Non small cell lung cancer intracranial metastases treatment

Non small cell lung cancer intracranial metastases treatment

Brain metastases are common in patients with non small cell lung cancer (NSCLC). Because of associated poor prognosis and limited specific treatment options, there is a real need for the development of medical therapies and strategies for affected patients. Novel compounds for epidermal growth factor receptor-dependent and anaplastic lymphoma kinase-dependent lung cancer have demonstrated blood-brain barrier permeability and have led to important improvements in central nervous system outcomes. Studies of targeted therapies for oncogene-driven tumors and of immunotherapies in patients with brain metastases have shown promise and, allied with novel radiation techniques, are driving a rapid evolution in treatment and prognosis for NSCLC brain metastases 1).


KPS score ≥ 70, RPA class I/II, and postoperative chemotherapy could benefit post-metastasectomy patients with brain metastases (BM) from Non small cell lung cancer (NSCLC). Conversely, the initial onset of intracranial lesions is an unfavorable factor that increases the risk of death. These findings support the use of personalized therapy for patients with BM from NSCLC 2).


EGFR and ALK tyrosine kinase inhibitors (TKIs) provide significantly superior systemic response rates and progression free survival compared to standard chemotherapy in the molecularly defined Non small cell lung cancer (NSCLC) subpopulations. An apparent intracranial activity of new generation TKIs triggered the discussion on their role in brain metastases in lieu of local therapies 3).


A article of Preusser et al., is the result of a round table discussion held at the European Lung Cancer Conference (ELCC) in Geneva in May 2017. Its purpose was to explore and discuss the advances in the knowledge about the biology and treatment of brain metastases originating from non-small cell lung cancer. The authors propose a series of recommendations for research and treatment within the discussed context 4).


PUBMEDEMBASE, the Cochrane LibraryWeb of Knowledge, Current Controlled Trials, Clinical Trials, and 2 conference websites were searched to select NSCLC patients with only single brain metastasis (SBM) who received brain surgery or SRS. SPSS 18.0 software was used to analyze the mean median survival time (MST) and Stata 11.0 software was used to calculate the overall survival (OS).

A total of 18 trials including 713 patients were systematically reviewed. The MST of the patients was 12.7 months in surgery group and 14.85 months in SRS group, respectively. The 1, 2, and 5 years OS of the patients were 59%, 33%, and 19% in surgery group, and 62%, 33%, and 14% in SRS group, respectively. Furthermore, in the surgery group, the 1 and 3 years OS were 68% and 15% in patients with controlled primary tumors, and 50% and 13% in the other patients with uncontrolled primary tumors, respectively. Interestingly, the 5-year OS was up to 21% in patients with controlled primary tumors.

There was no significant difference in MST or OS between patients treated with neurosurgery and SRS. Patients with resectable lung tumors and SBM may benefit from the resection of both primary lesions and metastasis 5).

Patients with NSCLC and synchronous brain metastases, presenting neurological symptoms showed no survival benefit from neurosurgical resection, although quality of life was improved due to early control of neurological symptoms 6).


Response rates after platinum based antineoplastics, range from 23% to 45%. Development of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs): gefitinib or erlotinib, was an improvement in treatment of advanced NSCLC patients. EGFR mutations are present in 10-25% of NSCLC (mostly adenocarcinoma), and up to 55% in never-smoking women of East Asian descent. In the non-selected group of patients with BMF-NSCLC, the overall response rates after gefitinib or erlotinib treatment range from 10% to 38%, and the duration of response ranges from 9 to 13.5 months. In the case of present activating EGFR mutation, the response rate after EGRF-TKIs is greater than 50%, and in selected groups (adenocarcinoma, patients of Asian descent, never-smokers, asymptomatic BMF-NSCLC) even 70%. Gefitinib or erlotinib treatment improves survival of BMF-NSCLC patients with EGFR mutation in comparison to cases without the presence of this mutation. There is no data on the activity of the anti-EML4-ALK agent crizotinib. Bevacizumab, recombinant humanised monoclonal antibody anti-VEGF, in the treatment of advanced non-squamous NSCLC patients is a subject of intense research. Data from a clinical trial enrolling patients with pretreated or occult BMF-NSCLC proved that the addition of bevacizumab to various chemotherapy agents or erlotinib is a safe and efficient treatment, associated with a low incidence of CSN haemorrhages. However, the efficacy and safety of bevacizumab used for therapeutic intent, regarding active brain metastases is unknown 7).

Non small cell lung cancer intracranial metastases whole brain radiotherapy

Non small cell lung cancer intracranial metastases radiosurgery

Non small cell lung cancer intracranial metastases surgery

References

1)

Bulbul A, Forde PM, Murtuza A, Woodward B, Yang H, Bastian I, Ferguson PK, Lopez-Diaz F, Ettinger DS, Husain H. Systemic Treatment Options for Brain Metastases from Non-Small-Cell Lung Cancer. Oncology (Williston Park). 2018 Apr 15;32(4):156-63. Review. PubMed PMID: 29684234.
2)

She C, Wang R, Lu C, Sun Z, Li P, Yin Q, Liu Q, Wang P, Li W. Prognostic factors and outcome of surgically treated patients with brain metastases of non-small cell lung cancer. Thorac Cancer. 2018 Nov 28. doi: 10.1111/1759-7714.12913. [Epub ahead of print] PubMed PMID: 30485664.
3)

Wrona A, Dziadziuszko R, Jassem J. Management of brain metastases in non-small cell lung cancer in the era of tyrosine kinase inhibitors. Cancer Treat Rev. 2018 Dec;71:59-67. doi: 10.1016/j.ctrv.2018.10.011. Epub 2018 Oct 21. Review. PubMed PMID: 30366200.
4)

Preusser M, Winkler F, Valiente M, Manegold C, Moyal E, Widhalm G, Tonn JC, Zielinski C. Recent advances in the biology and treatment of brain metastases of non-small cell lung cancer: summary of a multidisciplinary roundtable discussion. ESMO Open. 2018 Jan 26;3(1):e000262. doi: 10.1136/esmoopen-2017-000262. eCollection 2018. Review. PubMed PMID: 29387475; PubMed Central PMCID: PMC5786916.
5)

Qin H, Wang C, Jiang Y, Zhang X, Zhang Y, Ruan Z. Patients with single brain metastasis from non-small cell lung cancer equally benefit from stereotactic radiosurgery and surgery: a systematic review. Med Sci Monit. 2015 Jan 12;21:144-52. doi: 10.12659/MSM.892405. PubMed PMID: 25579245.
6)

Kim SY, Hong CK, Kim TH, Hong JB, Park CH, Chang YS, Kim HJ, Ahn CM, Byun MK. Efficacy of surgical treatment for brain metastasis in patients with non-small cell lung cancer. Yonsei Med J. 2015 Jan 1;56(1):103-11. doi: 10.3349/ymj.2015.56.1.103. PubMed PMID: 25510753; PubMed Central PMCID: PMC4276743.
7)

Cedrych I, Kruczała MA, Walasek T, Jakubowicz J, Blecharz P, Reinfuss M. Systemic treatment of non-small cell lung cancer brain metastases. Contemp Oncol (Pozn). 2016;20(5):352-357. doi: 10.5114/wo.2016.64593. Epub 2016 Dec 20. Review. PubMed PMID: 28373815; PubMed Central PMCID: PMC5371701.

Leave a Reply