5-aminolevulinic acid fluorescence guided resection of low-grade glioma

5-aminolevulinic acid fluorescence guided resection of low-grade glioma

Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with the assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Kiesel et al. discussed the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, they discussed the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, they introduced new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery 1).

A growing body of evidence has revealed the potential utility of 5-aminolevulinic acid (5-ALA) as a surgical adjunct in selected lower-grade gliomas. However, a reliable means of identifying which lower-grade gliomas will fluoresce has not been established.

Widhalm found that 5-ALA induced PpIX fluorescence is capable as a novel intra-operative marker to detect anaplastic foci within initially suspected low-grade gliomas independent of brainshift 2).

A systematic review of PubMedGoogle Scholar, and Cochrane was performed from the date of inception to February 1, 2019. Studies that correlated 5-aminolevulinic acid fluorescence with low-grade glioma in the setting of operative resection were selected. Studies with biopsy only were excluded. Positive fluorescence rates were calculated. The quality index of the selected papers was provided. No patient information was used, so Institutional Review Board approval and patient consent were not required.

A total of 12 articles met the selection criteria with 244 histologically confirmed low-grade glioma patients who underwent microsurgical resection. All patients received 20 mg/kg body weight of 5-aminolevulinic acid. Only 60 patients (n = 60/244; 24.5%) demonstrated visual intraoperative 5-aminolevulinic acid fluorescence. The extent of resection was reported in 4 studies; however, the data combined low- and high-grade tumors. Only 2 studies reported on tumor location. Only 3 studies reported on clinical outcomes. The Zeiss OPMI Pentero microscope was most commonly used across all studies. The average quality index was 14.58 (range: 10-17), which correlated with an overall good quality.

There is an overall low correlation between 5-aminolevulinic acid fluorescence and low-grade glioma. Advances in visualization technology and using standardized fluorescence quantification methods may further improve the visualization and reliability of 5-aminolevulinic acid fluorescence in low-grade glioma resection 3).

Müther et al. investigated a cohort of patients with WHO Grade 2 glioma and WHO Grade 3 gliomas who received 5-ALA before resection at a single institution. Using a logistic regression-based model, they evaluated 14 clinical and molecular variables considered plausible determinants of fluorescence. They then distilled the most predictive features to develop a model for predicting both fluorescence and tumor grade. They also explored the relationship between intraoperative fluorescence and diagnostic molecular markers.

One hundred seventy-nine subjects were eligible for inclusion. Our logistic regression classifier accurately predicted intraoperative fluorescence in our cohort with 91.9% accuracy and revealed enhancement as the singular variable in determining intraoperative fluorescence. There was a direct relationship between enhancement on MRI and the likelihood of observed fluorescence. Observed fluorescence correlated with MIB-1 index but not with isocitrate dehydrogenase (IDH) status, 1p19q codeletion, or methylguanine DNA methyltransferase promoter methylation.

They demonstrated a strong correlation between enhancement on preoperative MRI and the likelihood of visible fluorescence during surgery in patients with intermediate-grade glioma. The analysis provides a robust method for predicting 5-ALA-induced fluorescence in patients with grade II and grade III gliomas 4).

Valdés et al. describe their initial experience with 5-aminolevulinic acid (ALA)-induced PpIX fluorescence in twelve patients with presumed LGGs after receiving 20 mg/kg of ALA approximately 3 hours prior to surgery under an institutional review board-approved protocol.

Intraoperative assessments of the resulting PpIX emissions using both qualitative, visible fluorescence and quantitative measurements of PpIX concentration were obtained from tissue locations that were subsequently biopsied and evaluated histopathologically. Mixed models for random effects and receiver operating characteristic curve analysis for diagnostic performance were performed on the fluorescence data relative to the gold-standard histopathology.

Five of the 12 LGGs (1 ganglioglioma, 1 oligoastrocytoma, 1 pleomorphic xanthoastrocytoma, 1 oligodendroglioma, and 1 ependymoma) demonstrated at least 1 instance of visible fluorescence during surgery. Visible fluorescence evaluated on a specimen-by-specimen basis yielded a diagnostic accuracy of 38.0% (cutoff threshold: visible fluorescence score ≥ 1, area under the curve = 0.514). Quantitative fluorescence yielded a diagnostic accuracy of 67% (for a cutoff threshold of the concentration of PpIX [CPpIX] > 0.0056 μg/ml, area under the curve = 0.66). The authors found that 45% (9/20) of nonvisibly fluorescent tumor specimens, which would have otherwise gone undetected, accumulated diagnostically significant levels of CPpIX that were detected quantitatively.

The authors’ initial experience with ALA-induced PpIX fluorescence in LGGs concurs with other literature reports that the resulting visual fluorescence has poor diagnostic accuracy. However, the authors also found that diagnostically significant levels of CPpIX do accumulate in LGGs, and the resulting fluorescence emissions are very often below the detection threshold of current visual fluorescence imaging methods. Indeed, at least in the authors’ initial experience reported here, if quantitative detection methods are deployed, the diagnostic performance of ALA-induced PpIX fluorescence in LGGs approaches the accuracy associated with visual fluorescence in HGGs 5).


Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current RoleLimitations, and New Approaches. Front Oncol. 2021 Jul 30;11:699301. doi: 10.3389/fonc.2021.699301. PMID: 34395266; PMCID: PMC8362830.

Widhalm G. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence. Clin Neuropathol. 2014 Jul-Aug;33(4):260-78. PubMed PMID: 24986206.

Almekkawi AK, El Ahmadieh TY, Wu EM, Abunimer AM, Abi-Aad KR, Aoun SG, Plitt AR, El Tecle NE, Patel T, Stummer W, Bendok BR. The Use of 5-Aminolevulinic Acid in Low-Grade Glioma Resection: A Systematic Review. Oper Neurosurg (Hagerstown). 2020 Jul 1;19(1):1-8. doi: 10.1093/ons/opz336. Erratum in: Oper Neurosurg (Hagerstown). 2020 Jul 1;19(1):107. PMID: 31828346.

Müther M, Jaber M, Johnson TD, Orringer DA, Stummer W. A Data-Driven Approach to Predicting 5-Aminolevulinic Acid-Induced Fluorescence and World Health Organization Grade in Newly Diagnosed Diffuse Gliomas. Neurosurgery. 2022 Mar 16. doi: 10.1227/NEU.0000000000001914. Epub ahead of print. PMID: 35285461.

Valdés PA, Jacobs V, Harris BT, Wilson BC, Leblond F, Paulsen KD, Roberts DW. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. J Neurosurg. 2015 Jul 3:1-10. [Epub ahead of print] PubMed PMID: 26140489.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

WhatsApp WhatsApp us
%d bloggers like this: