Posterior fossa decompression for Chiari type 1 deformity

Posterior fossa decompression for Chiari type 1 deformity

Despite decades of experience and research, the etiology and management of Chiari type 1 deformity (CM-I) continue to raise more questions than answers. Controversy abounds in every aspect of management, including the indications, timing, and type of surgery, as well as clinical and radiographic outcomes.

A review of recent literature on the management of CM-I in pediatric patients was presented by Alexander et al., along with the experience in managing 1073 patients who were diagnosed with CM-I over the past two decades (1998-2018) at Children’s National Medical Center.

The general trend reveals an increase in the diagnosis of CM-I at younger ages with a significant proportion of these being incidental findings (0.5-3.6%) in asymptomatic patients as well as a rise in the number of patients undergoing Chiari posterior fossa decompression surgery (PFD). The type of surgical intervention varies widely. At there institution, 104 (37%) Chiari surgeries were bone-only PFD with/without outer leaf durectomy, whereas 177 (63%) were PFD with duraplasty. They did not find a significant difference in outcomes between the PFD and PFDD groups (p = 0.59). An analysis of failures revealed a significant difference between patients who underwent tonsillar coagulation versus those whose tonsils were not manipulated (p = 0.02).

While the optimal surgical intervention continues to remain elusive, there is a shift away from intradural techniques in favor of a simple, extradural approach (including dural delamination) in pediatric patients due to high rates of clinical and radiographic success, along with a lower complication rate. The efficacy, safety, and necessity of tonsillar manipulation continue to be heavily contested, as evidence increasingly supports the efficacy and safety of less tonsillar manipulation, including there own experience 1).


An accurate and reliable selection of patients based on clinical and neuroimaging findings is paramount for the success of neurosurgical treatment2).


The preferred treatment for Chiari type 1 deformity is foramen magnum decompression (FMD), and it is assumed to normalise ICP and craniospinal pressure dissociation.

Observations suggest that anatomical restoration of cerebrospinal fluid pathways by FMD does not lead to immediate normalisation of preoperatively altered pulsatile and static ICP in patients with CMI. This finding may explain persistent symptoms during the early period after FMD3).


A variety of surgical techniques for CM-I have been used, and there is a controversy whether to use posterior fossa decompression with duraplasty(PFDD) or posterior fossa decompression without duraplasty (PFD) in CM-I patients.

Chen et al., compared the clinical results and effectiveness of PFDD and PFD in adult patients with CM-I. The cases of 103 adult CM-I patients who underwent posterior fossa decompression with or without duraplasty from 2008 to 2014 were reviewed retrospectively. Patients were divided into 2 groups according to the surgical techniques: PFDD group (n = 70) and PFD group (n = 33). We compared the demographics, preoperative symptoms, radiographic characteristics, postoperative complications, and clinical outcomes between the PFD and PFDD patients. No statistically significant differences were found between the PFDD and PFD groups with regard to demographics, preoperative symptoms, radiographic characteristics, and clinical outcomes(P > 0.05); however, the postoperative complication aseptic meningitis occurred more frequently in the PFDD group than in the PFD group (P = 0.027). We also performed a literature review about the PFDD and PFD and made a summary of these preview studies. Our study suggests that both PFDD and PFD could achieve similar clinical outcomes for adult CM-I patients. The choice of surgical procedure should be based on the patient’s condition. PFDD may lead to a higher complication rate and autologous grafts seemed to perform better than nonautologous grafts for duraplasty 4).


The purpose of a study was to examine the utility of iMRI in determining when an adequate decompression had been performed.

Patients with symptomatic Chiari I malformations with imaging findings of obstruction of the CSF space at the foramen magnum, with or without syringomyelia, were considered candidates for surgery. All patients underwent complete T1, T2, and cine MRI studies in the supine position preoperatively as a baseline. After the patient was placed prone with the neck flexed in position for surgery, iMRI was performed. The patient then underwent a bone decompression of the foramen magnum and arch of C-1, and the MRI was repeated. If obstruction was still present, then in a stepwise fashion the patient underwent dural splitting, duraplasty, and coagulation of the tonsils, with an iMRI study performed after each step guiding the decision to proceed further.

Eighteen patients underwent PFD for Chiari I malformations between November 2011 and February 2013; 15 prone preincision iMRIs were performed. Fourteen of these patients (93%) demonstrated significant improvement of CSF flow through the foramen magnum dorsal to the tonsils with positioning only. This improvement was so notable that changes in CSF flow as a result of the bone decompression were difficult to discern.

The authors observed significant CSF flow changes when simply positioning the patient for surgery. These results put into question intraoperative flow assessments that suggest adequate decompression by PFD, whether by iMRI or intraoperative ultrasound. The use of intraoperative imaging during PFD for Chiari I malformation, whether by ultrasound or iMRI, is limited by CSF flow dynamics across the foramen magnum that change significantly when the patient is positioned for surgery 5).

Complications

References

1)

Alexander H, Tsering D, Myseros JS, Magge SN, Oluigbo C, Sanchez CE, Keating RF. Management of Chiari I malformations: a paradigm in evolution. Childs Nerv Syst. 2019 Jul 27. doi: 10.1007/s00381-019-04265-2. [Epub ahead of print] PubMed PMID: 31352576.
2)

Poretti A, Ashmawy R, Garzon-Muvdi T, Jallo GI, Huisman TA, Raybaud C. Chiari Type 1 Deformity in Children: Pathogenetic, Clinical, Neuroimaging, and Management Aspects. Neuropediatrics. 2016 Jun 23. [Epub ahead of print] PubMed PMID: 27337547.
3)

Frič R, Eide PK. Perioperative monitoring of pulsatile and static intracranial pressure in patients with Chiari malformation type 1 undergoing foramen magnum decompression. Acta Neurochir (Wien). 2016 Feb;158(2):341-7. doi: 10.1007/s00701-015-2669-0. Epub 2015 Dec 28. PubMed PMID: 26711284.
4)

Chen J, Li Y, Wang T, Gao J, Xu J, Lai R, Tan D. Comparison of posterior fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation type I in adult patients: A retrospective analysis of 103 patients. Medicine (Baltimore). 2017 Jan;96(4):e5945. doi: 10.1097/MD.0000000000005945. PubMed PMID: 28121938.
5)

Bond AE, Jane JA Sr, Liu KC, Oldfield EH. Changes in cerebrospinal fluid flow assessed using intraoperative MRI during posterior fossa decompression for Chiari malformation. J Neurosurg. 2015 May;122(5):1068-75. doi: 10.3171/2015.1.JNS132712. Epub 2015 Feb 20. PubMed PMID: 25699415.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

WhatsApp WhatsApp us
%d bloggers like this: