Noninvasive intracranial pressure monitoring

Noninvasive intracranial pressure monitoring

Intracranial pressure monitoring is necessary in many neurological and neurosurgical diseases.

There is no established method of noninvasive intracranial pressure (NI-ICP) monitoring that can serve as an alternative to the gold standards of invasive monitoring with external ventricular drainage or intraparenchymal monitoring.

To avoid lumbar puncture or intracranial ICP probes, non-invasive ICP techniques are becoming popular.

In a study a new method of NI-ICP monitoring performed using algorithms to determine ICP based on acoustic properties of the brain was applied in patients undergoing invasive ICP (I-ICP) monitoring, and the results were analyzed.

In patients with traumatic brain injury and subarachnoid hemorrhage who were undergoing treatment in a neurocritical intensive care unit, the authors recorded ICP using the gold standard method of invasive external ventricular drainage or intraparenchymal monitoring. In addition, the authors simultaneously measured the ICP noninvasively with a device (the HS-1000) that uses advanced signal analysis algorithms for acoustic signals propagating through the cranium. To assess the accuracy of the NI-ICP method, data obtained using both I-ICP and NI-ICP monitoring methods were analyzed with MATLAB to determine the statistical significance of the differences between the ICP measurements obtained using NI-ICP and I-ICP monitoring. RESULTS Data were collected in 14 patients, yielding 2543 data points of continuous parallel ICP values in recordings obtained from I-ICP and NI-ICP. Each of the 2 methods yielded the same number of data points. For measurements at the ≥ 17-mm Hg cutoff, which was arbitrarily chosen for this preliminary analysis, the sensitivity and specificity for the NI-ICP monitoring were found to be 0.7541 and 0.8887, respectively. Linear regression analysis indicated that there was a strong positive relationship between the measurements. Differential pressure between NI-ICP and I-ICP was within ± 3 mm Hg in 63% of data-paired readings and within ± 5 mm Hg in 85% of data-paired readings. The receiver operating characteristic-area under the curve analysis revealed that the area under the curve was 0.895, corresponding to the overall performance of NI-ICP monitoring in comparison with I-ICP monitoring.

This study provides the first clinical data on the accuracy of the HS-1000 NI-ICP monitor, which uses advanced signal analysis algorithms to evaluate properties of acoustic signals traveling through the brain in patients undergoing I-ICP monitoring. The findings of this study highlight the capability of this NI-ICP device to accurately measure ICP noninvasively. Further studies should focus on clinical validation for elevated ICP values 1).

Flow velocity signals from transcranial Doppler (TCD) have been used to estimate ICP; however, the relative accuracy of these methods is unclear. This study aimed to compare four previously described TCD-based methods with directly measured ICP in a prospective cohort of traumatic brain-injured patients. Noninvasive ICP (nICP) was obtained using the following methods: 1) a mathematical “black-box” model based on interaction between TCD and arterial blood pressure (nICP_BB); 2) based on diastolic flow velocity (nICP_FVd); 3) based on critical closing pressure (nICP_CrCP); and 4) based on TCD-derived pulsatility index (nICP_PI). In time domain, for recordings including spontaneous changes in ICP greater than 7 mm Hg, nICP_PI showed the best correlation with measured ICP (R = 0.61). Considering every TCD recording as an independent event, nICP_BB generally showed to be the best estimator of measured ICP (R = 0.39; p < 0.05; 95% confidence interval [CI] = 9.94 mm Hg; area under the curve [AUC] = 0.66; p < 0.05). For nICP_FVd, although it presented similar correlation coefficient to nICP_BB and marginally better AUC (0.70; p < 0.05), it demonstrated a greater 95% CI for prediction of ICP (14.62 mm Hg). nICP_CrCP presented a moderate correlation coefficient (R = 0.35; p < 0.05) and similar 95% CI to nICP_BB (9.19 mm Hg), but failed to distinguish between normal and raised ICP (AUC = 0.64; p > 0.05). nICP_PI was not related to measured ICP using any of the above statistical indicators. We also introduced a new estimator (nICP_Av) based on the average of three methods (nICP_BB, nICP_FVd, and nICP_CrCP), which overall presented improved statistical indicators (R = 0.47; p < 0.05; 95% CI = 9.17 mm Hg; AUC = 0.73; p < 0.05). nICP_PI appeared to reflect changes in ICP in time most accurately. nICP_BB was the best estimator for ICP “as a number.” nICP_Av demonstrated to improve the accuracy of measured ICP estimation 2).

A technology uses Two Depth Transcranial Doppler to compare arterial pulsations in the intra- and extra-cranial segments of the ophthalmic artery for non-invasive estimation of ICP 3).

Numerous techniques have been described with several novel advances. While none of the currently available techniques appear independently accurate enough to quantify raised ICP, there is some promising work being undertaken 4).

see Optic nerve sheath diameter ultrasonography.

Flanders et al. compared non-invasive and invasive ICP measurements in infants with hydrocephalus. Infants born term and preterm were eligible for inclusion if clinically determined to require cerebrospinal fluid (CSF) diversion. The ventricular size was assessed preoperatively via ultrasound measurement of the fronto-occipital (FOR) and fronto-temporal (FTHR) horn ratios. Invasive ICP was obtained at the time of surgical intervention with a manometer. Intracranial hypertension was defined as invasive ICP ≥15 mmHg. Diffuse optical measurements of cerebral perfusionoxygen extraction, and non-invasive ICP were performed preoperatively, intraoperatively, and postoperatively. Optical and ultrasound measures were compared with invasive ICP measurements, and their change in values after CSF diversion was obtained.

They included 39 infants; 23 had intracranial hypertension. No group difference in ventricular size was found by FOR (p=0.93) or FTHR (p=0.76). Infants with intracranial hypertension had significantly higher non-invasive ICP (p=0.02) and oxygen extraction fraction (p=0.01) compared with infants without intracranial hypertension. Increased cerebral blood flow (p=0.005) and improved oxygen extraction fraction (P < .001) after CSF diversion were only observed in infants with intracranial hypertension.

Noninvasive diffuse optical measures (including a non-invasive ICP index) were associated with intracranial hypertension. The findings suggest impaired perfusion from intracranial hypertension was independent of ventricular size. Hemodynamic evidence of the benefits of cerebrospinal fluid diversion was seen in infants with intracranial hypertension. Non-invasive optical techniques hold promise for aiding the assessment of CSF diversion timing 5).


Ganslandt O, Mourtzoukos S, Stadlbauer A, Sommer B, Rammensee R. Evaluation of a novel noninvasive ICP monitoring device in patients undergoing invasive ICP monitoring: preliminary results. J Neurosurg. 2018 Jun;128(6):1653-1660. doi: 10.3171/2016.11.JNS152268. Epub 2017 Aug 8. PubMed PMID: 28784032.

Cardim D, Robba C, Donnelly J, Bohdanowicz M, Schmidt B, Damian M, Varsos GV, Liu X, Cabeleira M, Frigieri G, Cabella B, Smielewski P, Mascarenhas S, Czosnyka M. Prospective Study on Noninvasive Assessment of Intracranial Pressure in Traumatic Brain-Injured Patients: Comparison of Four Methods. J Neurotrauma. 2016 Apr 15;33(8):792-802. doi: 10.1089/neu.2015.4134. Epub 2015 Dec 17. PubMed PMID: 26414916; PubMed Central PMCID: PMC4841086.

Koskinen LD, Malm J, Zakelis R, Bartusis L, Ragauskas A, Eklund A. Can intracranial pressure be measured non-invasively bedside using a two-depth Doppler-technique? J Clin Monit Comput. 2016 Mar 14. [Epub ahead of print] PubMed PMID: 26971794.

Padayachy LC. Non-invasive intracranial pressure assessment. Childs Nerv Syst. 2016 Sep;32(9):1587-97. doi: 10.1007/s00381-016-3159-2. Review. PubMed PMID: 27444289.

Flanders TM, Lang SS, Ko TS, Andersen KN, Jahnavi J, Flibotte JJ, Licht DJ, Tasian GE, Sotardi ST, Yodh AG, Lynch JM, Kennedy BC, Storm PB, White BR, Heuer GG, Baker WB. Optical Detection of Intracranial Pressure and Perfusion Changes in Neonates With Hydrocephalus. J Pediatr. 2021 May 15:S0022-3476(21)00447-9. doi: 10.1016/j.jpeds.2021.05.024. Epub ahead of print. PMID: 34004191.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

WhatsApp WhatsApp us
%d bloggers like this: