Diffusion tensor imaging for brain tumor resection

Diffusion tensor imaging for brain tumor resection

Preserving subcortical connectivity is crucial in optimizing functional outcomes of patients undergoing surgery for intraaxial tumors.

Diffusion tensor imaging (DTI) attempts to aid in the preservation of these subcortical networks by providing a framework for localizing these tracts in relation to the surgical target. DTI takes advantage of the anisotropic diffusion of water along white matter fiber bundles, which can be assessed with magnetic resonance imaging (MRI). Postprocessing platforms are used to map the tracts, which can then be integrated into neuronavigation. This permits the neurosurgeon to ascertain the location and orientation of major white matter tracts for preoperative and intraoperative decision making.


Diffusion tensor imaging (DTI) based on echo planar imaging (EPI) can suffer from geometric image distortions in comparison to conventional anatomical magnetic resonance imaging (MRI). Therefore, DTI-derived information, such as fiber tractography (FT) used for treatment planning of brain tumors, might be associated with spatial inaccuracies when linearly projected on anatomical MRI.

Gerhardt et al., indicated that semi-elastic image fusion can be used for retrospective distortion correction of DTI data acquired for image guidance, such as DTI FT as used for a broad range of clinical indications 1).


The exact utility and practical application of DTI in brain tumor resection continue to be refined. On the one hand, the historical difficulty in obtaining DTI (especially with respect to postprocessing) has made its implementation in neurosurgical practices somewhat limited. Adding to this barrier, the majority of studies describing DTI are placed within a methodological framework that emphasizes the physics and computational analysis of the modality itself, a perspective that is less directly applicable to neurosurgeons wanting to apply DTI to clinical practice. On the other hand, fundamental questions about the utility of the tool have been raised by leaders in the field 2) 3) 4) 5) 6) 7) 8) 9).


Conventional white matter (WM) imaging approaches, such as diffusion tensor imaging (DTI), have been used to preoperatively identify the location of affected WM tracts in patients with intracranial tumors in order to maximize the extent of resection and potentially reduce postoperative morbidity.

Preoperative diffusion tensor imaging (DTI) is used to demonstrate corticospinal tract (CST) position. Intraoperative brain shifts may limit preoperative DTI value, and studies characterizing such shifts are lacking.

For nonenhancing intraaxial tumors, preoperative DTI is a reliable method for assessing intraoperative tumor-to-CST distance because of minimal intraoperative shift, a finding that is important in the interpretation of subcortical motor evoked potential to maximize extent of resection and to preserve motor function. In resection of intra-axial enhancing tumors, intraoperative imaging studies are crucial to compensate for brain shift 10).

Case series

A total of 34 patients were included in this study. Pre-operative contrast-enhanced magnetic resonance imaging and DTI scans of the patients were taken into consideration. Pre- and post-operative neurological examinations were performed and the outcome was assessed.

Preoperative planning of surgical corridor and extent of resection were planned so that maximum possible resection could be achieved without disturbing the WM tracts. DTI indicated the involvement of fiber tracts. A total of 21 (61.7%) patients had a displacement of tracts only and they were not invaded by tumor. A total of 11 (32.3%) patients had an invasion of tracts by the tumor, whereas in 4 (11.7%) patients the tracts were disrupted. Postoperative neurologic examination revealed deterioration of motor power in 4 (11.7%) patients, deterioration of language function in 3 (8.82%) patients, and memory in one patient. Total resection was achieved in 11/18 (61.1%) patients who had displacement of fibers, whereas it was achieved in 5/16 (31.2%) patients when there was infiltration/disruption of tracts.

DTI provided crucial information regarding the infiltration of the tract and their displaced course due to the tumor. This study indicates that it is a very important tool for the preoperative planning of surgery. The involvement of WM tracts is a strong predictor of the surgical outcome 11).

References

1)

Gerhardt J, Sollmann N, Hiepe P, Kirschke JS, Meyer B, Krieg SM, Ringel F. Retrospective distortion correction of diffusion tensor imaging data by semi-elastic image fusion – Evaluation by means of anatomical landmarks. Clin Neurol Neurosurg. 2019 Jun 10;183:105387. doi: 10.1016/j.clineuro.2019.105387. [Epub ahead of print] PubMed PMID: 31228706.
2)

Nimsky C. Fiber tracking: we should move beyond diffusion tensor imaging. World Neurosurg. 2014;82(1-2):35–36.
3)

Farquharson STournier JDCalamante F. et al White matter fiber tractography: why we need to move beyond DTI. J Neurosurg. 2013;118(6):1367–1377.
4)

Fernandez-Miranda JC. Editorial: beyond diffusion tensor imaging. J Neurosurg. 2013;118(6):1363–1365; discussion 1365-1366.
5)

Lerner AMogensen MAKim PEShiroishi MSHwang DHLaw M. Clinical applications of diffusion tensor imaging. World Neurosurg. 2014;82(1-2):96–109.
6)

Feigl GCHiergeist WFellner C. et al Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages. World Neurosurg. 2014;81(1):144–150.
7)

Duffau H. The dangers of magnetic resonance imaging diffusion tensor tractography in brain surgery. World Neurosurg. 2014;81(1):56–58.
8)

Duffau H. Diffusion tensor imaging is a research and educational tool, but not yet a clinical tool. World Neurosurg. 2014;82(1-2):e43–e45.
9)

Potgieser ARWagemakers Mvan Hulzen ALde Jong BMHoving EWGroen RJ. The role of diffusion tensor imaging in brain tumor surgery: a review of the literature. Clin Neurol Neurosurg. 2014;124C:51–58.
10)

Shahar T, Rozovski U, Marko NF, Tummala S, Ziu M, Weinberg JS, Rao G, Kumar VA, Sawaya R, Prabhu SS. Preoperative Imaging to Predict Intraoperative Changes in Tumor-to-Corticospinal Tract Distance: An Analysis of 45 Cases Using High-Field Intraoperative Magnetic Resonance Imaging. Neurosurgery. 2014 Jul;75(1):23-30. doi: 10.1227/NEU.0000000000000338. PubMed PMID: 24618800.
11)

Dubey A, Kataria R, Sinha VD. Role of Diffusion Tensor Imaging in Brain Tumor Surgery. Asian J Neurosurg. 2018 Apr-Jun;13(2):302-306. doi: 10.4103/ajns.AJNS_226_16. PubMed PMID: 29682025; PubMed Central PMCID: PMC5898096.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

WhatsApp WhatsApp us
%d bloggers like this: