Chronic subdural hematoma recurrence

Chronic subdural hematoma recurrence

In 2 large cohorts of US patients, approximately 5% to 10% of patients who underwent surgery for nontraumatic SDH were required to undergo repeated operation within 30 to 90 days. These results may inform the design of future prospective studies and trials and help practitioners calibrate their index of suspicion to ensure that patients are referred for timely surgical care 1).

Recurrence rates after chronic subdural hematoma (CSDH) evacuation with any of actual techniques twist drill craniostomy (TDC), burr hole craniostomy, craniotomy range from 5% to 30%. 2).

Oslo grading system.

Hyperdense hematoma components were the strongest prognostic factor of recurrence after surgery. Awareness of these findings allows for individual risk assessment and might prompt clinicians to tailor treatment measures 3).


In the series of Santos et al. it was possible to demonstrate an age-related protective factor, analyzed as a continuous variable, regarding the recurrence of the chronic subdural hematoma (CSDH), with a lower rate of recurrence the higher the age.

The results indicate that, among possible factors associated with recurrence, only age presented a protective factor with statistical significance. The fact that no significant difference between the patients submitted to trepanning or craniotomy was found favors the preferential use of burr-hole surgery as a procedure of choice due to its fast and less complex execution 4).


In the series of Han et al. independent risk factors for recurrence were as follows: age > 75 years (HR 1.72, 95% CI 1.03-2.88; p = 0.039), obesity (body mass index ≥ 25.0 kg/m2), and a bilateral operation 5).


Chon et al. shown that postoperative midline shifting (≥5 mm), diabetes mellitus, preoperative seizure, preoperative width of hematoma (≥20 mm), and anticoagulant therapy were independent predictors of the recurrence of chronic subdural hematoma.

According to internal architecture of hematoma, the rate of recurrence was significantly lower in the homogeneous and the trabecular type than the laminar and separated type 6).


The recurrence rate of chronic subdural hematoma cSDH seems to be related to the excessive neoangiogenesis in the parietal membrane, which is mediated via vascular endothelial growth factor (VEGF). This is found to be elevated in the hematoma fluid and is dependent on eicosanoid/prostaglandin and thromboxane synthesis via cyclooxygenase-2 (COX-2).

see Chronic subdural hematoma and anticoagulant therapy.

Antiplatelet therapy significantly influences the recurrence of CSDH 7).

Timing of Low-Dose Aspirin Discontinuation for chronic subdural hematoma.

Pneumocephalus

Remaining pneumocephalus is seen as an approved factor of recurrence 8) 9).

Septation

Jack et al.found a 12% reoperation rate. CSDH septation (seen on computed tomogram scan) was found to be an independent risk factor for recurrence requiring reoperation (p=0.04). Larger post-operative subdural haematoma volume was also significantly associated with requiring a second drainage procedure (p<0.001). Independent risk factors of larger post-operative haematoma volume included septations within a CSDH (p<0.01), increased pre-operative haematoma volume (p<0.01), and a greater amount of parenchymal atrophy (p=0.04). A simple scoring system for quantifying recurrence risk was created and validated based on patient age (< or ≥80 years), haematoma volume (< or ≥160cc), and presence of septations within the subdural collection (yes or no).

Septations within CSDHs are associated with larger post-operative residual haematoma collections requiring repeat drainage. When septations are clearly visible within a CSDH, craniotomy might be more suitable as a primary procedure as it allows greater access to a septated subdural collection. The proposed scoring system combining haematoma volume, age, and presence of septations might be useful in identifying patients at higher risk for recurrence 10).

Membranectomy

Opening the internal hematoma membrane does not alter the rate of patients requiring revision surgery and the number of patients showing a marked residual hematoma six weeks after evacuation of a CSDH 11).

In the study of Lee et al, an extended surgical approach with partial membranectomy has no advantages regarding the rate of reoperation and the outcome. As initial treatment, burr-hole drainage with irrigation of the hematoma cavity and closed-system drainage is recommended. Extended craniotomy with membranectomy is now reserved for instances of acute rebleeding with solid hematoma 12).

Diabetes

Surgeons should consider informing patients with diabetes mellitus that this comorbidity is associated with an increased likelihood of recurrence

13) 14) 15).


Balser et al. report 11% recurrence, which included individuals who recurred as late as 3 years after initial diagnosis 16).

Close imaging follow-up is important for CSDH patients for recurrence prediction. Using quantitative CT volumetric analysis, strong evidence was provided that changes in the residual fluid volume during the ‘self-resolution’ period can be used as significantly radiological predictors of recurrence 17).

A structural equation model showed a significant association between increased antiinflammatory activity in hematoma fluid samples and a lower risk of recurrence, but this relationship was not statistically significant in venous blood samples. Moreover, these findings indicate that anti-inflammatory activities in the hematoma may play a role in the risk of a recurrence of CSDH 18).

Irrigation with artificial cerebrospinal fluid (ACF) decreased the rate of CSDH recurrence 19).

There is no definite operative procedure for patients with intractable chronic subdural hematoma (CSDH).

Most recurrent hematomas are managed successfully with burr hole craniostomies with postoperative closed-system drainage. Refractory hematomas may be managed with a variety of techniques, including craniotomy or subdural-peritoneal shunt placement 20).

Although many studies have reported risk factors or treatments in efforts to prevent recurrence, those have focused on single recurrence, and little cumulative data is available to analyze refractory CSDH.

Matsumoto et al. defined refractory CSDH as ≥2 recurrences, then analyzed and compared clinical factors between patients with single recurrence and those with refractory CSDH in a cohort study, to clarify whether patients with refractory CSDH experience different or more risk factors than patients with single recurrence, and whether burr-hole irrigation with closed-system drainage reduces refractory CSDH.

Seventy-five patients had at least one recurrence, with single recurrence in 62 patients and ≥2 recurrences in 13 patients. In comparing clinical characteristics, patients with refractory CSDH were significantly younger (P=0.04) and showed shorter interval to first recurrence (P<0.001). Organized CSDH was also significantly associated with refractory CSDH (P=0.02). Multivariate logistic regression analysis identified first recurrence interval <1 month (OR 6.66, P<0.001) and age <71 years (OR 4.16, P<0.001) as independent risk factors for refractory CSDH. On the other hand, burr-hole irrigation with closed-system drainage did not reduce refractory CSDH.

When patients with risk factors for refractory CSDH experience recurrence, alternative surgical procedures may be considered as the second surgery, because burr-hole irrigation with closed-system drainage did not reduce refractory CSDH 21).

Implantation of a reservoir 22) 23) 24).

Subdural-peritoneal shunt 25).

Embolization of the MMA is effective for refractory CSDH or CSDH patients with a risk of recurrence, and is considered an effective therapeutic method to stop hematoma enlargement and promote resolution 26) 27) 28) 29) 30) 31).

A pilot study indicated that perioperative middle meningeal artery (MMA) embolization could be offered as the least invasive and most effectual means of treatment for resistant patients of CSDHs with 1 or more recurrences 32).

Chihara et al. have treated three cases of CSDH with MMA embolization to date, but there was a postoperative recurrence in one patient, which required a craniotomy for hematoma removal and capsulectomy. MMA embolization blocks the blood supply from the dura to the hematoma outer membrane in order to prevent recurrences of refractory CSDH. Histopathologic examination of the outer membrane of the hematoma excised during craniotomy showed foreign-body giant cells and neovascular proliferation associated with embolization. Because part of the hematoma was organized in this case, the CSDH did not resolve when the MMA was occluded, and the development of new collateral pathways in the hematoma outer membrane probably contributed to the recurrence. Therefore, in CSDH with some organized hematoma, MMA embolization may not be effective. Magnetic resonance imaging (MRI) should be performed in these patients before embolization 33).

see Chronic subdural hematoma recurrence case series.

Chronic subdural hematoma recurrence case reports.


1)

Knopman J, Link TW, Navi BB, Murthy SB, Merkler AE, Kamel H. Rates of Repeated Operation for Isolated Subdural Hematoma Among Older Adults. JAMA Netw Open. 2018 Oct 5;1(6):e183737. doi: 10.1001/jamanetworkopen.2018.3737. PubMed PMID: 30646255.
2)

Escosa Baé M, Wessling H, Salca HC, de Las Heras Echeverría P. Use of twist-drill craniostomy with drain in evacuation of chronic subdural hematomas: independent predictors of recurrence. Acta Neurochir (Wien). 2011 May;153(5):1097-103. doi: 10.1007/s00701-010-0903-3. Epub 2010 Dec 31. PubMed PMID: 21193935.
3)

Miah IP, Tank Y, Rosendaal FR, Peul WC, Dammers R, Lingsma HF, den Hertog HM, Jellema K, van der Gaag NA; Dutch Chronic Subdural Hematoma Research Group. Radiological prognostic factors of chronic subdural hematoma recurrence: a systematic review and meta-analysis. Neuroradiology. 2020 Oct 22. doi: 10.1007/s00234-020-02558-x. Epub ahead of print. Erratum in: Neuroradiology. 2020 Nov 5;: PMID: 33094383.
4)

Santos RGD, Xander PAW, Rodrigues LHDS, Costa GHFD, Veiga JCE, Aguiar GB. Analysis of predisposing factors for chronic subdural hematoma recurrence. Rev Assoc Med Bras (1992). 2019 Jul 22;65(6):834-838. doi: 10.1590/1806-9282.65.6.834. PubMed PMID: 31340313.
5)

Han MH, Ryu JI, Kim CH, Kim JM, Cheong JH, Yi HJ. Predictive factors for recurrence and clinical outcomes in patients with chronic subdural hematoma. J Neurosurg. 2017 Nov;127(5):1117-1125. doi: 10.3171/2016.8.JNS16867. Epub 2016 Dec 16. PubMed PMID: 27982768.
6)

Chon KH, Lee JM, Koh EJ, Choi HY. Independent predictors for recurrence of chronic subdural hematoma. Acta Neurochir (Wien). 2012 Sep;154(9):1541-8. doi: 10.1007/s00701-012-1399-9. Epub 2012 Jun 1. PubMed PMID: 22653496.
7)

Wada M, Yamakami I, Higuchi Y, Tanaka M, Suda S, Ono J, Saeki N. Influence of antiplatelet therapy on postoperative recurrence of chronic subdural hematoma: a multicenter retrospective study in 719 patients. Clin Neurol Neurosurg. 2014 May;120:49-54. doi: 10.1016/j.clineuro.2014.02.007. Epub 2014 Feb 24. PubMed PMID: 24731576.
8)

Mori K, Maeda M (2001) Surgical treatment of chronic subdural hematoma in 500 consecutive cases: clinical characteristics, surgical outcome, complications, and recurrence rate. Neurol Med Chir (Tokyo) 41:371–381
9)

Stanišić M, Hald J, Rasmussen IA, Pripp AH, Ivanović J, Kolstad F, Sundseth J, Züchner M, Lindegaard KF (2013) Volume and densities of chronic subdural haematoma obtained from CT imaging as predictors of postoperative recurrence: a prospective study of 107 operated patients. Acta Neurochir 155:323–333
10)

Jack A, O’Kelly C, McDougall C, Max Findlay J. Predicting Recurrence after Chronic Subdural Haematoma Drainage. Can J Neurol Sci. 2015 Jan 5:1-6. [Epub ahead of print] PubMed PMID: 25557536.
11)

Unterhofer C, Freyschlag CF, Thomé C, Ortler M. Opening the Internal Hematoma Membrane does not Alter the Recurrence Rate of Chronic Subdural Hematomas – A Prospective Randomized Trial. World Neurosurg. 2016 May 2. pii: S1878-8750(16)30210-8. doi: 10.1016/j.wneu.2016.04.081. [Epub ahead of print] PubMed PMID: 27150644.
12)

Lee JY, Ebel H, Ernestus RI, Klug N. Various surgical treatments of chronic subdural hematoma and outcome in 172 patients: is membranectomy necessary? Surg Neurol. 2004 Jun;61(6):523-7; discussion 527-8. PubMed PMID: 15165784.
13)

Matsumoto K, Akagi K, Abekura M, Ryujin H, Ohkawa M, Iwasa N, Akiyama C. Recurrence factors for chronic subdural hematomas after burr-hole craniostomy and closed system drainage. Neurol Res. 1999 Apr;21(3):277-80. PubMed PMID: 10319336.
14)

Yamamoto H, Hirashima Y, Hamada H, Hayashi N, Origasa H, Endo S. Independent predictors of recurrence of chronic subdural hematoma: results of multivariate analysis performed using a logistic regression model. J Neurosurg. 2003 Jun;98(6):1217-21. PubMed PMID: 12816267.
15)

Pang CH, Lee SE, Kim CH, Kim JE, Kang HS, Park CK, Paek SH, Kim CH, Jahng TA, Kim JW, Kim YH, Kim DG, Chung CK, Jung HW, Yoo H. Acute intracranial bleeding and recurrence after bur hole craniostomy for chronic subdural hematoma. J Neurosurg. 2015 Jul;123(1):65-74. doi: 10.3171/2014.12.JNS141189. Epub 2015 Feb 13. PubMed PMID: 25679282.
16)

Balser D, Rodgers SD, Johnson B, Shi C, Tabak E, Samadani U. Evolving management of symptomatic chronic subdural hematoma: experience of a single institution and review of the literature. Neurol Res. 2013 Apr;35(3):233-42. doi: 10.1179/1743132813Y.0000000166. Review. PubMed PMID: 23485050.
17)

Xu FF, Chen JH, Leung GK, Hao SY, Xu L, Hou ZG, Mao X, Shi GZ, Li JS, Liu BY. Quantitative computer tomography analysis of post-operative subdural fluid volume predicts recurrence of chronic subdural haematoma. Brain Inj. 2014;28(8):1121-6. doi: 10.3109/02699052.2014.910702. Epub 2014 May 6. PubMed PMID: 24801643.
18)

Pripp AH, Stanišić M. The Correlation between Pro- and Anti-Inflammatory Cytokines in Chronic Subdural Hematoma Patients Assessed with Factor Analysis. PLoS One. 2014 Feb 27;9(2):e90149. doi: 10.1371/journal.pone.0090149. eCollection 2014. PubMed PMID: 24587250.
19)

Adachi A, Higuchi Y, Fujikawa A, Machida T, Sueyoshi S, Harigaya K, Ono J, Saeki N. Risk factors in chronic subdural hematoma: comparison of irrigation with artificial cerebrospinal fluid and normal saline in a cohort analysis. PLoS One. 2014 Aug 4;9(8):e103703. doi: 10.1371/journal.pone.0103703. eCollection 2014. PubMed PMID: 25089621; PubMed Central PMCID: PMC4121178.
20)

Desai VR, Scranton RA, Britz GW. Management of Recurrent Subdural Hematomas. Neurosurg Clin N Am. 2017 Apr;28(2):279-286. doi: 10.1016/j.nec.2016.11.010. Epub 2017 Jan 4. Review. PubMed PMID: 28325462.
21)

Matsumoto H, Hanayama H, Okada T, Sakurai Y, Minami H, Masuda A, Tominaga S, Miyaji K, Yamaura I, Yoshida Y, Yoshida K. Clinical investigation of refractory chronic subdural hematoma: a comparison of clinical factors between single and repeated recurrences. World Neurosurg. 2017 Aug 24. pii: S1878-8750(17)31402-X. doi: 10.1016/j.wneu.2017.08.101. [Epub ahead of print] PubMed PMID: 28844917.
22)

Sato M, Iwatsuki K, Akiyama C, Masana Y, Yoshimine T, Hayakawa T. [Use of Ommaya CSF reservoir for refractory chronic subdural hematoma]. No Shinkei Geka. 1999 Apr;27(4):323-8. Japanese. PubMed PMID: 10347846.
23)

Sato M, Iwatsuki K, Akiyama C, Kumura E, Yoshimine T. Implantation of a reservoir for refractory chronic subdural hematoma. Neurosurgery. 2001 Jun;48(6):1297-301. PubMed PMID: 11383733.
24)

Laumer R. Implantation of a reservoir for refractory chronic subdural hematoma. Neurosurgery. 2002 Mar;50(3):672. PubMed PMID: 11841742.
25)

Misra M, Salazar JL, Bloom DM. Subdural-peritoneal shunt: treatment for bilateral chronic subdural hematoma. Surg Neurol. 1996 Oct;46(4):378-83. PubMed PMID: 8876720.
26)

Mandai S, Sakurai M, Matsumoto Y. Middle meningeal artery embolization for refractory chronic subdural hematoma. Case report. J Neurosurg. 2000 Oct;93(4):686-8. PubMed PMID: 11014549.
27)

Takahashi K, Muraoka K, Sugiura T, Maeda Y, Mandai S, Gohda Y, Kawauchi M, Matsumoto Y. [Middle meningeal artery embolization for refractory chronic subdural hematoma: 3 case reports]. No Shinkei Geka. 2002 May;30(5):535-9. Japanese. PubMed PMID: 11993178.
28)

Hirai S, Ono J, Odaki M, Serizawa T, Nagano O. Embolization of the Middle Meningeal Artery for Refractory Chronic Subdural Haematoma. Usefulness for Patients under Anticoagulant Therapy. Interv Neuroradiol. 2004 Dec 24;10 Suppl 2:101-4. Epub 2008 May 15. PubMed PMID: 20587257; PubMed Central PMCID: PMC3522210.
29)

Tsukamoto Y, Oishi M, Shinbo J, Fujii Y. Transarterial embolisation for refractory bilateral chronic subdural hematomas in a case with dentatorubral-pallidoluysian atrophy. Acta Neurochir (Wien). 2011 May;153(5):1145-7. doi: 10.1007/s00701-010-0891-3. Epub 2010 Dec 2. PubMed PMID: 21125409.
30)

Mino M, Nishimura S, Hori E, Kohama M, Yonezawa S, Midorikawa H, Kaimori M, Tanaka T, Nishijima M. Efficacy of middle meningeal artery embolization in the treatment of refractory chronic subdural hematoma. Surg Neurol Int. 2010 Dec 13;1:78. doi: 10.4103/2152-7806.73801. PubMed PMID: 21206540; PubMed Central PMCID: PMC3011107.
31)

Hashimoto T, Ohashi T, Watanabe D, Koyama S, Namatame H, Izawa H, Haraoka R, Okada H, Ichimasu N, Akimoto J, Haraoka J. Usefulness of embolization of the middle meningeal artery for refractory chronic subdural hematomas. Surg Neurol Int. 2013 Aug 19;4:104. doi: 10.4103/2152-7806.116679. eCollection 2013. PubMed PMID: 24032079; PubMed Central PMCID: PMC3766342.
32)

Kim E. Embolization Therapy for Refractory Hemorrhage in Patients with Chronic Subdural Hematomas. World Neurosurg. 2017 May;101:520-527. doi: 10.1016/j.wneu.2017.02.070. Epub 2017 Feb 27. PubMed PMID: 28249828.
33)

Chihara H, Imamura H, Ogura T, Adachi H, Imai Y, Sakai N. Recurrence of a Refractory Chronic Subdural Hematoma after Middle Meningeal Artery Embolization That Required Craniotomy. NMC Case Rep J. 2014 May 9;1(1):1-5. doi: 10.2176/nmccrj.2013-0343. eCollection 2014 Oct. PubMed PMID: 28663942; PubMed Central PMCID: PMC5364934.

Brain metastases recurrence diagnosis

Brain metastases recurrence diagnosis

It is difficult to differentiate local brain metastases recurrence from radiation induced-changes in case of suspicious contrast enhancement. New advanced MRI techniques (perfusion and spectrometry) and Amino Acid Positron Emission tomography allow to be more accurate and could avoid a stereotactic biopsy for histological assessment, the only reliable but invasive method.

Whereas positron emission tomography (PET) with the widely used 18F-2-deoxy-2-fluoro-D-glucose (18F-FDG) has low diagnostic accuracy after SRS, the use of radiolabelled amino acids or amino acid analogues such as L-methyl-11C-methionine (11C-MET) and O-(2-18F-Fluoroethyl)-L-Tyrosine (18F-FET) reaches sensitivity and specificity values in the range of 78 and 100 % rendering especially 18F-FET a highly reliable tracer in glioma imaging.


In patients with MRI-suspected tumor recurrence after focused high dose radiotherapy, 18F-FET PET has a high sensitivity and specificity for the differentiation of vital tumor tissue and radiation-induced lesions 1).


Tran et al. performed a feasibility study to prospectively evaluate 11C methionine positron emission tomography and11C PBR28 positron emission tomography in 5 patients with 7 previously SRS-treated brain metastases demonstrating regrowth to differentiate tumor regrowth (TR) from radiation necrosis (RN).

Sequential imaging with dual tracers was well-tolerated. [11C]methionine was accurate for detecting pathologically confirmed TR in 7/7 lesions, whereas [11C]PBR28 was only accurate in 3/7 lesions. Tumor PBRTSPO expression was elevated in both melanoma and lung cancer cells, contributing to lack of specificity of [11C]PBR28-PET.

Sequential use of PET tracers is safe and effective. [11C]Methionine was a reliable TR marker, but [11C]PBR28 was not a reliable marker of RN. Studies are needed to determine the causes of post-radiation inflammation and identify specific markers of RN to improve diagnostic imaging 2).

The multimodal MRI has greatly contributed to refine the differential diagnosis between tumour recurrence and radionecrosis, which remains difficult. The FDG PET is helpful, in favour of the diagnosis of local tumour recurrence when a hypermetabolic lesion is found. Others tracers (such as carbon 11 or a fluoride isotope) deserve interest but are not available in all centres. Stereotactic biopsy should be discussed if any doubt remains 3).

An increase in FLAIR signal of the fluid within the resection cavity might be a highly specific and early sign of local tumor recurrence/tumor progression also for brain metastases. 4).


1)

Romagna A, Unterrainer M, Schmid-Tannwald C, Brendel M, Tonn JC, Nachbichler SB, Muacevic A, Bartenstein P, Kreth FW, Albert NL. Suspected recurrence of brain metastases after focused high dose radiotherapy: can [18F]FET- PET overcome diagnostic uncertainties? Radiat Oncol. 2016 Oct 21;11(1):139. doi: 10.1186/s13014-016-0713-8. PMID: 27769279; PMCID: PMC5073742.
2)

Tran TT, Gallezot JD, Jilaveanu LB, Zito C, Turcu G, Lim K, Nabulsi N, Huang H, Huttner A, Kluger HM, Chiang VL, Carson R. [11C]Methionine and [11C]PBR28 as PET Imaging Tracers to Differentiate Metastatic Tumor Recurrence or Radiation Necrosis. Mol Imaging. 2020 Jan-Dec;19:1536012120968669. doi: 10.1177/1536012120968669. PMID: 33147119.
3)

Patsouris A, Augereau P, Tanguy JY, Morel O, Menei P, Rousseau A, Paumier A. [Differentiation from local tumour recurrence and radionecrosis after stereotactic radiosurgery for treatment of brain metastasis.]. Cancer Radiother. 2014 Jan 13. pii: S1278-3218(13)00444-7. doi: 10.1016/j.canrad.2013.10.013. [Epub ahead of print] French. PubMed PMID: 24433952.
4)

Bette S, Gempt J, Wiestler B, Huber T, Specht H, Meyer B, Zimmer C, Kirschke JS, Boeckh-Behrens T. Increase in FLAIR Signal of the Fluid Within the Resection Cavity as Early Recurrence Marker: Also Valid for Brain Metastases? Rofo. 2017 Jan;189(1):63-70. doi: 10.1055/s-0042-119686. PubMed PMID: 28002859.

Severe traumatic brain injury outcome

Severe traumatic brain injury outcome

Younger age, modified Fisher scale (mFS) score, and Intracerebral hemorrhage volume are associated with Intracranial pressure elevation in patients with a severe traumatic brain injury. Imaging features may stratify patients by their risk of subsequent ICP elevation 1).


There has been a secular trend towards reduced incidence of severe traumatic brain injury in the first world, driven by public health interventions such as seatbelt legislation, helmet use, and workplace health and safety regulations. This has paralleled improved outcomes following TBI delivered in a large part by the widespread establishment of specialised neurointensive care 2).

The impact of a moderate to severe brain injury depends on the following:

Severity of initial injury

Rate/completeness of physiological recovery

Functions affected

Meaning of dysfunction to the individual

Resources available to aid recovery

Areas of function not affected by TBI

see Effect of trauma center designation in severe traumatic brain injury outcome


Mortality or severe disability affects the majority of patients after severe traumatic brain injury (TBI). Adherence to the brain trauma foundation severe traumatic brain injury guidelines has overall improved outcomes; however, traditional as well as novel interventions towards intracranial hypertension and secondary brain injury have come under scrutiny after series of negative randomized controlled trials. In fact, it would not be unfair to say there has been no single major breakthrough in the management of severe TBI in the last two decades. One plausible hypothesis for the aforementioned failures is that by the time treatment is initiated for neuroprotection, or physiologic optimization, irreversible brain injury has already set in. Lazaridis et al., and others, have developed predictive models based on machine learning from continuous time series of intracranial pressure and partial pressure of brain tissue oxygen. These models provide accurate predictions of physiologic crises events in a timely fashion, offering the opportunity for an earlier application of targeted interventions. In a article, Lazaridis et al., review the rationale for prediction, discuss available predictive models with examples, and offer suggestions for their future prospective testing in conjunction with preventive clinical algorithms 3).


Determining the prognostic significance of clinical factors for patients with severe head injury can lead to an improved understanding of the pathophysiology of head injury and to improvement in therapy. A technique known as the sequential Bayes method has been used previously for the purpose of prognosis. The application of this method assumes that prognostic factors are statistically independent. It is now known that they are not. Violation of the assumption of independence may produce errors in determining prognosis. As an alternative technique for predicting the outcome of patients with severe head injury, a logistic regression model is proposed. A preliminary evaluation of the method using data from 115 patients with head injury shows the feasibility of using early data to predict outcome accurately and of being able to rank input variables in order of their prognostc significance. 4).


A prospective and consecutive series of 225 patients with severe head injuries who were managed in a uniform way was analyzed to relate outcome to several clinical variables. Good recovery or moderate disability were achieved by 56% of the patients, 10% remained severely disabled or vegetative, and 34% died. Factors important in predicting a poor outcome included the presence of intracranial hematoma, increasing age, motor impairment, impaired or absent eye movements or pupillary light reflexes, early hypotension, hypoxemia or hypercarbia, and raised intracranial pressure over 20 mm Hg despite artificial ventilation. Most of these predictive factors were assessed on admission, but a subset of 158 patients was identified in whom coma was present on admission and was known to have persisted at least until the following day. Although the mortality in this subset (40%) was higher than in the total series, it was lower than in several comparable reported series of patients with severe head injury. Predictive correlations were equally strong in the entire series and in the subset of 158 patients with coma. A plea is made for inclusion in the definition of “severe head injury” of all patients who do not obey commands or utter recognizable words on admission to the hospital after early resuscitation 5).


Survival rate of isolated severe TBI patients who required an emergent neurosurgical intervention could be time dependent. These patients might benefit from expedited process (computed tomographic scan, neurosurgical consultation, etc.) to shorten the time to surgical intervention 6).

The impact of a moderate to severe brain injury can include:

Cognitive deficits including difficulties with:

Attention Concentration Distractibility Memory Speed of Processing Confusion Perseveration Impulsiveness Language Processing “Executive functions” Speech and Language

not understanding the spoken word (receptive aphasia) difficulty speaking and being understood (expressive aphasia) slurred speech speaking very fast or very slow problems reading problems writing Sensory

difficulties with interpretation of touch, temperature, movement, limb position and fine discrimination Perceptual

the integration or patterning of sensory impressions into psychologically meaningful data Vision

partial or total loss of vision weakness of eye muscles and double vision (diplopia) blurred vision problems judging distance involuntary eye movements (nystagmus) intolerance of light (photophobia) Hearing

decrease or loss of hearing ringing in the ears (tinnitus) increased sensitivity to sounds Smell

loss or diminished sense of smell (anosmia) Taste

loss or diminished sense of taste Seizures

the convulsions associated with epilepsy that can be several types and can involve disruption in consciousness, sensory perception, or motor movements Physical Changes

Physical paralysis/spasticity Chronic pain Control of bowel and bladder Sleep disorders Loss of stamina Appetite changes Regulation of body temperature Menstrual difficulties Social-Emotional

Dependent behaviors Emotional ability Lack of motivation Irritability Aggression Depression Disinhibition Denial/lack of awareness


Both single predictors from early clinical examination and multiple hospitalization variables/parameters can be used to determine the long-term prognosis of TBI. Predictive models like the IMPACT or CRASH prognosis calculator (based on large sample sizes) can predict mortality and unfavorable outcomes. Moreover, imaging techniques like MRI (Magnetic Resonance Imaging) can also predict consciousness recovery and mental recovery in severe TBI, while biomarkers associated with stress correlate with, and hence can be used to predict, severity and mortality. All predictors have limitations in clinical application. Further studies comparing different predictors and models are required to resolve limitations of current predictors 7).


1)

Murray NM, Wolman DN, Mlynash M, Threlkeld ZD, Christensen S, Heit JJ, Harris OA, Hirsch KG. Early Head Computed Tomography Abnormalities Associated with Elevated Intracranial Pressure in Severe Traumatic Brain Injury. J Neuroimaging. 2020 Nov 4. doi: 10.1111/jon.12799. Epub ahead of print. PMID: 33146933.
2)

Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury. J Neurol. 2019 Sep 28. doi: 10.1007/s00415-019-09541-4. [Epub ahead of print] PubMed PMID: 31563989.
3)

Lazaridis C, Rusin CG, Robertson CS. Secondary Brain Injury: Predicting and Preventing Insults. Neuropharmacology. 2018 Jun 6. pii: S0028-3908(18)30279-X. doi: 10.1016/j.neuropharm.2018.06.005. [Epub ahead of print] Review. PubMed PMID: 29885419.
4)

Stablein DM, Miller JD, Choi SC, Becker DP. Statistical methods for determining prognosis in severe head injury. Neurosurgery. 1980 Mar;6(3):243-8. PubMed PMID: 6770283.
5)

Miller JD, Butterworth JF, Gudeman SK, Faulkner JE, Choi SC, Selhorst JB, Harbison JW, Lutz HA, Young HF, Becker DP. Further experience in the management of severe head injury. J Neurosurg. 1981 Mar;54(3):289-99. PubMed PMID: 7463128.
6)

Matsushima K, Inaba K, Siboni S, Skiada D, Strumwasser AM, Magee GA, Sung GY, Benjaminm ER, Lam L, Demetriades D. Emergent operation for isolated severe traumatic brain injury: Does time matter? J Trauma Acute Care Surg. 2015 Aug 28. [Epub ahead of print] PubMed PMID: 26317818.
7)

Gao L, Wu X. Prediction of clinical outcome in severe traumatic brain injury. Front Biosci (Landmark Ed). 2015 Jan 1;20:763-771. PubMed PMID: 25553477.
WhatsApp WhatsApp us
%d bloggers like this: