Intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion

Intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion

Although Intraoperative neurophysiological monitoring has been shown to decrease the risk of neurological injury in deformity surgery, its utility in anterior cervical spine surgery (ACSS) remains controversial 1) 2) 3) 4) 5) 6)7) 8).

Proponents of intraoperative neurophysiological monitoring for ACSS claim that it improves patient safety and functional outcome whereas opponents refute this claim by citing increased cost and the lack of correlation between intraoperative neurophysiological monitoring abnormalities and postoperative neurological deficits especially with anterior cervical discectomy and fusions (ACDFs) 9) 10) 11) 12).


In a systematic review and meta-analysis from 2017, the risk of neurological injury after ACSS was low although procedures involving a corpectomy may carry a higher risk. For ACDFs, there is no difference in the risk of neurological injury with or without ION use. Unimodal ION has a higher specificity than multimodal ION and may minimize “subclinical” intraoperative alerts in ACSS 13)


A analysis of over 140,000 cases from the National Inpatient Sample data set, found that the use of intraoperative neurophysiological monitoringfor anterior cervical discectomy and fusion was not associated with a reduced rate of neurological complication14).

References

1)

Dawson EG, Sherman JE, Kanim LE, et al. Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine. 1991;16:S361–4.
2)

Diab M, Smith AR, Kuklo TR. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine. 2007;32:2759–63.
3)

Eggspuehler A, Sutter MA, Grob D, et al. Multimodal intraoperative monitoring during surgery of spinal deformities in 217 patients. Eur Spine J. 2007;16:S188–96.
4)

Forbes HJ, Allen PW, Waller CS, et al. Spinal cord monitoring in scoliosis surgery. Experience with 1168 cases. J Bone Joint Surg Br. 1991;73:487–91.
5)

Kamerlink JR, Errico T, Xavier S, et al. Major intraoperative neurologic monitoring deficits in consecutive pediatric and adult spinal deformity patients at one institution. Spine. 2010;35:240–5.
6)

Nuwer MR, Emerson RG, Galloway G, et al. Evidence-based guideline update: intraoperative spinal monitoring with somato-sensory and transcranial electrical motor evoked potentials*. J Clin Neurophysiol. 2012;29:101–8.
7)

Resnick DK, Choudhri TF, Dailey AT, et al. Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 15: electrophysiological monitoring and lumbar fusion. J Neurosurg Spine. 2005;2:725–32.
8)

Zhuang Q, Wang S, Zhang J, et al. How to make the best use of intraoperative motor evoked potential monitoring? Experience in 1162 consecutive spinal deformity surgical procedures. Spine. 2014;39:E1425–32.
9)

Engler GL, Spielholz NJ, Bernhard WN, et al. Somatosensory evoked potentials during Harrington instrumentation for scoliosis. J Bone Joint Surg Am. 1978;60:528–32.
10)

Epstein NE, Danto J, Nardi D. Evaluation of intraoperative somatosensory-evoked potential monitoring during 100 cervical operations. Spine. 1993;18:737–47.
11)

Taunt CJ, Jr, Sidhu KS, Andrew SA. Somatosensory evoked potential monitoring during anterior cervical discectomy and fusion. Spine. 2005;30:1970–2.
12)

Traynelis VC, Abode-Iyamah KO, Leick KM, et al. Cervical decompression and reconstruction without intraoperative neurophysiological monitoring. J Neurosurg Spine. 2012;16:107–13.
13)

Ajiboye RM, Zoller SD, Sharma A, Mosich GM, Drysch A, Li J, Reza T, Pourtaheri S. Intraoperative Neuromonitoring for Anterior Cervical Spine Surgery: What Is the Evidence? Spine (Phila Pa 1976). 2017 Mar 15;42(6):385-393. doi: 10.1097/BRS.0000000000001767. Review. PubMed PMID: 27390917; PubMed Central PMCID: PMC5552368.
14)

Badhiwala JH, Nassiri F, Witiw CD, Mansouri A, Almenawer SA, da Costa L, Fehlings MG, Wilson JR. Investigating the utility of intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion: analysis of over 140,000 cases from the National (Nationwide) Inpatient Sample data set. J Neurosurg Spine. 2019 Mar 29:1-11. doi: 10.3171/2019.1.SPINE181110. [Epub ahead of print] PubMed PMID: 30925481.

Leave a Reply