Subthalamic deep brain stimulation for Parkinson’s disease outcome

Subthalamic deep brain stimulation for Parkinson’s disease outcome

The surgical and clinical outcomes of asleep DBS for Parkinson’s disease are comparable to those of awake DBS 1).


Suboptimal targeting within the STN can give rise to intolerable sensorimotor side effects, such as dysarthria, contractions and paresthesias 2) 3) 4). eye movement perturbations, and psychiatric symptoms 5) 6) 7), limiting the management of motor symptoms. The small size of the STN motor territory and the consequences of spreading current to immediately adjacent structures obligate precise targeting. Neurosurgeons therefore rely on a combination of imaging, electrophysiology, kinesthetic responses, and stimulation testing to accurately place the DBS lead into the sensorimotor domain of STN 8) 9) 10).

Deep Brain Stimulation has been associated with post-operative neuropsychology changes, especially in verbal memory.

Deep brain stimulation (DBS) of subthalamic nucleus (STN) is widely accepted to treat advanced Parkinson disease (PD). However, published studies were mainly conducted in Western centers 11).

High frequency subthalamic nucleus (STN) deep brain stimulation (DBS) improves the cardinal motor signs of Parkinson’s disease (PD) and attenuates STN alpha/beta band neural synchrony in a voltage-dependent manner. While there is a growing interest in the behavioral effects of lower frequency (60 Hz) DBS, little is known about its effect on STN neural synchrony.

Low-frequency stimulation of the subthalamic nucleus via the optimal contacts is effective in improving overall motor function of patients with Parkinson Disease 12). In Parkinson’s disease significantly improved important aspects of QoL as measured by PDQ-39. The improvements were maintained at 2 years follow-up except for social support and communication. Sobstyl et al., demonstrated a positive correlation between changes in the off condition of motor UPDRS scores and Unified Dyskinesia Rating Scale in several PDQ-39 dimensions, whereas fluctuation UPDRS scores were negatively correlated with PDQ-39 mobility scores 13).

The degree of clinical improvement achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement.

A study reports on the evaluation of intraoperative MRI (iMRI) for adjusting deviated electrodes to the accurate anatomical position during DBS surgery and acute intracranial changes 14).

References

1)

Wang J, Ponce FA, Tao J, Yu HM, Liu JY, Wang YJ, Luan GM, Ou SW. Comparison of Awake and Asleep Deep Brain Stimulation for Parkinson’s Disease: A Detailed Analysis Through Literature Review. Neuromodulation. 2019 Dec 12. doi: 10.1111/ner.13061. [Epub ahead of print] Review. PubMed PMID: 31830772.
2) , 9)

Benabid AL, Chabardes S, Mitrofanis J, Pollak P: Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81, 2009
3) , 10)

Groiss SJ, Wojtecki L, Südmeyer M, Schnitzler A: Deep brain stimulation in Parkinson’s disease. Ther Adv Neurol Disorder 2:20–28, 2009
4)

Zhang S, Zhou P, Jiang S, Wang W, Li P: Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease: a report of 12 cases. Medicine (Baltimore) 95:e5575, 2016
5)

Kulisevsky J, Berthier ML, Gironell A, Pascual-Sedano B, Molet J, Parés P: Mania following deep brain stimulation for Parkinson’s disease. Neurology 59:1421–1424, 2002
6)

Mallet L, Schüpbach M, N’Diaye K, Remy P, Bardinet E, Czernecki V, et al: Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A 104:10661–10666, 2007
7)

Raucher-Chéné D, Charrel CL, de Maindreville AD, Limosin F: Manic episode with psychotic symptoms in a patient with Parkinson’s disease treated by subthalamic nucleus stimulation: improvement on switching the target. J Neurol Sci 273:116–117, 2008
8)

Abosch A, Timmermann L, Bartley S, Rietkerk HG, Whiting D, Connolly PJ, et al: An international survey of deep brain stimulation procedural steps. Stereotact Funct Neurosurg 91:1–11, 2013
11)

Chiou SM, Lin YC, Huang HM. One-year Outcome of Bilateral Subthalamic Stimulation in Parkinson Disease: An Eastern Experience. World Neurosurg. 2015 Jun 10. pii: S1878-8750(15)00709-3. doi: 0.1016/j.wneu.2015.06.002. [Epub ahead of print] PubMed PMID: 26072454.
12)

Khoo HM, Kishima H, Hosomi K, Maruo T, Tani N, Oshino S, Shimokawa T, Yokoe M, Mochizuki H, Saitoh Y, Yoshimine T. Low-frequency subthalamic nucleus stimulation in Parkinson’s disease: A randomized clinical trial. Mov Disord. 2014 Jan 21. doi: 10.1002/mds.25810. [Epub ahead of print] PubMed PMID: 24449169.
13)

Sobstyl M, Ząbek M, Górecki W, Mossakowski Z. Quality of life in advanced Parkinson’s disease after bilateral subthalamic stimulation: 2 years follow-up study. Clin Neurol Neurosurg. 2014 Sep;124:161-5. doi: 10.1016/j.clineuro.2014.06.019. Epub 2014 Jun 23. PubMed PMID: 25051167.
14)

Cui Z, Pan L, Song H, Xu X, Xu B, Yu X, Ling Z. Intraoperative MRI for optimizing electrode placement for deep brain stimulation of the subthalamic nucleus in Parkinson disease. J Neurosurg. 2016 Jan;124(1):62-9. doi: 10.3171/2015.1.JNS141534. Epub 2015 Aug 14. PubMed PMID: 26274983.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

WhatsApp WhatsApp us
%d bloggers like this: