physician recommendation as a significant influential factor in deciding treatment. In our sample, 629 (80%) saw multiple VS specialists and 410 (52%) sought second opinions within the same specialty. Of those who received multiple consults, 242 (59%) of patients reported receiving different opinions regarding treatment. Those undergoing observation spent significantly less time with the physician (41 minutes) compared to surgery (68 minutes) and radiation (60 minutes) patients ( P < .001). A total of 32 (4%) patients stated the physician alone made the decision for treatment, and 29 (4%) felt they did not understand all possible treatment options before final decision was made. Of the 414 patients who underwent surgery, 66 (16%) felt they were pressured by the surgeon to choose surgical treatment. Conclusion Deciding on a proper VS treatment for patients can be complicated and dependent on numerous clinical and individual factors. It is clear that many patients find it important to seek second opinions from other specialties. Moreover, second opinions within the same specialty are common, and the number of neurotologists consulted correlated with higher decision satisfaction 8).


From a total of 8330 patients (average age 54.7 years, 51.9% female) were analyzed and from 2004 to 2011, there was a statistically significant decrease in tumor size category at time of diagnosis (P < .01). Overall, 3982 patients (48%) received primary microsurgery, 1978 (24%) radiation therapy alone, and 2370 (29%) observation. Within the microsurgical cohort, 732 (18%) underwent subtotal resection, and of those, 98 (13.4%) received postoperative radiation therapy. Multivariable regression revealed that surgical treatment was more common in younger patients and larger tumor size categories (P < .05). Management trend analysis revealed that microsurgery was used less frequently over time (P < .0001), observation was used more frequently (P < .0001), and the pattern of radiation therapy remained unchanged. Linear regression was used to create an equation that was applied to predict future management practices. These data predict that by 2026, half of all cases of VS will be managed initially with observation.

While the incidence of VS has remained steady, tumor size at time of diagnosis has decreased over time. Within the United States there has been a clear, recent evolution in management toward observation 9).

Rapid progression of residual vestibular schwannoma following subtotal surgical resection has an underlying immune etiology that may be virally originating; and despite an abundant adaptive immune response, T-cell immunosenescence may be associated with rapid progression of VS. These findings provide a rationale for clinical trials evaluating immunotherapy in patients with rapidly progressing VS 10)


1)

Kondziolka D, Mousavi SH, Kano H, Flickinger JC, Lunsford LD. The newly diagnosed vestibular schwannoma: radiosurgery, resection, or observation? Neurosurg Focus 2012;33(03):E8
2)

Pollock BE, Lunsford LD, Kondziolka D, et al. Outcome analysis of acoustic neuroma management: a comparison of microsurgery and stereotactic radiosurgery. Neurosurgery 1995;36(01):215- –224, discussion 224–229
3)

Régis J, Pellet W, Delsanti C, et al. Functional outcome after Gamma knife radiosurgery or microsurgery for vestibular schwannomas. J Neurosurg 2002;97(05):1091–1100
4)

Myrseth E, Møller P, Pedersen PH, Vassbotn FS, Wentzel-Larsen T, Lund-Johansen M. Vestibular schwannomas: clinical results and quality of life after microsurgery or Gamma Knife radiosurgery. Neurosurgery 2005;56(05):927–935, discussion 927– 935
5)

Myrseth E, Møller P, Pedersen PH, Lund-Johansen M. Vestibular schwannoma: surgery or Gamma Knife radiosurgery? A prospective, nonrandomized study. Neurosurgery 2009;64(04):654–661, discussion 661–663
6)

Pollock BE, Driscoll CL, Foote RL, et al. Patient outcomes after vestibular schwannoma management: a prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery 2006;59(01):77–85, discussion 77–85
7)

Tan M, Myrie OA, Lin FR, Niparko JK, Minor LB, Tamargo RJ, Francis HW. Trends in the management of vestibular schwannomas at Johns Hopkins 1997-2007. Laryngoscope. 2010 Jan;120(1):144-9. doi: 10.1002/lary.20672. PubMed PMID: 19877188.
8)

Moshtaghi O, Goshtasbi K, Sahyouni R, Lin HW, Djalilian HR. Patient Decision Making in Vestibular Schwannoma: A Survey of the Acoustic Neuroma Association. Otolaryngol Head Neck Surg. 2018 Feb 1:194599818756852. doi: 10.1177/0194599818756852. [Epub ahead of print] PubMed PMID: 29436268.
9)

Carlson ML, Habermann EB, Wagie AE, Driscoll CL, Van Gompel JJ, Jacob JT, Link MJ. The Changing Landscape of Vestibular Schwannoma Management in the United States-A Shift Toward Conservatism. Otolaryngol Head Neck Surg. 2015 Jun 30. pii: 0194599815590105. [Epub ahead of print] PubMed PMID: 26129740.
10)

Amit M, Xie T, Gleber-Netto FO, Hunt PJ, Mehta GU, Bell D, Silverman DA, Yaman I, Ye Y, Burks JK, Fuller GN, Gidley PW, Nader ME, Raza SM, DeMonte F. Distinct immune signature predicts progression of vestibular schwannoma and unveils a possible viral etiology. J Exp Clin Cancer Res. 2022 Oct 4;41(1):292. doi: 10.1186/s13046-022-02473-4. PMID: 36195959.

Intraosseous meningioma of the sphenoid bone

Intraosseous meningioma of the sphenoid bone

Some sphenoid wing meningiomas are associated with a significant hyperostosis of the adjacent sphenoid ridge that may even exceed the size of the intradural mass. The decision-making process and surgical planning based on neuroanatomic knowledge are the mainstays of management of this group of lesions. Given their natural history and biologic behavior, many hyperostosing meningiomas at this location require long-term management analogous to a chronic disease. This is particularly true when making initial decisions regarding treatment and planning surgical intervention, when it is important to take into consideration the possibility of further future interventions during the patient’s life span 1).


The relationship of the development of intraosseous meningioma to the entrapment of dura containing arachnoid cells is discussed in considering the cause of such lesions, and it is stressed that calvarial fractures and cranial sutures may contribute to the entrapment of arachnoidal tissue and later the formation of a meningioma 2).


Intraosseous growth is a unique feature of sphenoorbital meningioma. Quantitative assessment of the biological behavior of intraosseous remnants revealed a continuous slow growth rate independent of the soft tumor component of more than half of SOM. According to our data, application of a multimodal image guidance provided high accuracy and significantly increased the resection rate of the intraosseous component of SOM 3)

A 24-year-old woman presented with subdural hemorrhage, and subsequent radiology depicted an osteolytic mass-like lesion in the sphenoid bone. Intraoperatively, a solid and cystic hemorrhagic lesion mimicking an aneurysmal bone cyst was observed in the sphenoid bone with dural tearing. Frozen cytology showed singly scattered or epithelioid clusters of round to elongated cells intermixed with many neutrophils. Tumor cells had bland-looking round nuclei with rare prominent nucleoli and nuclear inclusions and eosinophilic granular to globoid cytoplasm in capillary-rich fragments. Histology revealed intraosseous meningothelial and microcystic meningioma (World Health Organization grade 1) in right lesser wing of the sphenoid bone. Considering its unusual location and cytologic findings, differential diagnoses included chordomachondromachondrosarcoma, and aneurysmal bone cyst. The present case posed a diagnostic challenge due to possible confusion with these entities 4)


A 43-year-old female presented with a 1 year history of headache, peri-orbital pain, proptosis, and severe vision loss. She had previously undergone subtotal resection of a large Simpson Grade 1 spheno-orbital meningioma 3 years prior at an outside institution. Workup at our institution revealed hyperostosis of the left greater wing of the sphenoid bone and narrowing of the optic canal along with bony enhancement concerning for residual tumor. The patient was given the recommendation from outside institutions for radiation, presumably due to the chronicity of her visual loss. Our institution recommended resection of the residual osseous tumor with orbital reconstruction. Less than 2 weeks after surgery, the patient noted significant improvement in orbital pain and vision. At 3 months, she had regained full and symmetric orbital appearance with no orbital pain. Her visual acuity improved to 20/30 with full visual fields. Conclusion Surgical decompression of the optic canal and orbital contents for tumor related sphenoid wing hyperostosis should be strongly considered, despite an extended duration of visual change and loss. This case report shows that vision can be significantly restored even after symptoms have been present for greater than 6 months 5).


A 30-year-old female patient presented to the Emergency Department (ED) with a six-week history of right eye pain, diplopia on lateral gaze, and proptosis. She had reported progressive onset of symptoms over the past 12 months. Her only previous medical issue was asthma. Haematological and biochemical results were all normal.

Non-contrast CT orbits were undertaken to evaluate for intraconal or extraconal masses or collection. Findings demonstrated poorly marginated diffuse right greater sphenoid wing cortical thickening, resulting in mass effect on the lateral rectus muscle. Post-contrast CT orbits did not show lesional or soft-tissue enhancement. A CT thorax/abdomen/pelvis was undertaken to exclude a primary malignancy.

MRI orbits pre-and post-contrast demonstrated low-signal thickening of the right greater sphenoid wing with lesional and adjacent dural enhancement on post-contrast sequences. 6).


Use of an acrylic jig to aid orbital reconstruction after resection of a sphenoid intraosseous meningioma: a technical note 7)


A 50-year-old female presented to the Neurosurgery clinic with dimness of vision and proptosis of her right eye. Maxillofacial CT showed a hyperostotic mass involving the right sphenoid ridgeanterior clinoid processorbital roof, and lateral wall with mass effect on the intraorbital contents and lateral wall of the sphenoid sinus. MRI of the brain and orbit showed a heterogeneous enhancement of underlying dura and right orbital apex extending into the cavernous sinus. The patient underwent a staged resection in which pathological analysis showed an intraosseous meningioma. When a hyperostotic mass of the skull is encountered, meningioma should be considered in the differential diagnosis. Although primary intraosseous meningiomas are rare benign tumors, they can be associated with morbidity secondary to mass effect. 8)


A 40-year-old man treated for systemic hypertension complained of decreased vision and floaters in his right eye. Initial examination revealed decreased visual acuity to 20/50 of the right eye with a slight dyschromatopsia, but a lack of afferent pupillary defect and normal visual fields. Fundus examination showed the presence of a slightly swollen right optic disc and chorioretinal folds. A diagnosis of presumed anterior ischemic optic neuropathy was made. Symptoms persisted and, five months later, right proptosis was noted. Magnetic resonance imaging revealed a diffuse thickening of the parieto-temporal bone and the greater wing of the sphenoid bone on the right side. Radiological differential diagnosis included fibrous dysplasia and metastasis.

Bone biopsy revealed a grade I intraosseous meningioma. Conservative management was chosen because the lesion was too extensive to be resected and radiotherapy is usually not efficient on grade I meningiomas.

Intraosseous meningiomas are benign tumors which are due to meningeal cells entrapment during vaginal delivery. It is a rare tumor of slow progression. Therapy usually consists of resection and cranioplasty and/or radiotherapy. In the present case, decompression of the optic canal remains feasible in case of further visual loss 9).


A 71-year-old woman with a long history of slowly progressive proptosis was found to have an intraosseous meningioma of the right sphenoid bone. Radiologically, the lesion resembled fibrous dysplasia. The key to the diagnosis is irregularity of the inner table of the skull. The histologic appearance is characteristic. Intraosseous meningioma is one part of the spectrum of diseases known as primary extraneuraxial meningioma. In this paper we discuss the theories of cellular origin as well as the radiologic differential diagnosis 10)


1)

Kirollos RW. Hyperostosing sphenoid wing meningiomas. Handb Clin Neurol. 2020;170:45-63. doi: 10.1016/B978-0-12-822198-3.00027-6. PMID: 32586508.
2)

Van Tassel P, Lee YY, Ayala A, Carrasco CH, Klima T. Case report 680. Intraosseous meningioma of the sphenoid bone. Skeletal Radiol. 1991;20(5):383-6. doi: 10.1007/BF01267669. PMID: 1896882.
3)

Maschke S, Martínez-Moreno M, Micko A, Millesi M, Minchev G, Mallouhi A, Knosp E, Wolfsberger S. Challenging the osseous component of sphenoorbital meningiomas. Acta Neurochir (Wien). 2019 Nov;161(11):2241-2251. doi: 10.1007/s00701-019-04015-y. Epub 2019 Aug 1. PMID: 31368053; PMCID: PMC6820812.
4)

Kim NR, Yie GT. Intraoperative frozen cytology of intraosseous cystic meningioma in the sphenoid bone. J Pathol Transl Med. 2020 Nov;54(6):508-512. doi: 10.4132/jptm.2020.05.21. Epub 2020 Jul 1. PMID: 32601263; PMCID: PMC7674761.
5)

Parish JM, Shields M, Jones M, Wait SD, Deshmukh VR. Proptosis, Orbital Pain, and Long-Standing Monocular Vision Loss Resolved by Surgical Resection of Intraosseous Spheno-Orbital Meningioma: A Case Report and Literature Review. J Neurol Surg Rep. 2020 Jan;81(1):e28-e32. doi: 10.1055/s-0040-1708845. Epub 2020 Mar 31. PMID: 32257766; PMCID: PMC7108951.
7)

Williams JV, Parmar JD, Carter LM, Woodhead P, Corns R. Use of an acrylic jig to aid orbital reconstruction after resection of a sphenoid intraosseous meningioma: a technical note. Br J Oral Maxillofac Surg. 2019 Dec;57(10):1156-1157. doi: 10.1016/j.bjoms.2019.08.026. Epub 2019 Oct 6. PMID: 31594717.
8)

Hussaini SM, Dziurzynski K, Fratkin JD, Jordan JR, Hussain SA, Khan M. Intraosseous meningioma of the sphenoid bone. Radiol Case Rep. 2015 Nov 6;5(1):357. doi: 10.2484/rcr.v5i1.357. PMID: 27307848; PMCID: PMC4898218.
9)

Henchoz L, Borruat FX. Intraosseous meningioma: a rare cause of chronic optic neuropathy and exophthalmos. Klin Monbl Augenheilkd. 2004 May;221(5):414-7. doi: 10.1055/s-2004-812812. PMID: 15162295.
10)

Daffner RH, Yakulis R, Maroon JC. Intraosseous meningioma. Skeletal Radiol. 1998 Feb;27(2):108-11. doi: 10.1007/s002560050347. PMID: 9526778.

Nicotine replacement therapy in aneurysmal subarachnoid hemorrhage

Nicotine replacement therapy in aneurysmal subarachnoid hemorrhage

Smoking prevalence is twice as high among patients admitted to hospital because of the acute condition of aneurysmal subarachnoid hemorrhage (aSAH) as in the general population.

Despite vasoactive properties, administration of NRT among active smokers with acute SAH appeared to be safe, with similar rates of vasospasm and DCI, and a slightly higher rate of seizures. The association of NRT with lower mortality could be due to chance, uncontrolled factors, or a neuroprotective effect of nicotine in active smokers hospitalized with SAH, and should be tested prospectively 1).


Smoking was also associated with paradoxical superior outcomes on some measures, and future research to confirm and further understand the basis of this relationship is needed 2).


Current evidence suggests that NRT does not induce vasospasm, and is associated with improved outcomes in smokers hospitalized for SAH. Protocol registered in PROSPERO, available at: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42016037200 3) 4).


The use of NRT in the acute phase of aSAH does not seem to have an impact on the intensity of headaches or analgesic consumption 5).


Limited safety data may prompt caution regarding seizures and delirium in patients with subarachnoid hemorrhage 6).


Eisenring et al. investigated the international practice of NRT use for aSAH among neurosurgeons.

The online SurveyMonkey software was used to administer a 15-question, 5-min online questionnaire. An invitation link was sent to those 1425 of 1988 members of the European Association of Neurosurgical Societies (EANS) who agreed to participate in surveys to assess treatment strategies for withdrawal of tobacco smoking during aSAH. Factors contributing to physicians’ posture towards NRT were assessed.

A total of 158 physicians from 50 nations participated in the survey (response rate 11.1%); 68.4% (108) were affiliated with university hospitals and 67.7% (107) practiced at high-volume neurovascular centers with at least 30 treated aSAH cases per year. Overall, 55.7% (88) of physicians offered NRT to smokers with aSAH, 22.1% (35) offered non-NRT support including non-nicotine medication and counseling, while the remaining 22.1% (35) did not actively support smoking cessation. When smoking was not possible, 42.4% (67) of physicians expected better clinical outcomes when prescribing NRT instead of nicotine deprivation, 36.1% (57) were uncertain, 13.9% (22) assumed unaffected outcomes, and 7.6% (12) assumed worse outcomes. Only 22.8% (36) physicians had access to a local smoking cessation team in their practice, of whom half expected better outcomes with NRT as compared to deprivation.

A small majority of the surveyed physicians of the EANS offered NRT to support smoking cessation in hospitalized patients with aSAH. However, less than half believed that NRT could positively impact clinical outcomes as compared to deprivation. This survey demonstrated the lack of consensus regarding the use of NRT for hospitalized smokers with aSAH 7).


1)

Seder DB, Schmidt JM, Badjatia N, Fernandez L, Rincon F, Claassen J, Gordon E, Carrera E, Kurtz P, Lee K, Connolly ES, Mayer SA. Transdermal nicotine replacement therapy in cigarette smokers with acute subarachnoid hemorrhage. Neurocrit Care. 2011 Feb;14(1):77-83. doi: 10.1007/s12028-010-9456-9. PMID: 20949331.
2)

Dasenbrock HH, Rudy RF, Rosalind Lai PM, Smith TR, Frerichs KU, Gormley WB, Aziz-Sultan MA, Du R. Cigarette smoking and outcomes after aneurysmal subarachnoid hemorrhage: a nationwide analysis. J Neurosurg. 2018 Aug;129(2):446-457. doi: 10.3171/2016.10.JNS16748. Epub 2017 Oct 27. PMID: 29076779.
3)

Turgeon RD, Chang SJ, Dandurand C, Gooderham PA, Hunt C. Nicotine replacement therapy in patients with aneurysmal subarachnoid hemorrhage: Systematic review of the literature, and survey of Canadian practice. J Clin Neurosci. 2017 Aug;42:48-53. doi: 10.1016/j.jocn.2017.03.014. Epub 2017 Mar 22. PMID: 28342700.
4)

Carandang RA, Barton B, Rordorf GA, Ogilvy CS, Sims JR. Nicotine replacement therapy after subarachnoid hemorrhage is not associated with increased vasospasm. Stroke. 2011 Nov;42(11):3080-6. doi: 10.1161/STROKEAHA.111.620955. Epub 2011 Aug 25. PMID: 21868740.
5)

Charvet A, Bouchier B, Dailler F, Ritzenthaler T. Nicotine Replacement Therapy Does Not Reduce Headaches Following Subarachnoid Hemorrhage: A Propensity Score-Matched Study. Neurocrit Care. 2022 Sep 1. doi: 10.1007/s12028-022-01576-2. Epub ahead of print. PMID: 36050538.
6)

Parikh NS, Salehi Omran S, Kamel H, Elkind MSV, Willey JZ. Smoking-cessation pharmacotherapy for patients with stroke and TIA: Systematic review. J Clin Neurosci. 2020 Aug;78:236-241. doi: 10.1016/j.jocn.2020.04.026. Epub 2020 Apr 22. PMID: 32334957; PMCID: PMC8908464.
7)

Eisenring CV, Hamilton PL, Herzog P, Oertel MF, Jacot-Sadowski I, Burn F, Cornuz J, Schatlo B, Nanchen D. Nicotine Replacement Therapy for Smokers with Acute Aneurysmal Subarachnoid Hemorrhage: An International Survey. Adv Ther. 2022 Sep 19. doi: 10.1007/s12325-022-02300-4. Epub ahead of print. PMID: 3612
WhatsApp WhatsApp us
%d bloggers like this: