FET PET for Low Grade Glioma
Positron emission tomography (PET) imaging using amino acid tracers has in recent years become widely used in the diagnosis and prediction of disease course in diffuse low grade gliomas (LGG). However, implications of preoperative PET for treatment and prognosis in this patient group have not been systematically studied.
The aim of a systematic review was to evaluate the preoperative diagnostic and prognostic value of amino acid PET in suspected diffuse LGG. Medline, Cochrane Library, and Embase databases were systematically searched using keywords “PET,” “low grade glioma,” and “amino acids tracers” with their respective synonyms. Out of 2137 eligible studies, 28 met the inclusion criteria. Increased amino acid uptake (lesion/brain) was consistently reported among included studies; in 25-92% of subsequently histopathology-verified LGG, in 83-100% of histopathology-verified HGG, and also in some non-neoplastic lesions. No consistent results were found in studies reporting hot spot areas on PET in MRI-suspected LGG. Thus, the diagnostic value of amino acid PET imaging in suspected LGG has proven difficult to interpret, showing clear overlap and inconsistencies among reported results. Similarly, the results regarding the prognostic value of PET in suspected LGG and the correlation between uptake ratios and the molecular tumor status of LGG were conflicting. This systematic review illustrates the difficulties with prognostic studies presenting data on group-level without adjustment for established clinical prognostic factors, leading to a loss of additional prognostic information.
Näslund et al., conclude that the prognostic value of PET is limited to analysis of histological subgroups of LGG and is probably strongest when using kinetic analysis of dynamic FET uptake parameters 1).
For Chan et al., FET PET demonstrated a high positive predictive value for glioma in patients with indeterminate brain lesions on MRI. The combination of negative FET and negative FDG PET scans may predict an indolent clinical course. Confirmatory trials are needed to establish the potential value of FET PET in guiding surgical management in this cohort 2).
Sixty-one patients harboring Gd-negative WHO grade II or III glioma receiving alkylating agents (temozolomide or CCNU/procarbacine) were included. All patients underwent MRI and 18F-FET-PET before chemotherapy and 6 months later. They calculated T2-volume, 18F-FET-PET based biological tumour volume (BTV) and maximal tumour-to-brain ratio (TBRmax). Moreover, dynamic PET acquisition was performed using time-activity-curves (TACs) analysis. For MRI-based response assessment, RANO criteria for low-grade glioma were used. For 18F-FET-PET, following classification scheme was tested: responsive disease (RD) when a decrease in either BTV ≥ 25% and/or TBRmax ≥ 10% occurred, an increase in BTV ≥ 25% and/or TBRmax increase > 10% characterized progressive disease (PD), minor changes ± 25% for BTV and ± 10% for TBRmax were regarded as stable disease (SD). Post-chemotherapy survival (PCS) and time-to-treatment failure (TTF) were calculated using the Kaplan-Meier method.
18F-FET-PET based response has shown patients with RD to have the longest TTF time (78.5 vs 24.6 vs 24.1 months, p = 0.001), while there was no significant difference between patients with a SD and PD. A comparable pattern was observed for PCS (p < 0.001). T2-volume based assessment was not associated with outcome.
18F-FET-PET is a promising biomarker for early response assessment in Gd-negative gliomas undergoing chemotherapy. It might be helpful for a timely adjustment of potentially ineffective treatment concepts and overcomes limitations of conventional structural imaging 3).
A single FET PET scan obtained at the time of radiological and/or clinical progression seems to be of limited value in distinguishing transformed from nontransformed low grade gliomas (LGGs), especially if knowledge of the primary tumor histopathology is not known. Therefore, FET PET imaging alone is not adequate to replace histological confirmation, but it may provide valuable information on the location and delineation of active tumor tissue, as well as an assessment of tumor biology in a subgroup of LGGs 4).
Both Magnetic resonance perfusion imaging and FET PET provide grading information in cerebral gliomas.
Seventy-two patients with untreated gliomas [22 low-grade gliomas (LGG), and 50 high-grade gliomas (HGG)] were investigated with 18F-FET PET and Magnetic resonance perfusion imaging using a hybrid PET/MR scanner. After visual inspection of PET and Magnetic resonance perfusion imaging maps (rCBV, rCBF, MTT), volumes of interest (VOIs) with a diameter of 16 mm were centered upon the maximum of abnormality in the tumor area in each modality and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios (TBRmean, TBRmax) were calculated. In addition, Time-to-Peak (TTP) and slopes of time-activity curves were calculated for 18F-FET PET. Diagnostic accuracies of 18F-FET PET and Magnetic resonance perfusion imaging for differentiating low-grade glioma (LGG) from high-grade glioma (HGG) were evaluated by receiver operating characteristic analyses (area under the curve; AUC).
The diagnostic accuracy of 18F-FET PET and Magnetic resonance perfusion imaging to discriminate LGG from HGG was similar with highest AUC values for TBRmean and TBRmax of 18F-FET PET uptake (0.80, 0.83) and for TBRmean and TBRmax of rCBV (0.80, 0.81). In case of increased signal in the tumor area with both methods (n = 32), local hot-spots were incongruent in 25 patients (78%) with a mean distance of 10.6 ± 9.5 mm. Dynamic FET PET and combination of different parameters did not further improve diagnostic accuracy.
Both 18F-FET PET and Magnetic resonance perfusion imaging discriminate LGG from HGG with similar diagnostic performance. Regional abnormalities in the tumor area are usually not congruent indicating that tumor grading by 18F-FET PET and Magnetic resonance perfusion imaging is based on different pathophysiological phenomena 5).
Fifty-nine patients with newly diagnosed low-grade glioma and dynamic (18)F-FET PET before histopathologic assessment were retrospectively investigated. (18)F-FET PET analysis comprised a qualitative visual classification of lesions; assessment of the semiquantitative parameters maximal, mean, and total standardized uptake value as ratio to background and biologic tumor volume; and dynamic analysis of intratumoral (18)F-FET uptake over time (increasing vs. decreasing time-activity curves). The correlation between PET parameters and progression-free survival, overall survival, and time to malignant transformation was investigated.
(18)F-FET uptake greater than the background level was found in 34 of 59 tumors. Dynamic (18)F-FET uptake analysis was available for 30 of these 34 patients. Increasing and decreasing time-activity curves were found in 18 and 12 patients, respectively. Neither the qualitative factor presence or absence of (18)F-FET uptake nor any of the semiquantitative uptake parameters significantly influenced clinical outcome. In contrast, decreasing time-activity curves in the kinetic analysis were highly prognostic for shorter progression-free survival and time to malignant transformation (P < 0.001).
Absence of (18)F-FET uptake in newly diagnosed astrocytic low-grade glioma does not generally indicate an indolent disease course. Among the (18)F-FET-positive gliomas, decreasing time-activity curves in dynamic (18)F-FET PET constitute an unfavorable prognostic factor in astrocytic low-grade glioma and, by identifying high-risk patients, may ease treatment decisions 6).