Rapid ventricular pacing

Rapid ventricular pacing (RVP) is a procedure that temporarily lowers blood pressure by increasing heart rate and reducing ventricular filling time. RVP has been widely used to reduce blood vessel tension in many cardiovascular surgeries.

Rapid ventricular pacing (RVP) has recently been reintroduced into cerebrovascular surgery. It is more predictable than adenosine in response time and, thus, can be used during unanticipated complications, such as aneurysmal rupture. It also induces a shorter period of hypotension compared with adenosine. However, RVP is more invasive and more complex from an anesthesia standpoint. Vascular neurosurgeons should be familiar with these techniques and know their applications and limitations 1).


A 46-year-old man came to the Huashan Hospital Fudan University, Shanghai, China with intermittent right-side headache for 5 years, and left lower limb numbness for 3 months.

Magnetic resonance imaging (MRI) of the head and digital subtraction angiography confirmed the diagnosis of right middle cerebral artery (MCA) aneurysm.

Considering the large size of this MCA aneurysm, Rapid ventricular pacing (RVP) was used to reduce blood pressure during MCA aneurysm repair, and to lower the risk of intracranial hemorrhage during procedure.

Post procedure, there was no abnormality detected. Seven weeks after surgery, the patient’s muscle tone of right side extremities were grade V and left side extremities were grade IV. Computed tomography angiography confirmed no MCA aneurysm.

In cases of aneurysm rupture, RVP will induce a transient “very low pressure” condition, and give a valuable time frame to clip the ruptured aneurysm. Therefore RVP is a safe and effective method to provide transient reduction of cardiac output in intracranial aneurysm patients 2).1) Rangel-Castilla L, Russin JJ, Britz GW, Spetzler RF. Update on transient cardiac standstill in cerebrovascular surgery. Neurosurg Rev. 2015 Oct;38(4):595-602. doi: 10.1007/s10143-015-0637-z. Epub 2015 May 1. PubMed PMID: 25931209.2) Ping Y, Gu H. A case report on middle cerebral artery aneurysm treated by rapid ventricular pacing: A CARE compliant case report. Medicine (Baltimore). 2018 Nov;97(48):e13320. doi: 10.1097/MD.0000000000013320. PubMed PMID: 30508924.

Medically refractory trigeminal neuralgia treatment

see Trends in surgical treatment for trigeminal neuralgia

see Cost effectiveness in surgical treatment for trigeminal neuralgia.

Microvascular decompression

see Microvascular decompression for trigeminal neuralgia

Percutaneous procedures

see Percutaneous trigeminal rhizotomy.

Gamma Knife radiosurgery

see Gamma Knife radiosurgery for trigeminal neuralgia.


Microvascular decompression should be performed more prudently in elderly patients (>80 years old), and the indications for PR should be relatively relaxed. MVD + PR could improve the curative effect in patients with trigeminal neuralgia >80 years. Gamma knife treatment of trigeminal neuralgia had high safety, less complications, and positive curative effect, especially suitable for patients >80 years 1).


MVD results in superior rates of short- and long-term pain relief, facial numbness and dysesthesia control, and less recurrence amongst those in whom pain freedom was achieved, at the cost of greater postoperative complications when compared to SRS. Although no significant difference was found in terms of the need for retreatment surgery, there was a trend towards less procedures favoring MVD. First treatment by either technique represents the overall trends reported 2).

References

1) Yu R, Wang C, Qu C, Jiang J, Meng Q, Wang J, Wei S. Study on the Therapeutic Effects of Trigeminal Neuralgia With Microvascular Decompression and Stereotactic Gamma Knife Surgery in the Elderly. J Craniofac Surg. 2018 Nov 30. doi: 10.1097/SCS.0000000000004999. [Epub ahead of print] PubMed PMID: 30507874. 2) Lu VM, Duvall JB, Phan K, Jonker BP. First treatment and retreatment of medically refractive trigeminal neuralgia by stereotactic radiosurgery versus microvascular decompression: a systematic review and Meta-analysis. Br J Neurosurg. 2018 May 10:1-10. doi: 10.1080/02688697.2018.1472213. [Epub ahead of print] PubMed PMID: 29745268.

Update: Intentional traumatic brain injury

Intentional traumatic brain injury

Epidemiology

Intentional injury has been associated with certain demographics and socioeconomic groups. Less is known about the relationship of intentional traumatic brain injury (TBI) to injury severity, mortality, and demographic and socioeconomic profile.


A planned secondary analysis of a prospective multicentre cohort study was conducted in 10 emergency departments EDs in Australia and New Zealand, including children aged <18 years with head injury (HI). Epidemiology codes were used to prospectively code the injuries. Demographic and clinical information including the rate of clinically important traumatic brain injury (ciTBI: HI leading to death, neurosurgery, intubation >1 day or admission ≥2 days with abnormal computed tomography [CT]) was descriptively analysed.

Intentional injuries were identified in 372 of 20 137 (1.8%) head-injured children. Injuries were caused by caregivers (103, 27.7%), by peers (97, 26.1%), by siblings (47, 12.6%), by strangers (35, 9.4%), by persons with unknown relation to the patient (21, 5.6%), other intentional injuries (8, 2.2%) or undetermined intent (61, 16.4%). About 75.7% of victims of assault by caregivers were <2 years, whereas in other categories, only 4.9% were <2 years. Overall, 66.9% of victims were male. Rates of CT performance and abnormal CT varied: assault by caregivers 68.9%/47.6%, by peers 18.6%/27.8%, by strangers 37.1%/5.7%. ciTBI rate was 22.3% in assault by caregivers, 3.1% when caused by peers and 0.0% with other perpetrators.

Intentional HI is infrequent in children. The most frequently identified perpetrators are caregivers and peers. Caregiver injuries are particularly severe 1).


A study identified 1,409 (8.0%) intentional TBIs and 16,211 (92.0%) unintentional TBIs. Of the intentional TBIs, 389 (27.6%) was self-inflicted TBI (Si-TBI) and 1,020 (72.4%) was other-inflicted TBI (Oi-TBI). The most common cause of Si-TBI was “jumping from high places” (32.1%), followed by “firearms” (30.6%). About half of Oi-TBI was because of “fight and brawl” (48.3%), followed by “struck by objects” (26.1%). Si-TBI was associated with younger age, female gender, and having more alcohol/drug abuse history. For Oi-TBI, younger age, male gender, having more alcohol/drug abuse history were independently associated.

This research provides the first comprehensive overview of intentional TBI based in Canada.

The comprehensive data set (CDS) of the Ontario trauma registry (OTR) provided the ability to identify who is at risk for intentional TBI. Prevention programs and more targeted rehabilitation services should be designed for this vulnerable population 2).

Outcome

Intentional injury is associated with significant morbidity and mortality.

Caregiver injuries are particularly severe in children 3).

Prospective data were obtained for 2,637 adults sustaining TBIs between January 1994 and September 1998. Descriptive, univariate, and multivariate analyses were conducted to determine the predictive value of intentional TBI on injury severity and mortality.

Gender, minority status, age, substance abuse, and residence in a zipcode with low average income were associated with intentional TBI. Multivariate analysis found minority status and substance abuse to be predictive of intentional injury after adjusting for other demographic variables studied. Intentional TBI was predictive of mortality and anatomic severity of injury to the head. Penetrating intentional TBI was predictive of injury severity with all injury severity markers studied.

Many demographic variables are risk factors for intentional TBI, and such injury is a risk factor for both injury severity and mortality. Future studies are needed to definitively link intentional TBI to disability and functional outcome 4).

References

1) , 3)

Babl FE, Pfeiffer H, Dalziel SR, Oakley E, Anderson V, Borland ML, Phillips N, Kochar A, Dalton S, Cheek JA, Gilhotra Y, Furyk J, Neutze J, Lyttle MD, Bressan S, Donath S, Hearps SJ, Crowe L; Paediatric Research in Emergency Departments International Collaborative (PREDICT). Paediatric intentional head injuries in the emergency department: A multicentre prospective cohort study. Emerg Med Australas. 2018 Nov 26. doi: 10.1111/1742-6723.13202. [Epub ahead of print] PubMed PMID: 30477046.
2)

Kim H, Colantonio A. Intentional traumatic brain injury in Ontario, Canada. J Trauma. 2008 Dec;65(6):1287-92. doi: 10.1097/TA.0b013e31817196f5. PubMed PMID: 19077615.
4)

Wagner AK, Sasser HC, Hammond FM, Wiercisiewski D, Alexander J. Intentional traumatic brain injury: epidemiology, risk factors, and associations with injury severity and mortality. J Trauma. 2000 Sep;49(3):404-10. Erratum in: J Trauma 2000 Nov;49(5):982. PubMed PMID: 11003315.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: