Deep brain stimulation (DBS)
General information
Deep brain stimulation (DBS): Neurosurgical procedure that uses electrical stimulation through surgically implanted electrodes to produce neuromodulation of electrical signals for the purpose of symptom improvement. For many indications, DBS has supplanted ablative procedures in the brain.
Deep brain stimulation (DBS) is a neurosurgical procedure introduced in 1987, involving the implantation of a medical device called a neurostimulator (sometimes referred to as a ‘brain pacemaker’), which sends electrical impulses, through implanted electrodes.
The system consists of a lead that is implanted into a specific deep brain target. The lead is connected to an implantable pulse generator (IPG), which is the power source of the system. The lead and the IPG are connected by an extension wire that is tunneled under the skin between both of them. This system is used to chronically stimulate the deep brain target by delivering a high-frequency current to this target.
Deep brain stimulation of different targets has been shown to drastically improve symptoms of a variety of neurological conditions. However, the occurrence of disabling side effects may limit the ability to deliver adequate amounts of current necessary to reach the maximal benefit. Computed models have suggested that reduction in electrode size and the ability to provide directional lead stimulation could increase the efficacy of such therapies 1).
Deep brain stimulation surgery, create an opportunity to conduct cognitive or behavioral experiments during the acquisition of invasive neurophysiology. Optimal design and implementation of intraoperative behavioral experiments require consideration of stimulus presentation, time and surgical constraints. Tekriwal et al., describe the use of a modular, inexpensive system that implements a decision-making paradigm, designed to overcome challenges associated with the operative environment.
They created an auditory, two-alternative forced choice (2AFC) task for intraoperative use. Behavioral responses were acquired using an Arduino based single-hand held joystick controller equipped with a 3-axis accelerometer, and two button presses, capable of sampling at 2 kHz. We include designs for all task relevant code, 3D printed components, and Arduino pin-out diagram.
They demonstrated feasibility both in and out of the operating room with behavioral results represented by three healthy control subjects and two Parkinson’s disease subjects undergoing deep brain stimulator implantation. Psychometric assessment of performance indicated that the subjects could detect, interpret and respond accurately to the task stimuli using the joystick controller. We also demonstrate, using intraoperative neurophysiology recorded during the task, that the behavioral system described here allows us to examine neural correlates of human behavior.
COMPARISON WITH EXISTING METHODS: For low cost and minimal effort, any clinical neural recording system can be adapted for intraoperative behavioral testing with our experimental setup.
CONCLUSION: Our system will enable clinicians and basic scientists to conduct intraoperative awake and behaving electrophysiologic studies in humans 2).
Indications
see Deep brain stimulation indications.
Targets
see Deep Brain Stimulation Targets.
Research has demonstrated that multi-target DBS shows some benefits over single target DBS.
Deep Brain Stimulation during Pregnancy and Delivery
Scelzo et al. report a retrospective case series of women, followed in two DBS centers, who became pregnant and went on to give birth to a child while suffering from disabling MD or psychiatric diseases [Parkinson’s disease, dystonia, Tourette’s syndrome (TS), Obsessive Compulsive Disorder (OCD)] treated by DBS. Clinical status, complications and management before, during, and after pregnancy are reported. Two illustrative cases are described in greater detail.
DBS improved motor and behavioral disorders in all patients and allowed reduction in, or even total interruption of disease-specific medication during pregnancy. With the exception of the spontaneous early abortion of one fetus in a twin pregnancy, all pregnancies were uneventful in terms of obstetric and pediatric management. DBS parameters were adjusted in five patients in order to limit clinical worsening during pregnancy. Implanted material limited breast-feeding in one patient because of local pain at submammal stimulator site and led to local discomfort related to stretching of the cable with increasing belly size in another patient whose stimulator was implanted in the abdominal wall.
Not only is it safe for young women with MD, TS and OCD who have a DBS-System implanted to become pregnant and give birth to a baby but DBS seems to be the key to becoming pregnant, having children, and thus greatly improves quality of life 3).
Technique
Deep brain stimulation technique.
see Short pulse deep brain stimulation.
Frameless deep brain stimulation
Complications
see Deep brain stimulation complications.
Case series
Harmsen et al. assessed the state of DBS-related research by analyzing the DBS literature as well as active studies sponsored by the National Institutes of Health (NIH) or German Research Foundation (Deutsche Forschungsgemeinschaft [DFG]).In total, 8,974 publications, 172 active NIH-funded projects, and 34 active DFG projects were identified. Records spanned 52 different disorders across 31 distinct brain targets and showed a shift toward studies examining conditions other than movement disorders. Most published works involved human research (80.6% of published studies), of which 10.2% were identified as clinical trials. Increasingly, studies focused on imaging or electrophysiological changes associated with DBS (69.8% NIH-active and 70.6% DFG-active vs. 25.8% published) or developing new stimulation techniques and adaptive technologies (37.8% NIH-active and 17.6% DFG-active vs. 6.5% published).
This overview in 2022 of past and present DBS-related studies provides insight into the status of DBS research and what we can anticipate in the future concerning new indications, improved/novel target selection and stimulation paradigms, closed-loop technology, and a better understanding of the mechanisms of action of DBS 4).
see Deep Brain Stimulation case series
Case reports
A 79-year-old woman with a history of coarse tremors effectively managed with deep brain stimulation presented with multiple intracranial metastases from a newly diagnosed lung cancer and was referred for whole-brain radiation therapy. She was treated with a German helmet technique to a total dose of 30 Gy in 10 fractions using 6 MV photons via opposed lateral fields with the neurostimulator turned off prior to delivery of each fraction. The patient tolerated the treatment well with no acute complications and no apparent change in the functionality of her neurostimulator device or effect on her underlying neuromuscular disorder. This represents the first reported case of the safe delivery of whole-brain radiation therapy in a patient with an implanted neurostimulator device. In cases such as this, neurosurgeons and radiation oncologists should have discussions with patients about the risks of brain injury, device malfunction or failure of the device, and plans for rigorous testing of the device before and after radiation therapy 5).
Books
see Deep Brain Stimulation Books.