Peptic ulcer disease

Peptic ulcer disease

Steroid side effects

In 1932Harvey Cushing described peptic ulceration secondary to raised intracranial pressure and attributed this to vagal overactivity, causing excess gastric acid secretion. Cushing ulcer remains a cause of morbidity in patients, albeit one that is preventable.

Kumaria et al. evaluate the evidence pertaining to the pathophysiology of neurogenic peptic ulceration. A literature review suggests that the pathophysiology of Cushing ulcer may extend beyond vagal mechanisms for several reasons: (1) clinical and experimental studies have shown only a modest increase in gastric acid secretion in head injury patients; (2) increased vagal tone is found in only a minority of cases of intracranial hypertension, most of which are related to catastrophic, nonsurvivable brain injury; (3) direct stimulation of the vagus nerve does not cause peptic ulceration, and; (4) Cushing ulcer can occur after acute ischemic stroke, but only a minority of strokes are associated with raised intracranial pressure and/or increased vagal tone. The 2005 Nobel Prize in Medicine honored the discovery that bacteria play key roles in the pathogenesis of peptic ulcer disease. Brain injury results in widespread changes in the gut microbiome in addition to gastrointestinal inflammation, including systemic upregulation of proinflammatory cytokines. Alterations in the gut microbiome in patients with severe traumatic brain injury include colonization with commensal flora associated with peptic ulceration. The brain-gut-microbiome axis integrates the central nervous system, the enteric nervous system, and the immune system.

They propose a novel hypothesis that neurogenic peptic ulcer may be associated with alterations in the gut microbiome, resulting in gastrointestinal inflammation leading to ulceration 1).

Omeprazole for Adults with peptic ulcers or gastroesophageal reflux disease (GERD) 20–40 mg PO daily. For Zollinger-Ellison syndrome: 20 mg PO q d to 120 mg PO TID (dose adjusted to keep basal acid output < 60 mEq/hr).

Side effects: N/V, H/A, diarrhea, abdominal pain, or rash in 1–5% of patients. Supplied: 10, 20 & 40 mg delayed-release capsules. Available OTC in 20.6 mg tablets as Prilosec OTC.


Misoprostol (Cytotec®), a prostaglandin, may be effective in mitigating NSAID-induced gastric erosion or peptic ulcer. Contraindicated in pregnancy. ℞ 200 mcg PO QID with food as long as the patient is on NSAIDs. If not tolerated, use 100 mcg. ✖ CAUTION: an abortifacient. Should not be given to pregnant women or women of childbearing potential


1)

Kumaria A, Kirkman MA, Scott RA, Dow GR, Leggate AJ, Macarthur DC, Ingale HA, Smith SJ, Basu S. A Reappraisal of the Pathophysiology of Cushing Ulcer: A Narrative Review. J Neurosurg Anesthesiol. 2023 May 11. doi: 10.1097/ANA.0000000000000918. Epub ahead of print. PMID: 37188653.

Regorafenib side effects

Regorafenib side effects

 


Some of the most common side effects of regorafenib include:

Fatigue

Diarrhea

Nausea and vomiting

Loss of appetite

Hand-foot syndrome (redness, swelling, and pain on the palms of the hands and soles of the feet)

High blood pressure

Abdominal pain

Headache

Weight loss

Infections


Extensive coagulative necrosis 1).


One patient experienced, after reintervention and during Regorafenib treatment (administered 40 days after surgery), dehiscence of the surgical wound 2)


In patients with progressive WHO grade 3 or 4 gliomas, predominantly with two pretreatment lines or more, regorafenib seems to be effective despite considerable grade 3 or 4 side effects 3).


Treiber et al. described 11 consecutive patients with high-grade glioma recurrence treated with regorafenib at the university medical center in Göttingen. The majority of patients had MGMT promoter methylation (9/11 cases). Regorafenib was given as 2nd line systemic treatment in 6/11 patients and 3rd or higher line treatment in 5/11 patients. The median number of applied cycles was 2 with dosage reductions on 5/11. Response to treatment was observed on 4/11 (PR on 1/11, and SD on 3/11). The Median overall survival for the cohort was 16.1 months, median progression-free survival was 9.0 months, and median time to treatment failure was 3.3 months. Side effects of any CTCAE grade were noted in all patients, hereby 6/11 with CTCAE °III-IV reactions. High-grade side effects were of dermatologic, cardiovascular, and hematologic nature. A mean treatment delay of 57.5 days (range 23-119) was noted between tumor board recommendation and treatment initiation due to the application process for off-label use in this indication. In conclusion, treatment with regorafenib in relapsed high-grade glioma is a feasible treatment option but has to be considered carefully due to the significant side effect profile 4).


Within 12-months of regorafenib treatment, and 16-years since SRS, the patient developed ipsilateral House-Brackmann Grade IV facial weakness. Dramatic VS expansion from 14 to 25 mm in maximum diameter, with new brain stem compression, was seen on MRI. Due to poor prognosis of his gastrointestinal malignancy, he declined surgical resection, and elected for palliative salvage SRS 5).


1) 
Werner JM, Wollring MM, Tscherpel C, Rosen EK, Werr L, Stetter I, Rueß D, Ruge MI, Brunn A, Al Shughri A, Kabbasch C, Fink GR, Langen KJ, Galldiks N. Multimodal imaging findings in patients with glioblastoma with extensive coagulative necrosis related to regorafenib. Neuro Oncol. 2023 Mar 24:noad051. doi: 10.1093/neuonc/noad051. Epub ahead of print. PMID: 36960770.
2) 
Gregucci F, Surgo A, Carbonara R, Laera L, Ciliberti MP, Gentile MA, Caliandro M, Sasso N, Bonaparte I, Fanelli V, Tortora R, Paulicelli E, Surico G, Lombardi G, Signorelli F, Fiorentino A. Radiosurgery and Stereotactic Brain Radiotherapy with Systemic Therapy in Recurrent High-Grade Gliomas: Is It Feasible? Therapeutic Strategies in Recurrent High-Grade Gliomas. J Pers Med. 2022 Aug 20;12(8):1336. doi: 10.3390/jpm12081336. PMID: 36013284; PMCID: PMC9410141.
3) 
Werner JM, Wolf L, Tscherpel C, Bauer EK, Wollring M, Ceccon G, Deckert M, Brunn A, Pappesch R, Goldbrunner R, Fink GR, Galldiks N. Efficacy and tolerability of regorafenib in pretreated patients with progressive CNS grade 3 or 4 gliomas. J Neurooncol. 2022 Jun 18. doi: 10.1007/s11060-022-04066-9. Epub ahead of print. PMID: 35716310.
4) 
Treiber H, von der Brelie C, Malinova V, Mielke D, Rohde V, Chapuy CI. Regorafenib for recurrent high-grade glioma: a unicentric retrospective analysis of feasibility, efficacy, and toxicity. Neurosurg Rev. 2022 Jun 20. doi: 10.1007/s10143-022-01826-z. Epub ahead of print. PMID: 35725846.
5) 
Carlstrom LP, Muñoz-Casabella A, Perry A, Graffeo CS, Link MJ. Dramatic Growth of a Vestibular Schwannoma After 16 Years of Postradiosurgery Stability in Association With Exposure to Tyrosine Kinase Inhibitors. Otol Neurotol. 2021 Dec 1;42(10):e1609-e1613. doi: 10.1097/MAO.0000000000003304. PMID: 34766951; PMCID: PMC8597893.

Microvascular Decompression Complications

Microvascular Decompression Complications

Latest Pubmed Related Articles



Microvascular decompression (MVD) has a satisfactory safety, and it is the only surgical treatment for neurovascular compression diseases, such as hemifacial spasmtrigeminal neuralgia, and glossopharyngeal neuralgia, from the perspective of etiology.


Microvascular decompression (MVD) is a surgical procedure used to relieve pressure on a nerve root in the brainstem. While the procedure has a high success rate, like all surgeries, it does carry some risks and potential complications.

Some possible complications of microvascular decompression include:

Bleeding: Bleeding can occur during or after the surgery, which may require additional medical intervention.

Infection: Infection can occur at the site of the surgery or in the brain, which can lead to serious complications.

Nerve damage: Nerve damage can occur during the surgery, which may lead to a range of symptoms, including weakness, numbness, and paralysis.

Hearing loss: MVD can lead to hearing loss in some cases, particularly if the acoustic nerve is damaged during the procedure.

Balance problems: MVD can cause balance problems or vertigo, which may persist for several weeks or months after the surgery.

Cerebrospinal fluid leak: In rare cases, MVD can cause a cerebrospinal fluid leak, which may require further medical intervention.

It’s important to note that while these complications are possible, they are relatively rare.


Bilateral dilated and fixed pupils have long been regarded as a sign of life threatening, which is common in patients with brain herniation due to intracranial hypertension. However, transient dilated pupils after MVD have not been previously reported.

Wang et al. presented 2 patients with bilateral transient dilated and fixed pupils after MVD and discussed the possible etiologies through the literature review. Physical examination of both patients showed bilateral pupils were normal and without a medical history of pupil dilation. They underwent MVD under general anesthesia and used propofol and sevoflurane. In both cases, the vertebral artery was displaced, and Teflon pads were inserted between the vertebral artery and the brain stem. Postoperation, we found transient bilateral mydriasis without light reflection in both patients. The emergency head computed tomography revealed no obvious signs of hemorrhage and cerebral herniation. About 1 hour later, this phenomenon disappeared. Therefore, the authors think if MVD is successfully carried out, bilateral transient mydriasis may not necessarily indicate brain stem hemorrhage, cerebral herniation, and other emergency conditions, which can be recovered within a short time. The causes could be related to stimulation of the sympathetic pathway in the brain stem during MVD and side effects of anesthetics 1).


1)

Wang L, Fan H, Xu X, Su S, Feng W, Wu C, Chen Y. Bilateral Transient Dilated and Fixed Pupils After Microvascular Decompression: Rare Clinical Experience. J Craniofac Surg. 2023 Mar 21. doi: 10.1097/SCS.0000000000009293. Epub ahead of print. PMID: 36941233.

Cerebellar mutism

Cerebellar mutism

Incidence of cerebellar mutism: 11–29% of children following surgery for cerebellar tumor2) including cerebellar medulloblastoma (53%), posterior fossa ependymoma (33%) & cerebellar pilocytic astrocytoma (11%) 3).

It has also been reported in both children and adults following several other cerebellar insults, including vascular events, infections, and trauma 4).

The uncertain etiology of PFS, myriad of cited risk factors and therapeutic challenges make this phenomenon an elusive entity.

Cerebellar mutism is a rare occurrence following paediatric trauma 5) 6) 7) 8). , this phenomenon has rarely been reported following other insults, such as trauma, and its pathophysiology remains poorly understood.

A seven-year-old child who presented to the casualty department of Sultan Qaboos University Hospital in Muscat, Oman, in May 2013 with a traumatic right cerebellar contusion. The child presented with clinical features of cerebellar mutism but underwent a rapid and spontaneous recovery 9).

The pathogenic mechanism is likely due to the damage occurring to the proximal efferent cerebellar pathway, including the dentate nucleus, the superior cerebellar peduncle, and its decussation in the mesencephalic tegmentum 10).

Superior and inferior cerebellar peduncles and the superior part of the cerebellum were related to CMS, especially the right side 11).

This syndrome involves a variety of signs and symptoms including cerebellar mutism or speech disturbances, dysphagia, decreased motor movement, cranial nerve palsy and, emotional lability. These signs and symptoms develop from an average range of 24 to 107 hours after surgery and may take weeks to months to resolve.

Multi-inflow time arterial spin-labeling shows promise as a noninvasive tool to evaluate cerebral perfusion in the setting of pediatric obstructive hydrocephalus and demonstrates increased CBF following the resolution of cerebellar mutism syndrome 12).

The importance of olivary hypertrophic degeneration as a differential diagnosis in cerebellar mutism syndrome 13).

Early recognition of this syndrome could facilitate preventive and restorative patient care, prevent subsequent complications, decrease length of hospital stays, and promote patient and family understanding of and coping with the syndrome 14).

20 cases of PFS (8%), 12 males and 8 females. Age ranged from 1.5 to 13 years (mean = 6.5). Of the 20, 16 were medulloblastoma, 3 ependymoma and 1 astrocytoma. There was a 21 % incidence (16/76) of PFS in medulloblastoma of the posterior fossa. The incidence for ependymoma was 13% (3/24) and 1% (1/102) for astrocytoma. All 20 cases (100%) had brainstem involvement by the tumor. The most frequent postoperative findings included mutism, ataxia, 6th and 7th nerve palsies and hemiparesis. Mutism had a latency range of 1-7 days (mean = 1.7) and a duration of 6-365 days (mean = 69.2, median = 35). Although mutism resolved in all cases, the remaining neurologic complications which characterized our findings of PFS were rarely reversible. We describe potential risk factors for developing PFS after surgery with hopes of making neurosurgeons more aware of potential problems following the removal of lesions in this area. Early recognition of PFS would further promote patient and family understanding and coping with this síndrome 15)


19 children diagnosed with posterior fossa syndrome 16)


1)

Rekate HL, Grubb RL, Aram DM, Hahn JF, Ratcheson RA. Muteness of cerebellar origin. Arch Neurol. 1985;42:697–8. doi: 10.1001/archneur.1985.04060070091023.
2)

Gudrunardottir T, Sehested A, Juhler M, et al. Cerebellar mutism: review of the literature. Childs Nerv Syst. 2011; 27:355–363
3)

Catsman-Berrevoets C E, Van Dongen HR, Mulder PG, et al. Tumour type and size are high risk factors for the syndrome of “cerebellar” mutism and subsequent dysarthria. J Neurol Neurosurg Psychiatry. 1999; 67:755–757
4)

Gudrunardottir T, Sehested A, Juhler M, Schmiegelow K. Cerebellar mutism: Review of the literature. Childs Nerv Syst. 2011;27:355–63. doi: 10.1007/s00381-010-1328-2.
5)

Erşahin Y, Mutluer S, Saydam S, Barçin E. Cerebellar mutism: Report of two unusual cases and review of the literature. Clin Neurol Neurosurg. 1997;99:130–4. doi: 10.1016/S0303-8467(97)80010-8.
6)

Fujisawa H, Yonaha H, Okumoto K, Uehara H, le T, Nagata Y, et al. Mutism after evacuation of acute subdural hematoma of the posterior fossa. Childs Nerv Syst. 2005;21:234–6. doi: 10.1007/s00381-004-0999-y.
7)

Koh S, Turkel SB, Baram TZ. Cerebellar mutism in children: Report of six cases and potential mechanisms. Pediatr Neurol. 1997;16:218–19. doi: 10.1016/S0887-8994(97)00018-0.
8)

Yokota H, Nakazawa S, Kobayashi S, Taniguchi Y, Yukihide T. [Clinical study of two cases of traumatic cerebellar injury] No Shinkei Geka. 1990;18:67–70.
9)

Kariyattil R, Rahim MI, Muthukuttiparambil U. Cerebellar mutism following closed head injury in a child. Sultan Qaboos Univ Med J. 2015 Feb;15(1):e133-5. Epub 2015 Jan 21. PubMed PMID: 25685374; PubMed Central PMCID: PMC4318595.
10)

Fabozzi F, Margoni S, Andreozzi B, Musci MS, Del Baldo G, Boccuto L, Mastronuzzi A, Carai A. Cerebellar mutism syndrome: From pathophysiology to rehabilitation. Front Cell Dev Biol. 2022 Dec 2;10:1082947. doi: 10.3389/fcell.2022.1082947. PMID: 36531947; PMCID: PMC9755514.
11)

Yang W, Li Y, Ying Z, Cai Y, Peng X, Sun H, Chen J, Zhu K, Hu G, Peng Y, Ge M. A presurgical voxel-wise predictive model for cerebellar mutism syndrome in children with posterior fossa tumors. Neuroimage Clin. 2022 Dec 13;37:103291. doi: 10.1016/j.nicl.2022.103291. Epub ahead of print. PMID: 36527996; PMCID: PMC9791171.
12)

Toescu SM, Hales PW, Cooper J, Dyson EW, Mankad K, Clayden JD, Aquilina K, Clark CA. Arterial Spin-Labeling Perfusion Metrics in Pediatric Posterior Fossa Tumor Surgery. AJNR Am J Neuroradiol. 2022 Oct;43(10):1508-1515. doi: 10.3174/ajnr.A7637. Epub 2022 Sep 22. PMID: 36137658; PMCID: PMC9575521.
13)

Ballestero M, de Oliveira RS. The importance of olivary hypertrophic degeneration as a differential diagnosis in cerebellar mutism syndrome. Childs Nerv Syst. 2022 Dec 21. doi: 10.1007/s00381-022-05815-x. Epub ahead of print. PMID: 36542117.
14) , 16)

Kirk EA, Howard VC, Scott CA. Description of posterior fossa syndrome in children after posterior fossa brain tumor surgery. J Pediatr Oncol Nurs. 1995 Oct;12(4):181-7. PubMed PMID: 7495523.
15)

Doxey D, Bruce D, Sklar F, Swift D, Shapiro K. Posterior fossa syndrome: identifiable risk factors and irreversible complications. Pediatr Neurosurg. 1999 Sep;31(3):131-6. PubMed PMID: 10708354.

Tranexamic acid for intracranial meningioma

Tranexamic acid for intracranial meningioma

Based upon Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), Wijaya et al. from the Universitas Pelita Harapan, Tangerang, BantenIndonesia, Cedars-Sinai Medical Center, Los Angeles, CES University, El Poblado, Medellín, Antioquia, Colombia. collected fully published English literature on the administration of tranexamic acid for patients undergoing intracranial meningioma surgery using the keywords [“tranexamic acid” and “meningioma”] and its synonyms from Cochrane Central Register of Controlled Trials Database, the WHO International Clinical Trials Registry Platform (ICTRP), ClinicalTrials.gov, and PubMed. The primary outcome of the current study was total blood loss. The secondary outcomes include individuals requiring blood transfusionanesthesia duration, surgical duration, and complication rate. Each included study’s quality was assessed using the JADAD scale.

For qualitative and quantitative data synthesis, they included five RCTs (n = 321) with a mean age was 47.5 ± 11.9 years for the intervention group and 47.2 ± 11.9 years for the control group. The meta-analysis showed that the administration of TXA is associated with decreased total blood loss of standardized mean difference (SMD) of -1.40 (95% CI [-2.49, -0.31]), anesthetic time SMD -0.36 (95% CI [-0.63, -0.09]), and blood transfusion requirements RR 0.58 (95% CI [0.34, 0.99]).

The current study showed that TXA was associated with reduced intraoperative blood loss and intraoperative and postoperative blood transfusion. However, the studies are small. More RCT studies with a greater sample size are favorable 1).

Patients with supratentorial meningiomas and deemed suitable for surgical resection will be recruited in the trial. Patients will be randomized to receive either a single administration of 20 mg/kg TXA or a placebo of the same volume with a 1:1 allocation ratio after anesthesia induction. The primary endpoint is the cumulative incidence of early postoperative seizures within 7 days after craniotomy. Secondary outcomes include the incidence of non-seizure complications, changes in hemoglobin level from baseline, intraoperative blood loss, erythrocyte transfusion volume, Karnofsky Performance Status, all-cause mortality, length of stay, and total hospitalization cost.

Ethics and dissemination: This trial is registered at ClinicalTrial.gov and approved by the Chinese Ethics Committee of Registering Clinical Trials (ChiECRCT20200224). The findings will be disseminated in peer-reviewed journals and presented at national or international conferences relevant to the subject fields.

Trial registration number: NCT04595786 2).


conducted a prospective, randomized double-blind clinical study. The patient scheduled to undergo excision of intracranial meningioma were randomly assigned to receive intraoperatively either intravenous TXA or placebo. Patients in the TXA group received an intravenous bolus of 20 mg/kg over 20 min followed by an infusion of 1 mg/kg/h up to surgical wound closure. Efficacy was evaluated based on total blood loss and transfusion requirements. Postoperatively, thrombotic complications, convulsive seizure, and hematoma formation were noted.

Ninety-one patients were enrolled and randomized: 45 received TXA (TXA group) and 46 received placebo (group placebo). Total blood loss was significantly decreased in the TXA group compared to the placebo (283 ml vs. 576 ml; P < 0.001). Transfusion requirements were comparable in the two groups (P = 0.95). The incidence of thrombotic complications, convulsive seizure, and hematoma formation were similar in the two groups.

TXA significantly reduces intraoperative blood loss but did not significantly reduce transfusion requirements in adults undergoing resection of intracranial meningioma 3).

Thirty patients aged 18-65 years undergoing elective meningioma resection surgery were given either tranexamic acid or placebo (0.9% saline), tranexamic acid at a loading dose of 20 mg/kg, and infusion of 1 mg/kg/h during surgery. The intraoperative blood loss, coagulation profile, and the surgical field using the Likert scale were assessed.

The patients in the tranexamic group had significantly decreased intraoperative blood loss compared to the placebo group (616.42 ± 393.42 ml vs. 1150.02 ± 416.1 ml) (P = 0.02). The quality of the surgical field was better in the tranexamic group (median score 4 vs. 2 on Likert Scale) (P < 0.001). Patients in the tranexamic group had an improved coagulation profile and decreased blood transfusion requirement (p=0.016). The blood collected in the closed suction drain in 24 h postsurgery was less in the tranexamic acid group compared to the placebo group (84.7 ± 50.4 ml vs. 127.6 ± 62.2 ml) (P = 0.047).

Tranexamic acid bolus followed by infusion reduces perioperative blood loss by 46.43% and blood transfusion requirement with improved surgical field and coagulation profile in patients undergoing intracranial meningioma resection surgery 4).


In the Department of Neurosurgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India, Sixty adults undergoing elective craniotomy for meningioma excision were randomized to receive either tranexamic acid or placebo, initiated prior to skin incision. Patients in the tranexamic acid group received an intravenous bolus of 20mg/kg over 20min followed by an infusion of 1mg/kg/h till the conclusion of surgery. Intraoperative blood loss, transfusion requirements, and estimating surgical hemostasis using a 5-grade scale were noted. Postoperatively, the extent of tumor excision on CT scan and complications were observed. Demographics, tumor characteristics, amount of fluid infusion, and duration of surgery and anesthesia were comparable between the two groups. The amount of blood loss was significantly less in the tranexamic acid group compared to the placebo (830mlvs 1124ml; p=0.03). The transfusion requirement was less in the tranexamic acid group (p>0.05). The patients in the tranexamic acid group fared better on a 5-grade surgical hemostasis scale with more patients showing good hemostasis (p=0.007). There were no significant differences between the groups regarding the extent of tumor removal, perioperative complications, hospital stay, or neurologic outcome. To conclude, the administration of tranexamic acid significantly reduced blood loss in patients undergoing excision of meningioma. Fewer patients in the tranexamic acid group received blood transfusions. Surgical field hemostasis was better achieved in patients who received tranexamic acid 5).

A man in his 40s with a history of coronary artery disease previously treated with a drug-eluting stent presented for elective craniotomy and resection of an asymptomatic but enlarging meningioma. During his craniotomy, he received desmopressin and tranexamic acid for surgical bleeding. Postoperatively, the patient developed chest pain and was found to have an ST-elevation myocardial infarction (MI). Because of the patient’s recent neurosurgery, standard post-MI care was contraindicated and he was managed symptomatically in the intensive care unit. The echocardiogram on a postoperative day 1 demonstrated no regional wall motion abnormalities and an ejection fraction of 60%. His presentation was consistent with the thrombosis of his diagonal stent. He was transferred out of the intensive care unit on postoperative day 1 and discharged home on postoperative day 3 6).


Raghavendra et al. report the intraoperative use of tranexamic acid to secure complete hemostasis as a rescue measure in intracranial meningioma resection in uncontrollable bleeding 7).


Three of 13 patients with intracranial meningiomas showed the pre-and postoperative elevation of tissue-type plasminogen activator (t-PA) related fibrinolytic activity in euglobulin fractions (EFA). During the operation, two of these three patients showed a significant elevation of the level of fibrinogen degradation products and oozing in the operating field. However, oozing was not observed in the third patient who had been given tranexamic acid preoperatively. Fibrin autography revealed that a broad lytic band of mol wt 50-60 kDa, probably free t-PA, appeared in the plasma obtained from two of the three patients after the operation when EFA elevated significantly. In all patients studied, the t-PA antigen levels were normal preoperatively but increased both during and after the operation, and correlated mainly with the intensities of a lytic band of mol wt 110 kDa, probably t-PA complexed with its major inhibitor (PAI-1). These results suggest that excessive fibrinolysis can induce local hemorrhagic diathesis during operation and may be related to t-PA function in plasma 8).


1)

Wijaya JH, July J, Quintero-Consuegra M, Chadid DP. A systematic review and meta-analysis of the effects of tranexamic acid in surgical procedure for intracranial meningioma. J Neurooncol. 2023 Jan 12. doi: 10.1007/s11060-023-04237-2. Epub ahead of print. PMID: 36633801.
2)

Li S, Yan X, Li R, Zhang X, Ma T, Zeng M, Dong J, Wang J, Liu X, Peng Y. Safety of intravenous tranexamic acid in patients undergoing supratentorial meningiomas resection: protocol for a randomized, parallel-group, placebo control, non-inferiority trial. BMJ Open. 2022 Feb 2;12(2):e052095. doi: 10.1136/bmjopen-2021-052095. PMID: 35110315; PMCID: PMC8811564.
3)

Rebai L, Mahfoudhi N, Fitouhi N, Daghmouri MA, Bahri K. Intraoperative tranexamic acid use in patients undergoing excision of intracranial meningioma: Randomized, placebo-controlled trial. Surg Neurol Int. 2021 Jun 14;12:289. doi: 10.25259/SNI_177_2021. PMID: 34221620; PMCID: PMC8247750.
4)

Ravi GK, Panda N, Ahluwalia J, Chauhan R, Singla N, Mahajan S. Effect of tranexamic acid on blood loss, coagulation profile, and quality of the surgical field in intracranial meningioma resection: A prospective randomized, double-blind, placebo-controlled study. Surg Neurol Int. 2021 Jun 7;12:272. doi: 10.25259/SNI_296_2021. PMID: 34221603; PMCID: PMC8247710.
5)

Hooda B, Chouhan RS, Rath GP, Bithal PK, Suri A, Lamsal R. Effect of tranexamic acid on intraoperative blood loss and transfusion requirements in patients undergoing excision of intracranial meningioma. J Clin Neurosci. 2017 Mar 7. pii: S0967-5868(16)31491-6. doi: 10.1016/j.jocn.2017.02.053. [Epub ahead of print] PubMed PMID: 28283245.
6)

Westfall KM, Ramcharan RN, Anderson HL 3rd. Myocardial infarction after craniotomy for asymptomatic meningioma. BMJ Case Rep. 2022 Dec 29;15(12):e252256. doi: 10.1136/bcr-2022-252256. PMID: 36581354; PMCID: PMC9806024.
7)

Raghavendra H, Varsha KS, Reddy MA, Kumar SS, Sunanda G, Nagarjuna T, Latha S. Rescue Measure in Giant Intracranial Meningioma Resection by Tranexamic Acid. J Neurosci Rural Pract. 2017 Aug;8(Suppl 1):S127-S129. doi: 10.4103/jnrp.jnrp_198_17. PMID: 28936089; PMCID: PMC5602238.
8)

Tsuda H, Oka K, Noutsuka Y, Sueishi K. Tissue-type plasminogen activator in patients with intracranial meningiomas. Thromb Haemost. 1988 Dec 22;60(3):508-13. PMID: 3149049.

ShuntScope

ShuntScope

Autoclavable reusable SHUNTSCOPE® is designed to facilitate the endoscopic ventricular drainage placement during shunt surgery.

A retrospective analysis of all pediatric patients undergoing ventricular catheter placement using the ShuntScope from 01/2012 to 01/2022 in the Department of Neurosurgery, Saarland University Medical Center, Homburg was performed. Demographic, clinical, and radiological data were evaluated. The visualization quality of the intraoperative endoscopy was stratified into the categories of excellent, medium, and poor and compared to the postoperative catheter tip placement. Follow-up evaluation included the surgical revision rate due to proximal catheter occlusion.

A total of 65 ShuntScope-assisted surgeries have been performed on 51 children. The mean age was 5.1 years. The most common underlying pathology was a tumor- or cyst-related hydrocephalus in 51%. Achieved image quality was excellent in 41.5%, medium in 43%, and poor in 15.5%. Ideal catheter placement was achieved in 77%. There were no intraoperative ventricular catheter placement complications and no technique-related morbidity associated with the ShuntScope. The revision rate due to proximal occlusion was 4.61% during a mean follow-up period of 39.7 years. No statistical correlation between image grade and accuracy of catheter position was observed (p-value was 0.290).

The ShuntScope can be considered a valuable addition to standard surgical tools in pediatric hydrocephalus treatment. Even suboptimal visualization contributes to high rates of correct catheter placement and, thereby, to a favorable clinical outcome 1).


The purpose of the study is to compare the accuracy of catheter placement and the complication and revision rates between SG and freehand (FH) techniques.

A retrospective study based on a prospectively acquired database of patients who underwent VC placement between September 2018 and July 2021. The accuracy of catheter placement was graded on postoperative imaging using a three-point Hayhurst grading system. Complication and revision rates were documented and compared between both groups with an average follow-up period of 20.84 months.

Results: Fifty-seven patients were included. SG technique was used in 29 patients (mean age was 6.3 years, 1.4 -27.7 years, 48.1% females), and FH technique was used in 28 patients (mean age was 26.7 years, 0.83 – 79.5 years, 67.9% female). The success rate for the optimal placement of the VC with a grade I on the Hayhurst scale was significantly higher in the SG group (93.1%) than in the FH group (60.7%), P = 0.012. The revision rate was higher in the FH group with 35.7% vs. 20.7% of in the SG group, P = 0.211.

Conclusion: VC placement using the SG technique is a safe and effective procedure, which enabled a significantly higher success rate and lower revision and complication rate. Accordingly, we recommend using the SG technique especially in patients with difficult anatomy 2)


The experience of shuntscope-guided ventriculoperitoneal shunt in 9 cases done from June 2015 to April 2016. Shuntscope is a 1 mm outer diameter semi-rigid scope from Karl Storz with 10000 pixels of magnification. It has a fiber optic lens system with a camera and light source attachment away from the scope to make it lightweight and easily maneuverable.

Results: In all cases, VC was placed in the ipsilateral frontal horn away from choroid plexuses, septae, or membranes. Septum pellucidum perforation and placement to the opposite side of the ventricle was identified with shunt scope assistance and corrected.

Conclusion: Although our initial results are encouraging, larger case series would be helpful. Complications and cost due to shunt dysfunction can thus be reduced to a great extent with shuntscope 3)


The semi-rigid ShuntScope (Karl Storz GmbH & Co.KG, Tuttlingen, Germany) with an outer diameter of 1.0 mm and an image resolution of 10,000 pixels was used in a series of 27 children and adolescents (18 males, 9 females, age range 2 months-18 years). Indications included catheter placement in aqueductal stenting (n = 4), first-time shunt placement (n = 5), burr hole reservoir insertion (n = 4), catheter placement after endoscopic procedures (n = 7) and revision surgery of the ventricle catheter (n = 7).

ShuntScope-guided precise catheter placement was achieved in 26 of 27 patients. In one case of aqueductal stenting, the procedure had to be abandoned. One single wound healing problem was noted as a complication. Intraventricular image quality was always sufficient to recognize the anatomical structures. In the case of catheter removal, it was helpful to identify adherent vessels or membranes. Penetration of small adhesions or thin membranes was feasible. Postoperative imaging studies demonstrated catheter tip placements analogous to the intraoperative findings.

Misplacements of shunt catheters are completely avoidable with the presented intra-catheter technique including slit ventricles or even aqueductal stenting. Potential complications can be avoided during revision surgery. The implementation of the ShuntScope is recommended in pediatric neurosurgery 4).


1)

Prajsnar-Borak A, Teping F, Oertel J. Image quality and related outcomes of the ShuntScope for catheter implantation in pediatric hydrocephalus-experience of 65 procedures. Childs Nerv Syst. 2022 Dec 2. doi: 10.1007/s00381-022-05776-1. Epub ahead of print. PMID: 36459211.
2)

Issa M, Nofal M, Miotik N, Seitz A, Unterberg A, El Damaty A. ShuntScope®-Guided Versus Free Hand Technique for Ventricular Catheter Placement: A Retrospective Comparative Study of Intra-Ventricular Catheter Tip Position and Complication Rate. J Neurol Surg A Cent Eur Neurosurg. 2022 Feb 10. doi: 10.1055/a-1768-3892. Epub ahead of print. PMID: 35144299.
3)

Agrawal V, Aher RB. Endoluminal Shuntscope-Guided Ventricular Catheter Placement: Early Experience. Asian J Neurosurg. 2018 Oct-Dec;13(4):1071-1073. doi: 10.4103/ajns.AJNS_98_17. PMID: 30459870; PMCID: PMC6208226.
4)

Senger S, Antes S, Salah M, Tschan C, Linsler S, Oertel J. The view through the ventricle catheter – The new ShuntScope for the therapy of pediatric hydrocephalus. J Clin Neurosci. 2018 Feb;48:196-202. doi: 10.1016/j.jocn.2017.10.046. Epub 2017 Nov 6. PubMed PMID: 29102235.

Charlson comorbidity index (CCI)

Charlson comorbidity index (CCI)

http://touchcalc.com/calculators/cci_js

https://www.mdcalc.com/charlson-comorbidity-index-cci


The purpose of the study was to assess whether the Charlson Comorbidity Index (CCI) was associated with in-hospital death and short-term functional outcome in elderly patients (age ≥ 70) with intracerebral hemorrhage (ICH).

This was a retrospective cohort of aged ICH patients (≥70 years old) admitted within 24 hours of ICH onset. The CCI was derived using hospital discharge ICD-9 CM codes and patient history obtained from standardized case report forms. Multivariable logistic regression was used to determine the independent effect of the CCI score on clinical outcomes.

In this cohort of 248 aged ICH patients, comorbid conditions were common, with CCI scores ranging from 2 to 12. Logistic regression showed that the CCI score was independently predictive of 1-month functional outcome (OR = 1.642, P < 0.001) and in-hospital death (OR = 1.480, P = 0.003). Neither ICH volume nor the presence of IVH was an independent predictive factor for the 1-month functional outcome or in-hospital mortality (P < 0.05).

Comorbid medical conditions as assessed by the CCI independently influence short-term outcomes in aged ICH patients. The characteristics of the hematoma itself, such as intracerebral hemorrhage volume and the presence of IVH, seem to have a reduced effect on it 1).


Complications in spine trauma patients with Ankylosing spinal disorders may be driven by comorbidity burden rather than operative or injury-related factors. The Charlson Comorbidity Index (CCI) may be a valuable tool for the evaluation of this unique population 2)


Charlson Comorbidity Index (CCI) provides a simple way of predicting recurrence in patients with chronic subdural hematoma and should be incorporated into decision-making processes, when counseling patients 3).


Data show that elderly with a good performance status and few co-morbidity may be treated as younger patients; moreover, age confirms a negative impact on survival while (CCI) ≤ 2 did not correlate with overall survival (OS4).


Charlson comorbidity index (CCI), functional status computed by the Karnofsky performance scale (KPS)), tumor characteristics (size, location, isocitrate dehydrogenase mutation, and O-6-methylguanine-DNA methyltransferase promoter methylation status), and treatment parameters (volumetrically quantified extent of resection and adjuvant therapy), evidence that aside established prognostic parameters (age and KPS) for glioblastoma patient outcome, the CCI additionally significantly impacts outcome and may be employed for preoperative patient stratification 5).

Maximal resection and radiochemotherapy treatment completion are associated with longer OS, and age alone should not preclude elderly patients from receiving surgery and adjuvant treatment. However, only a few patients were able to finish the proposed treatments. Poor performance and high comorbidity index status might compromise the benefit of treatment aggressiveness and must be considered in therapeutic decision 6).


1)

Zhang T, Chen R, Wen D, Wang X, Ma L. The prognostic value of the Charlson comorbidity index in aged patients with intracerebral hemorrhage. BMC Neurol. 2022 Nov 28;22(1):443. doi: 10.1186/s12883-022-02980-z. PMID: 36443745.
2)

Lakomkin N, Mikula AL, Pinter ZW, Wellings E, Alvi MA, Scheitler KM, Pennington Z, Lee NJ, Freedman BA, Sebastian AS, Fogelson JL, Bydon M, Clarke MJ, Elder BD. Perioperative risk stratification of spine trauma patients with ankylosing spinal disorders: a comparison of 3 quantitative indices. J Neurosurg Spine. 2022 May 27:1-7. doi: 10.3171/2022.4.SPINE211449. Epub ahead of print. PMID: 35623371.
3)

Martinez-Perez R, Tsimpas A, Rayo N, Cepeda S, Lagares A. Role of the patient comorbidity in the recurrence of chronic subdural hematomas. Neurosurg Rev. 2020 Mar 7. doi: 10.1007/s10143-020-01274-7. [Epub ahead of print] PubMed PMID: 32146611.
4)

Balducci M, Fiorentino A, De Bonis P, Chiesa S, Manfrida S, D’Agostino GR, Mantini G, Frascino V, Mattiucci GC, De Bari B, Mangiola A, Miccichè F, Gambacorta MA, Colicchio G, Morganti AG, Anile C, Valentini V. Impact of age and co-morbidities in patients with newly diagnosed glioblastoma: a pooled data analysis of three prospective mono-institutional phase II studies. Med Oncol. 2012 Dec;29(5):3478-83. doi: 10.1007/s12032-012-0263-3. Epub 2012 Jun 7. PubMed PMID: 22674154.
5)

Ening G, Osterheld F, Capper D, Schmieder K, Brenke C. Charlson comorbidity index: an additional prognostic parameter for preoperative glioblastoma patient stratification. J Cancer Res Clin Oncol. 2015 Jan 11. [Epub ahead of print] PubMed PMID: 25577223.
6)

Pereira AF, Carvalho BF, Vaz RM, Linhares PJ. Glioblastoma in the elderly: Therapeutic dilemmas. Surg Neurol Int. 2015 Nov 16;6(Suppl 23):S573-S582. eCollection 2015. PubMed PMID: 26664927.

Chronic subdural hematoma recurrence prevention

Chronic subdural hematoma recurrence prevention

In total, 402 studies were included in this analysis and 32 potential risk factors were evaluated. Among these, 21 were significantly associated with the postoperative recurrence of CSDH. Three risk factors (male, bilateral hematoma, and no drainage) had convincing evidence 1).

The single most important factor appears to be the residual subdural space after drainage of the chronic subdural hematoma and an effort should be made by the surgeon to facilitate the expansion of the underlying brain. The presence of a functioning drain for 48–72 h draining the subdural fluid and promoting brain expansion will reduce the subdural space, thus reducing the recurrence of the CSDH. Some of the relevant surgical nuances include placement of at least two burr holes with the burr holes located to drain multiple cavities, copious irrigation of the subdural space, placement of the drain in the dependent burr hole site, near-total filling of the subdural space with irrigation to prevent a pneumocephalus and placing a subdural drain. Closure of the site with a large piece of Gelfoam prevents the subgaleal blood to migrate into the subdural space.

Postoperative subdural drain of maximal 48 h is effective in reducing recurrent hematomas. However, the shortest possible drainage time without increasing the recurrence rate is unknown

see Subdural drain for chronic subdural hematoma

The effect of a physical property of irrigation solution (at body vs room temperature) on the chronic subdural hematoma recurrence rate needs further study.

Objective: To explore whether irrigation fluid temperature has an influence on cSDH recurrence.

Design, setting, and participants: This was a multicenter randomized clinical trial performed between March 16, 2016, and May 30, 2020. The follow-up period was 6 months. The study was conducted at 3 neurosurgical departments in Sweden. All patients older than 18 years undergoing cSDH evacuation during the study period were screened for eligibility in the study.

Interventions: The study participants were randomly assigned by 1:1 block randomization to the cSDH evacuation procedure with irrigation fluid at room temperature (RT group) or at body temperature (BT group).

Main outcomes and measures: The primary end point was recurrence requiring reoperation within 6 months. Secondary end points were mortality, health-related quality of life, and complication frequency.

Results: At 6 months after surgery, 541 patients (mean [SD] age, 75.8 [9.8] years; 395 men [73%]) had a complete follow-up according to protocol. There were 39 of 277 recurrences (14%) requiring reoperation in the RT group, compared with 16 of 264 recurrences (6%) in the BT group (odds ratio, 2.56; 95% CI, 1.38-4.66; P < .001). There were no significant differences in mortality, health-related quality of life, or complication frequency.

Conclusions and Relevance: In this study, irrigation at body temperature was superior to irrigation at room temperature in terms of fewer recurrences. This is a simple, safe, and readily available technique to optimize outcome in patients with cSDH. When irrigation is used in cSDH surgery, irrigation fluid at body temperature should be considered standard of care.

Trial registration: ClincalTrials.gov Identifier: NCT02757235 2).

A study aimed to evaluate the efficacy and safety of half-saline solution for irrigation in burr hole trephination for chronic subdural hematoma.

This randomized clinical trial was conducted in university hospital referral centers from 2020 to 2021. Sixty-three patients with chronic subdural hematoma eligible for burr hole trephination were primarily enrolled. Two patients were excluded because of concurrent stroke. Sixty-one patients were randomly allocated into case (HS=30) and control (normal-saline [NS]=31) groups. HS was used to irrigate the hematoma in the case group and NS was used in the control group. The patients were followed-up. Clinical variables including demographic and medical findings, postoperative computed tomography findings, postoperative complications, hospitalization period, recurrence rate, and functional status measured by the Barthel type B index were recorded.

Forty-six of 61 patients were male (75.4%), and the patients’ mean age was 65.4±16.9 years, with equal distribution between the 2 groups. Postoperative effusion and postoperative hospital stay duration were significantly lower in the HS group than in the NS group (p=0.002 and 0.033, respectively). The postoperative recurrence within 3 months in both groups was approximately equal (6.6%). In terms of functional outcomes and postoperative complications, HS showed similar results to those of NS.

Conclusion: HS as an irrigation fluid in BHC effectively reduced postoperative effusion and hospital stay duration without considerable complications.

Trial registration: Iranian Registry of Clinical Trials Identifier: IRCT20200608047688N1 3).


1)

Zhu F, Wang H, Li W, Han S, Yuan J, Zhang C, Li Z, Fan G, Liu X, Nie M, Bie L. Factors correlated with the postoperative recurrence of chronic subdural hematoma: An umbrella study of systematic reviews and meta-analyses. EClinicalMedicine. 2021 Dec 20;43:101234. doi: 10.1016/j.eclinm.2021.101234. PMID: 34988412; PMCID: PMC8703229.
2)

Bartley A, Bartek J Jr, Jakola AS, Sundblom J, Fält M, Förander P, Marklund N, Tisell M. Effect of Irrigation Fluid Temperature on Recurrence in the Evacuation of Chronic Subdural Hematoma: A Randomized Clinical Trial. JAMA Neurol. 2022 Nov 21. doi: 10.1001/jamaneurol.2022.4133. Epub ahead of print. PMID: 36409480.
3)

Mahmoodkhani M, Sharafi M, Sourani A, Tehrani DS. Half-Saline Versus Normal-Saline as Irrigation Solutions in Burr Hole Craniostomy to Treat Chronic Subdural Hematomata: A Randomized Clinical Trial. Korean J Neurotrauma. 2022 Sep 29;18(2):221-229. doi: 10.13004/kjnt.2022.18.e47. PMID: 36381457; PMCID: PMC9634318.

Ventriculoperitoneal Shunt Complications

Ventriculoperitoneal Shunt Complications

see External ventricular drainage complications

see also Cerebrospinal fluid shunt complications.


Ventriculoperitoneal shunt is the most common treatment to manage hydrocephalus; It is unfortunately burdened by up to 25% of complications. The peritoneal approach may expose patients to many complications.

Patients with a ventriculoperitoneal shunt tend to develop epidural fluid accumulation after cranioplasty and also have a higher frequency of syndrome of the trephined after bone flap removal. Thus treatment of patients with postcranioplasty infection and a VP shunt is often challenging.

The management of ventriculoperitoneal shunt complication or failure is a common problem in neurosurgical practice. On occasion, extraperitoneal sites for CSF diversion are required when shunting to the peritoneal cavity has failed after multiple attempts.

Complications frequently associated with a VP shunt: includes shunt obstruction, infection, overdrainage of CSF, and perforation of the gastrointestinal tract, gallbladder, vagina, and abdominal wall at the umbilicus… 1).

Despite procedural and equipment advances, the procedure it is accompanied by frequent complications and malfunctions. Some studies have shown an overall shunt failure rate as high as 59%, with the majority of failures occurring within the first 6 months after shunt placement 2).

Endoscopic placement of ventriculoperitoneal (VP) shunt catheters in pediatric patients has been increasingly used in an attempt to minimize the unacceptably high rates of revision. Although this procedure carries an increased expense, there is currently no evidence to support an improved long-term outcome.

Endoscopic assisted ventricular catheter placement decreased the odds of proximal obstruction but failed to improve overall shunt survival in a 6 year experience 3).

The evaluation of children with suspected ventriculoperitoneal shunt (VPS) malfunction has evolved into a diagnostic dilemma. This patient population is vulnerable not only to the medical risks of hydrocephalus and surgical complications but also to silent but harmful effects of ionizing radiation secondary to imaging used to evaluate shunt efficacy and patency. The combination of increased medical awareness regarding ionizing radiation and public concern has generated desire to reduce the reliance on head computed tomography (CT) for the evaluation of VPS malfunction. Many centers have started to investigate the utility of low dose computed tomography and alternatives, such as fast magnetic resonance imaging for the investigation of VP shunt malfunction in order to keep radiation exposure as low as reasonably achievable.

A pilot study demonstrates that utilization of limited head CT scan in the evaluation of children with suspected VP shunt malfunction is a feasible strategy for the evaluation of the ventricular size 4).

In the study of Afat et al., low-dose computed tomography (LD-CT) provides excellent sensitivity and higher diagnostic confidence with lower radiation exposure compared with radiographic shunt series (SS) 5).

see Ventriculoperitoneal shunt infection.

Ventriculitis

Intraventricular administration of proper antibiotics is a reliable and effective way to treat ventriculitis associated with ventriculoperitoneal shunts.

Vancomycin is the preferred antibiotic for ventriculitis, but other kind(s) of some antibiotics are necessary in a few patients in addition to or instead of vancomycin 6).

see Ventriculoperitoneal shunt overdrainage

see Ventriculoperitoneal shunt obstruction

see Shunt calcification

see Ventriculoperitoneal shunt abdominal complications.

Ventriculoperitoneal shunt complications have rarely been attributed to silicone allergy, with only a handful of cases reported in literature. The classic presentation of allergy to silicone ventriculoperitoneal shunt, i.e., abdominal pain with recurrent skin breakdown along the shunt tract, is nonspecific and difficult to distinguish clinically from other causes of shunt-related symptoms. It can be diagnosed by detection of antisilicone antibodies and is treated with removal of the shunt and replacement, if needed, with a polyurethane shunt system.

Kurin et al. report the first case of suspected silicone allergy presenting as clinical peritonitis without overt colonic perforation 7).


Progression of Normal-Tension Glaucoma 8).

Merkler et al., performed a retrospective cohort study of adult patients hospitalized at the time of their first recorded procedure code for VPS surgery between 2005 and 2012 at nonfederal acute care hospitals in California, Florida, and New York. We excluded patients who during the index hospitalization for VPS surgery had concomitant codes for VPS revision, CNS infection, or died during the index hospitalization. Patients were followed for the primary outcome of a VPS complication, defined as the composite of CNS infection or VPS revision. Survival statistics were used to calculate the cumulative rate and incidence rate of VPS complications.

17,035 patients underwent VPS surgery. During a mean follow-up of 3.9 (±1.8) years, at least one VPS complication occurred in 23.8% (95% CI, 22.9-24.7%) of patients. The cumulative rate of CNS infection was 6.1% (95% CI, 5.7-6.5%) and of VPS revision 22.0% (95% CI, 21.1-22.9%). The majority of complications occurred within the first year of hospitalization for VPS surgery. Complication rates were 21.3 (95% CI, 20.6-22.1) complications per 100 patients per year in the first year after VPS surgery, 5.7 (95% CI, 5.3-6.1) in the second year after VPS surgery, and 2.5 (95% CI, 2.1-3.0) in the fifth year after VPS surgery.

Complications are not infrequent following VPS surgery; however, the majority of complications appear to be clustered in the first year following VPS insertion 9).

2015

A extremely rare and potentially severe complication of vesical calculi formation on the slit valves of distal end of VP shunt which erosively migrated into the urinary bladder. Suprapubic cystolithotomy performed, peritoneal end of the tube found to be eroding and entering into the bladder with two calculi firmly stuck to slit valves in the distal end of the tubing were removed. Shunt was functional, therefore, it was pulled out and repositioned on the superior aspect of the liver; the urinary bladder was repaired. Patient did well postoperatively. This complication was revealed 1.5 years after the shunt was implanted. Although there were symptoms of dysuria and dribbling of urine of short duration, the patient did not show obvious peritoneal signs; suggesting that, penetration of a VP shunt into the urinary bladder can remain asymptomatic for a long period of time, disclosed late and can lead to considerable morbidity. Careful follow-up is important and management should be individualized 10).

2009

An unusual case of perforation of the distal end of the VP shunt into the bladder, with vesical calculus formation 11).

2002

A bladder stone formed secondary to the erosion of a ventriculoperitoneal shunt through a normal bladder wall 12).


1)

Blount JP, Campbell JA, Haines SJ. Complications in ventricular cerebrospinal fluid shunting. Neurosurg Clin N Am. 1993;4:633–56.
2)

Reddy GK, Bollam P, Shi R, Guthikonda B, Nanda A. Management of adult hydrocephalus with ventriculoperitoneal shunts: long-term single-institution experience. Neurosurgery. 2011;69(4):774–781.
3)

Villavicencio AT, Leveque JC, McGirt MJ, Hopkins JS, Fuchs HE, George TM. Comparison of revision rates following endoscopically versus nonendoscopically placed ventricular shunt catheters. Surg Neurol. 2003 May;59(5):375-9; discussion 379-80. PubMed PMID: 12765808.
4)

Park DB, Hill JG, Thacker PG, Rumboldt Z, Huda W, Ashley B, Hulsey T, Russell WS. The Role of Limited Head Computed Tomography in the Evaluation of Pediatric Ventriculoperitoneal Shunt Malfunction. Pediatr Emerg Care. 2016 Jun 14. [Epub ahead of print] PubMed PMID: 27299297.
5)

Afat S, Pjontek R, Hamou HA, Herz K, Nikoubashman O, Bamberg F, Brockmann MA, Nikolaou K, Clusmann H, Wiesmann M, Othman AE. Imaging of Ventriculoperitoneal Shunt Complications: Comparison of Whole Body Low-Dose Computed Tomography and Radiographic Shunt Series. J Comput Assist Tomogr. 2016 Aug 16. [Epub ahead of print] PubMed PMID: 27529684.
6)

Li XY, Wang ZC, Li YP, Ma ZY, Yang J, Cao EC. [Study on treatment strategy for ventriculitis associated with ventriculoperitoneal shunt for hydrocephalus]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2005 Sep;17(9):558-60. Chinese. PubMed PMID: 16146606.
7)

Kurin M, Lee K, Gardner P, Fajt M, Umapathy C, Fasanella K. Clinical peritonitis from allergy to silicone ventriculoperitoneal shunt. Clin J Gastroenterol. 2017 Mar 6. doi: 10.1007/s12328-017-0729-0. [Epub ahead of print] PubMed PMID: 28265895.
8)

Chen BH, Drucker MD, Louis KM, Richards DW. Progression of Normal-Tension Glaucoma After Ventriculoperitoneal Shunt to Decrease Cerebrospinal Fluid Pressure. J Glaucoma. 2014 Oct 27. [Epub ahead of print] PubMed PMID: 25350819.
9)

Merkler AE, Ch’ang J, Parker WE, Murthy SB, Kamel H. The Rate of Complications after Ventriculoperitoneal Shunt Surgery. World Neurosurg. 2016 Nov 5. pii: S1878-8750(16)31137-8. doi: 10.1016/j.wneu.2016.10.136. [Epub ahead of print] PubMed PMID: 27826086.
10)

Gupta R, Dagla R, Agrawal LD, Sharma P. Vesical calculi formation on the slit valves of a migrated distal end of ventriculoperitoneal shunt. J Pediatr Neurosci. 2015 Oct-Dec;10(4):368-70. doi: 10.4103/1817-1745.174444. PubMed PMID: 26962346.
11)

Ramana Murthy KV, Jayaram Reddy S, Prasad DV. Perforation of the distal end of the ventriculoperitoneal shunt into the bladder with calculus formation. Pediatr Neurosurg. 2009;45(1):53-5. doi: 10.1159/000204904. Epub 2009 Mar 4. PubMed PMID: 19258730.
12)

Eichel L, Allende R, Mevorach RA, Hulbert WC, Rabinowitz R. Bladder calculus formation and urinary retention secondary to perforation of a normal bladder by a ventriculoperitoneal shunt. Urology. 2002 Aug;60(2):344. PubMed PMID: 12137842.

Stenotrophomonas maltophilia meningitis

Stenotrophomonas maltophilia meningitis

Stenotrophomonas maltophilia treatment

The clinical characteristics of six Stenotrophomonas maltophilia ABM cases, collected during a study period of nine years (2001-2009) were included. In the related literature, 13 S. maltophilia ABM cases were reported, and their clinical data were also collected.

The 19 S. maltophilia ABM cases included 11 men and 8 women, aged 28-70 years. Of these 19 cases, 89.5% (17/19) had underlying neurosurgical (NS) conditions as the preceding event. Before the development of S. maltophilia ABM, 52.6% (10/19) of them had long stays in hospital and 63.2% (12/19) had undergone antibiotic treatment. Among the implicated S. maltophilia cases, three strains were found to have a resistance to sulfamethoxazole-trimethoprim (SMZ-TMP). Two of our five cases had resistant strains to levofloxacin. Among the antibiotics chosen for treatment, SMZ-TMP was the most common followed by quinolone (ciprofloxacin, levofloxacin, moxifloxacin). The therapeutic results showed 2 cases expired while the other 17 cases survived.

S. maltophilia ABM usually develops in patients with a preceding neurosurgical condition, a long hospital stay and antibiotic use. SMZ-TMP and quinolones, especially the ciprofloxacin, are the major antibiotic used. This study also shows the emergence of clinical S. maltophilia strains which are not susceptible to SMZ-TMP and quinolones and this development may pose a more serious threat in the near future because treatment options may become depleted and limited despite the mortality rate of this specific group of ABM not being high at this time 1).

A young female patient with history of multiple shunt revisions in the past, came with shunt dysfunction and exposure of the ventriculoperitoneal shunt tube in the neck. The abdominal end of the shunt tube was seen migrating into the bowel during shunt revision. The cerebrospinal fluid analysis showed evidence of Stenotrophomonas maltophilia growth. This is the first reported case of Stenotrophomonas maltophilia meningitis associated with ventriculoperitoneal shunt migration into the bowel. 2).


A patient who developed C. utilis and S. maltophilia after undergoing neurosurgery and received effective nosocomial meningitis treatment. Multiple neurosurgeries were required for a 16-year-old girl due to complications. For probable nosocomial meningitis, she was treated with cefepime with vancomycin. Meropenem and liposomal amphotericin B were prescribed after her seizure and positive CSF culture for Candida utilis. Consequently, S. maltophilia was discovered in the CSF, and ceftazidime and trimethoprim-sulfamethoxazole were prescribed. The patient has been hemodynamically stable for the past two months, and consecutive CSF cultures have been negative. To the best of our knowledge, this is the first case of C. utilis and S. maltophilia co-infection that has been successfully handled. 3).


Two cases of S. maltophilia meningitis following neurosurgical procedures. The first patient was a 60-year-old female. She was admitted to the hospital with a left basal ganglia bleed and underwent placement of an external ventricular drain for the treatment of hydrocephalus. She developed S. maltophilia meningitis 20 days after surgery. She was successfully treated with a combination of trimethoprim-sulfamethoxazole and intravenous colistin and the removal of the drain. She successfully underwent a ventriculoperitoneal (VP) shunt placement at the therapeutic midway point. The second patient was a 35-year-old male with a history of intracranial aneurysm bleeding. He had undergone a craniotomy and placement of a ventriculoperitoneal shunt two years previously. His shunt was replaced twice due to blockage. The last replacement had occurred 15 days prior to the development of meningitis. He was treated with a combination of trimethoprim-sulfamethoxazole and ceftazidime (as well as undergoing another shunt replacement) and experienced an excellent recovery. S. maltophilia is a rare but important cause of nosocomial meningitis. It is strongly associated with prior hospitalization and neurosurgical intervention, which is also found in our case series. The management of S. maltophilia meningitis is a therapeutic challenge due to its high resistance to multiple antibiotics. Optimal therapy is based on antimicrobial sensitivity, and the trimethoprim-sulfamethoxazole-based combination has been shown to be successful. The duration of therapy is debatable, but like most gram-negative meningitis infections, therapy lasting up to three weeks appears to be adequate. 4).


Stenotrophomonas maltophilia CSF infection in infants after neurosurgery 5).


A 4-year-old boy who developed meningitis associated with this organism, after several neurosurgical procedures and previous treatment with a broad-spectrum antibiotic. He was treated successfully with a combination of trimethoprim-sulfamethoxazole, ceftazidime and levofloxacin. Stenotrophomonas maltophilia should be considered as a potential cause of meningitis, especially among severely debilitated or immunosuppressed patients. Antimicrobial therapy is complicated by the high resistance of the organism to multiple antibiotics. 6).


A case of a six months old, male child who developed meningitis caused by Stenotrophomonas maltophilia, after he underwent a neurosurgical procedure. 7).


A 30-year-old male patient who developed meningitis associated with this organism after several neurosurgical procedures. A review of the literature revealed only 15 previous reports. Most cases were associated with neurosurgical procedures. Antimicrobial therapy is complicated by multiple drug resistance of the organism, and trimethoprim-sulfamethoxazole is the recommended agent for treatment. 8).


A case of generalized infection by S. maltophilia, including meningitis, bacteremia and respiratory tract infection, in a patient who had undergone multiple neurosurgical procedures and who was treated with trimethoprim-sulphamethoxazole 9).


Two cases of meningitis caused by Stenotrophomonas maltophilia in cancer patients following placement of an Ommaya reservoir for treatment of meningeal carcinomatosis. In addition, they review eight other cases of S. maltophilia that have been reported to date. Stenotrophomonas maltophilia meningitis is often associated with neurosurgical procedures; however, spontaneous infection may also occur, mainly in neonates. The disease’s clinical presentation is similar to that of other forms of meningitis caused by Gram-negative bacilli. The overall mortality rate of this disease is 20% and is limited to neonates with spontaneous meningitis in whom effective antibiotic therapy is delayed. Meningitis caused by S. maltophilia in the modern era should be considered in immunocompromised hosts with significant central nervous system disease who have undergone neurosurgical procedures and who do not readily respond to broad-spectrum antimicrobial coverage. 10).


1)

Huang CR, Chen SF, Tsai NW, Chang CC, Lu CH, Chuang YC, Chien CC, Chang WN. Clinical characteristics of Stenotrophomonas maltophilia meningitis in adults: a high incidence in patients with a postneurosurgical state, long hospital staying and antibiotic use. Clin Neurol Neurosurg. 2013 Sep;115(9):1709-15. doi: 10.1016/j.clineuro.2013.03.006. Epub 2013 Apr 20. PMID: 23611735.
2)

Manuel A, Jayachandran A, Harish S, Sunil T, K R VD, K R, Jo J, Unnikrishnan M, George K, Bahuleyan B. <i>Stenotrophomonas maltophilia</i> as a rare cause of meningitis and ventriculoperitoneal shunt infection. Access Microbiol. 2021 Oct 7;3(10):000266. doi: 10.1099/acmi.0.000266. PMID: 34816086; PMCID: PMC8604181.
3)

Mohzari Y, Al Musawa M, Asdaq SMB, Alattas M, Qutub M, Bamogaddam RF, Yamani A, Aldabbagh Y. Candida utilis and Stenotrophomonas maltophilia causing nosocomial meningitis following a neurosurgical procedure: A rare co-infection. J Infect Public Health. 2021 Nov;14(11):1715-1719. doi: 10.1016/j.jiph.2021.10.004. Epub 2021 Oct 13. PMID: 34700290.
4)

Khanum I, Ilyas A, Ali F. Stenotrophomonas maltophilia Meningitis – A Case Series and Review of the Literature. Cureus. 2020 Oct 28;12(10):e11221. doi: 10.7759/cureus.11221. PMID: 33269149; PMCID: PMC7704165.
5)

Mukherjee S, Zebian B, Chandler C, Pettorini B. Stenotrophomonas maltophilia CSF infection in infants after neurosurgery. Br J Hosp Med (Lond). 2017 Dec 2;78(12):724-725. doi: 10.12968/hmed.2017.78.12.724. PMID: 29240495.
6)

Correia CR, Ferreira ST, Nunes P. Stenotrophomonas maltophilia: rare cause of meningitis. Pediatr Int. 2014 Aug;56(4):e21-2. doi: 10.1111/ped.12352. PMID: 25252064.
7)

Sood S, Vaid VK, Bhartiya H. Meningitis due to Stenotrophomonas maltophilia after a Neurosurgical Procedure. J Clin Diagn Res. 2013 Aug;7(8):1696-7. doi: 10.7860/JCDR/2013/5614.3248. Epub 2013 Aug 1. PMID: 24086879; PMCID: PMC3782936.
8)

Yemisen M, Mete B, Tunali Y, Yentur E, Ozturk R. A meningitis case due to Stenotrophomonas maltophilia and review of the literature. Int J Infect Dis. 2008 Nov;12(6):e125-7. doi: 10.1016/j.ijid.2008.03.028. Epub 2008 Jun 24. PMID: 18579427.
9)

Platsouka E, Routsi C, Chalkis A, Dimitriadou E, Paniara O, Roussos C. Stenotrophomonas maltophilia meningitis, bacteremia and respiratory infection. Scand J Infect Dis. 2002;34(5):391-2. doi: 10.1080/00365540110080520. PMID: 12069028.
10)

Papadakis KA, Vartivarian SE, Vassilaki ME, Anaissie EJ. Stenotrophomonas maltophilia meningitis. Report of two cases and review of the literature. J Neurosurg. 1997 Jul;87(1):106-8. doi: 10.3171/jns.1997.87.1.0106. PMID: 9202275.