Radiation necrosis treatment

Radiation necrosis treatment

Radiation necrosis (RN) will be increasingly encountered due to the widespread use of SRS. Symptomatic RN can cause significant morbidity and should be managed pro-actively. There is no single modality which can reliably distinguish RN from recurrent tumor, and a multi-modal approach is often required. For patients with symptomatic RN, oral corticosteroid therapy and bevacizumab are both effective. A minority of patients, with an unclear diagnosis, or refractory symptoms, will require surgical resection. As RN proves to be a challenging condition to diagnose and manage, risk factor mitigation becomes important in clinical decision making 1).


Using the internal database for pharmaceutical products, all patients who received BEV in the University of Munich were identified. Only patients who received BEV as symptomatic treatment for radiation necrosis were included. Patient characteristics, symptoms before, during, and after treatment, and the use of dexamethasone were evaluated using medical reports and systematic internal documentation. The symptoms were graded using CTCAE version 5.0 for general neurological symptoms. Symptoms were graded directly before each cycle and after the treatment (approximately 6 weeks). Additionally, the daily steroid dose was collected at these timepoints. Patients who either improved in symptoms, received less dexamethasone after treatment, or both were considered to have a benefit from the treatment.

Twenty-one patients who received BEV due to radiation necrosis were identified. For 10 patients (47.6%) symptoms improved and 11 patients (52.4%) remained clinically stable during the treatment. In 14 patients (66.7%) the dexamethasone dose could be reduced during therapy, 5 patients (23.8%) received the same dose of dexamethasone before and after the treatment, and 2 patients (9.5%) received a higher dose at the end of the treatment. According to this analysis, overall, 19 patients (90.5%) benefited from the treatment with BEV. No severe adverse effects were reported.

BEV might be an effective and safe therapeutic option for patients with radiation necrosis as a complication after cranial radiation therapy. Patients seem to benefit from this treatment by improving symptomatically or through reduction of dexamethasone 2).


Perez-Torres et al. validated the VEGF specificity by comparing the therapeutic efficacy of anti-VEGF with non-specific isotype control antibody. Additionally, they found that VEGF over-expression and radionecrosis developed simultaneously, which precludes preventative anti-VEGF treatment 3).

References

1)

Vellayappan B, Tan CL, Yong C, Khor LK, Koh WY, Yeo TT, Detsky J, Lo S, Sahgal A. Diagnosis and Management of Radiation Necrosis in Patients With Brain Metastases. Front Oncol. 2018 Sep 28;8:395. doi: 10.3389/fonc.2018.00395. eCollection 2018. Review. PubMed PMID: 30324090; PubMed Central PMCID: PMC6172328.
2)

Bodensohn R, Hadi I, Fleischmann DF, Corradini S, Thon N, Rauch J, Belka C, Niyazi M. Bevacizumab as a treatment option for radiation necrosis after cranial radiation therapy: a retrospective monocentric analysis. Strahlenther Onkol. 2019 Oct 4. doi: 10.1007/s00066-019-01521-x. [Epub ahead of print] PubMed PMID: 31586230.
3)

Perez-Torres CJ, Yuan L, Schmidt RE, Rich KM, Drzymala RE, Hallahan DE, Ackerman JJ, Garbow JR. Specificity of vascular endothelial growth factor treatment for radiation necrosis. Radiother Oncol. 2015 Sep 12. pii: S0167-8140(15)00462-4. doi: 10.1016/j.radonc.2015.09.004. [Epub ahead of print] PubMed PMID: 26376163.

Vagus Nerve Stimulation outcome

Vagus Nerve Stimulation outcome

Evidence for long-term efficacy is still limited.

The true outcome of long-term VNS is difficult to assess in real-world practice. The effect may be overestimated due to confounding factors, particularly the common introduction of novel AEDs and the natural course of the disorder. Patients without perceived benefit from long-term VNS should not routinely remain on treatment and be subject to undue generator re-implantations 1).


Kawai et al. report the overall outcome of a national, prospective registry that included all patients implanted in Japan. The registry included patients of all ages with all seizure types who underwent VNS implantation for drug-resistant epilepsy in the first three years after approval of VNS in 2010. The registry excluded patients who were expected to benefit from resective surgery. Efficacy analysis was assessed based on the change in frequency of all seizure types and the rate of responders. Changes in cognitive, behavioural and social status, quality of life (QOL), antiepileptic drug (AED) use, and overall AED burden were analysed as other efficacy indices. A total of 385 patients were initially registered. Efficacy analyses included data from 362 patients. Age range at the time of VNS implantation was 12 months to 72 years; 21.5% of patients were under 12 years of age and 49.7% had prior epilepsy surgery. Follow-up rate was >90%, even at 36 months. Seizure control improved over time with median seizure reduction of 25.0%, 40.9%, 53.3%, 60.0%, and 66.2%, and responder rates of 38.9%, 46.8%, 55.8%, 57.7%, and 58.8% at three, six, 12, 24, and 36 months of VNS therapy, respectively. There were no substantial changes in other indices throughout the three years of the study, except for self/family-accessed QOL which improved over time. No new safety issues were identified. Although this was not a controlled comparative study, this prospective national registry of Japanese patients with drug-resistant epilepsy, with >90% follow-up rate, indicates long-term efficacy of VNS therapy which increased over time, over a period of up to three years. The limits of such trials, in terms of AED modifications and during follow-up and difficulties in seizure counting are also discussed 2).


VNS can affect the voice and reduced vocal cord motion on the implantation side with secondary supraglottic muscle tension. Otolaryngologists are not only capable of performing VNS implantation, but can also manage surgical complications, assess laryngeal side effects and treat them as needed 3).


VNS implantation may render patients with some forms of cortical dysgenesis (parietooccipital polymicrogyriamacrogyria) seizure-free. Patients with unilateral IEDs and earlier implantation achieved the most benefit from VNS 4).

References

1)

Brodtkorb E, Samsonsen C, Jørgensen JV, Helde G. Epilepsy patients with and without perceived benefit from vagus nerve stimulation: A long-term observational single center study. Seizure. 2019 Sep 19;72:28-32. doi: 10.1016/j.seizure.2019.09.004. [Epub ahead of print] PubMed PMID: 31563121.
2)

Kawai K, Tanaka T, Baba H, Bunker M, Ikeda A, Inoue Y, Kameyama S, Kaneko S, Kato A, Nozawa T, Maruoka E, Osawa M, Otsuki T, Tsuji S, Watanabe E, Yamamoto T. Outcome of vagus nerve stimulation for drug-resistant epilepsy: the first three years of a prospective Japanese registry. Epileptic Disord. 2017 Sep 1;19(3):327-338. doi: 10.1684/epd.2017.0929. PubMed PMID: 28832004.
3)

Al Omari AI, Alzoubi FQ, Alsalem MM, Aburahma SK, Mardini DT, Castellanos PF. The vagal nerve stimulation outcome, and laryngeal effect: Otolaryngologists roles and perspective. Am J Otolaryngol. 2017 Jul – Aug;38(4):408-413. doi: 10.1016/j.amjoto.2017.03.011. Epub 2017 Apr 4. PubMed PMID: 28390806.
4)

Ghaemi K, Elsharkawy AE, Schulz R, Hoppe M, Polster T, Pannek H, Ebner A. Vagus nerve stimulation: outcome and predictors of seizure freedom in long-term follow-up. Seizure. 2010 Jun;19(5):264-8. doi: 10.1016/j.seizure.2010.03.002. Epub 2010 Apr 1. PubMed PMID: 20362466.

Unplanned hospital readmission after cranial neurosurgery

Unplanned hospital readmission after cranial neurosurgery

Many readmissions may be preventable and occur at predictable time intervals. The causes and timing of readmission vary significantly across neurosurgical subgroups. Future studies should focus on detecting specific complications in select cohorts at predefined time points, which may allow for interventions to lower costs and reduce patient morbidity 1).


Hospital readmission to a hospital (non-index) other than the one from which patients received their original care (index) has been associated with increases in both morbidity and mortality for cancer patients.

Of patient readmissions following brain tumor resection, 15.6% occur at a non-index facility. Low procedure volume is a confounder for non-index analysis and is associated with an increased likelihood of major complications and mortality, as compared to readmission to high-procedure-volume hospitals. Further studies should evaluate interventions targeting factors associated with unplanned readmission 2).


In a single-center Canadian experience. Almost one-fifth of neurosurgical patients were readmitted within 30 days of discharge. However, only about half of these patients were admitted for an unplanned reason, and only 10% of all readmissions were potentially avoidable. This study demonstrates unique challenges encountered in a publicly funded healthcare setting and supports the growing literature suggesting 30-day readmission rates may serve as an inappropriate quality of care metric in neurosurgical patients. Potentially avoidable readmissions can be predicted, and further research assessing predictors of avoidable readmissions is warranted 3).

A study of Elsamadicy et al. suggested that infection, altered mental status, and new sensory/motor deficits were the primary complications leading to unplanned 30-day readmission after cranial neurosurgery 4).


The preponderance of postdischarge mortality and complications requiring readmission highlights the importance of posthospitalization management 5).


Obstructive sleep apnea (OSA) is known to be associated with negative outcomes and is underdiagnosed. The STOP-Bang questionnaire is a screening tool for OSA that has been validated in both medical and surgical populations. Given that readmission, after surgical intervention is an undesirable event, Caplan et al. sought to investigate, among patients not previously diagnosed with OSA, the capacity of the STOP-Bang questionnaire to predict 30-day readmissions following craniotomy for a supratentorial tumor.

For patients undergoing craniotomy for treatment of a supratentorial neoplasm within a multiple-hospital academic medical center, data were captured in a prospective manner via the Neurosurgery Quality Improvement Initiative (NQII) EpiLog tool. Data were collected over a 1-year period for all supratentorial craniotomy cases. An additional criterion for study inclusion was that the patient was alive at 30 postoperative days. Statistical analysis consisted of simple logistic regression, which assessed the ability of the STOP-Bang questionnaire and additional variables to effectively predict outcomes such as 30-day readmission, 30-day emergency department (ED) visit, and 30-day reoperation. The C-statistic was used to represent the receiver operating characteristic (ROC) curve, which analyzes the discrimination of a variable or model.

Included in the sample were all admissions for supratentorial neoplasms treated with craniotomy (352 patients), 49.72% (n = 175) of which were female. The average STOP-Bang score was 1.91 ± 1.22 (range 0-7). A 1-unit higher STOP-Bang score accurately predicted 30-day readmissions (OR 1.31, p = 0.017) and 30-day ED visits (OR 1.36, p = 0.016) with fair accuracy as confirmed by the ROC curve (C-statistic 0.60-0.61). The STOP-Bang questionnaire did not correlate with 30-day reoperation (p = 0.805) or home discharge (p = 0.315).

The results of this study suggest that undiagnosed OSA, as assessed via the STOP-Bang questionnaire, is a significant predictor of patient health status and readmission risk in the brain tumor craniotomy population. Further investigations should be undertaken to apply this prediction tool in order to enhance postoperative patient care to reduce the need for unplanned readmissions 6).


Lopez Ramos et al., from the Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA, examined clinical risk factors and postoperative complications associated with 30-day unplanned hospital readmissions after cranial neurosurgery.

They queried the American College of Surgeons National Surgical Quality Improvement Program database from 2011-2016 for adult patients that underwent a cranial neurosurgical procedure. Multivariable logistic regression with backwards model selection was used to determine predictors associated with 30-day unplanned hospital readmission.

Of 40,802 cranial neurosurgical cases, 4,147 (10.2%) had an unplanned readmission. Postoperative complications were higher in the readmission cohort (18.5% vs 9.9%, p <0.001). On adjusted analysis, clinical factors predictive of unplanned readmission included hypertension, COPD, diabetes, coagulopathy, chronic steroid use, and preoperative anemia, hyponatremia, and hypoalbuminemia (all p ≤ 0.01). Higher ASA class (III-V), operative time >216 minutes, and unplanned reoperation were also associated with an increased likelihood of readmission (all p ≤0.001). Postoperative complications predictive of unplanned readmissions were wound infection (OR 4.90, p <0.001), pulmonary embolus (OR 3.94, p <0.001), myocardial infarction/cardiac arrest (OR 2.37, p <0.001), sepsis (OR 1.73, p <0.001), deep venous thrombosis (1.50, p=0.002), and urinary tract infection (OR 1.45, p=0.002). Female sex, transfer status, and postoperative pulmonary complications were protective of readmission (all p <0.05)

Unplanned hospital readmission after cranial neurosurgery is a common event. Identification of high-risk patients who undergo cranial procedures may allow hospitals to reduce unplanned readmissions and associated healthcare costs 7).


Cusimano et al., conducted a systematic review of several databases; a manual search of the Journal of NeurosurgeryNeurosurgeryActa NeurochirurgicaCanadian Journal of Neurological Sciences; and the cited references of the selected articles. Quality review was performed using the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) criteria. Findings are reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.

A total of 1344 articles published between 1947 and 2015 were identified; 25 were considered potentially eligible, of which 12 met inclusion criteria. The 30-day readmission rates varied from 6.9% to 23.89%. Complications arising during or after neurosurgical procedures were a prime reason for readmission. Race, comorbidities, and longer hospital stay put patients at risk for readmission.

Although readmission may be an important indicator for good care for the subset of acutely declining patients, neurosurgery should aim to reduce 30-day readmission rates with improved quality of care through systemic changes in the care of neurosurgical patients that promote preventive measures 8).

References

1)

Taylor BE, Youngerman BE, Goldstein H, Kabat DH, Appelboom G, Gold WE, Connolly ES Jr. Causes and Timing of Unplanned Early Readmission After Neurosurgery. Neurosurgery. 2016 Sep;79(3):356-69. doi: 10.1227/NEU.0000000000001110. PubMed PMID: 26562821.
2)

Jarvis CA, Bakhsheshian J, Ding L, Wen T, Tang AM, Yuan E, Giannotta SL, Mack WJ, Attenello FJ. Increased complication and mortality among non-index hospital readmissions after brain tumor resection is associated with low-volume readmitting hospitals. J Neurosurg. 2019 Oct 4:1-13. doi: 10.3171/2019.6.JNS183469. [Epub ahead of print] PubMed PMID: 31585421.
3)

Wilson MP, Jack AS, Nataraj A, Chow M. Thirty-day readmission rate as a surrogate marker for quality of care in neurosurgical patients: a single-center Canadian experience. J Neurosurg. 2018 Jul 1:1-7. doi: 10.3171/2018.2.JNS172962. [Epub ahead of print] PubMed PMID: 29979117.
4)

Elsamadicy AA, Sergesketter A, Adogwa O, Ongele M, Gottfried ON. Complications and 30-Day readmission rates after craniotomy/craniectomy: A single Institutional study of 243 consecutive patients. J Clin Neurosci. 2018 Jan;47:178-182. doi: 10.1016/j.jocn.2017.09.021. Epub 2017 Oct 12. PubMed PMID: 29031542.
5)

Dasenbrock HH, Yan SC, Smith TR, Valdes PA, Gormley WB, Claus EB, Dunn IF. Readmission After Craniotomy for Tumor: A National Surgical Quality Improvement Program Analysis. Neurosurgery. 2017 Apr 1;80(4):551-562. doi: 10.1093/neuros/nyw062. PubMed PMID: 28362921.
6)

Caplan IF, Glauser G, Goodrich S, Chen HI, Lucas TH, Lee JYK, McClintock SD, Malhotra NR. Undiagnosed obstructive sleep apnea as a predictor of 30-day readmission for brain tumor patients. J Neurosurg. 2019 Jul 19:1-6. doi: 10.3171/2019.4.JNS1968. [Epub ahead of print] PubMed PMID: 31323636.
7)

Lopez Ramos C, Brandel MG, Rennert RC, Wali AR, Steinberg JA, Santiago-Dieppa DR, Burton BN, Pannell JS, Olson SE, Khalessi AA. Clinical Risk Factors and Postoperative Complications Associated with Unplanned Hospital Readmissions After Cranial Neurosurgery. World Neurosurg. 2018 Jul 24. pii: S1878-8750(18)31614-0. doi: 10.1016/j.wneu.2018.07.136. [Epub ahead of print] PubMed PMID: 30053566.
8)

Cusimano MD, Pshonyak I, Lee MY, Ilie G. A systematic review of 30-day readmission after cranial neurosurgery. J Neurosurg. 2017 Aug;127(2):342-352. doi: 10.3171/2016.7.JNS152226. Epub 2016 Oct 21. PubMed PMID: 27767396.
WhatsApp WhatsApp us
%d bloggers like this: