Microvascular decompression for trigeminal neuralgia

Microvascular decompression for trigeminal neuralgia


Microvascular decompression is a first-line neurosurgical approach for classical trigeminal neuralgia with neurovascular conflict, but can show clinical relapse despite proper decompression. Second-line destructive techniques like radiofrequency thermocoagulation have become reluctantly used due to their potential for irreversible side effects. Subcutaneous peripheral nerve field stimulation (sPNFS) is a minimally invasive neuromodulatory technique which has been shown to be effective for chronic localised pain conditions.

The most frequently used surgical management of trigeminal neuralgia is Microvascular decompression (MVD), followed closely by stereotactic radiosurgery (SRS). Percutaneous stereotactic rhizotomy (PSR) , despite being the most cost-effective, is by far the least utilized treatment modality 1).

Microvascular decompression (MVD) via lateral suboccipital approach is the standard surgical intervention for trigeminal neuralgia treatment.

Teflon™ and Ivalon® are two materials used in MVD for TN. It is an effective treatment with long-term symptom relief and recurrence rates of 1-5% each year. Ivalon® has been used less than Teflon™ though is associated with similar success rates and similar complication rates 2)

Although microvascular decompression (MVD) is the most effective long-term operative treatment for TN, its use in older patient populations has been debated due to its invasive nature.

see Microvascular decompression for trigeminal neuralgia and multiple sclerosis

see Awake Microvascular Decompression for Trigeminal Neuralgia.

see also Endoscope assisted microvascular decompression for trigeminal neuralgia.


Compared with the standard microscope-assisted techniques, the 3D exoscopic endoscope-assisted MVD offers an improved visualisation without compromising the field of view within and outside the surgical field 3).

97 patients with primary trigeminal neuralgia (PTN) underwent fully endoscopic microvascular decompression (MVD) via keyhole approach in Capital Medical University Affiliated Beijing Shijitan Hospital from December 2014 to February 2019 was collected. During fully endoscopic MVD in PTN via keyhole approach, performer use natural clearance without grinding except developed rock bone crest or excessive retraction of the brain tissue, visually and panoramically observe and evaluate the CPA area, accurately identify the responsible vessels, to avoid the omission of responsible vessels or insufficient decompression. And the use of preplaced technology, bridging technology and submersible technology, ensure the efficacy of surgery and reduce the surgical side injuries. Barrow Neurological Institute Pain Intensity Score was used to evaluate the efficacy and identify the recurrence. The surgical efficacy was analyzed. The offending vessels were identified under endoscope in 96 cases. Among them, arterial compression was found in 77 cases, venous compression in 6 cases, and both arterial and venous compression in 13 cases. About the pain outcomes, 87 cases had immediate and complete relief of pain, 5 cases had almost relief of pain, 4 cases had partial relief of pain, and still needed medication control, but the dose was lower than that before operation, and 1 case had no obvious relief of pain. About complications, there were 4 cases of temporary facial numbness, 1 case of temporary hearing loss, both of them recovered after symptomatic treatment. There was no cerebral infarction or hemorrhage, intracranial or incision infection. All cases were followed up for 3.0-38.0 months with a median period of(22.4±2.2) months. During the follow-up periods, postoperative recurrence occurred in 3 cases. Fully endoscopic MVD for PTN through keyhole approach, provides panoramic view to avoid omission of offending vessels and reduce complications, seemed to be a safe and effective surgical method 4).

Using preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, PubMedCochrane Library, and Scopus were queried for primary studies examining pain outcomes after MVD for TN published between 1988 and March 2018. Potential biases were assessed for included studies. Pain freedom (ie, Barrow Neurological Institute score of 1) at last follow-up was the primary outcome measure. Variables associated with pain freedom on preliminary analysis underwent formal meta-analysis. Odds ratios (OR) and 95% confidence intervals (CI) were calculated for possible predictors.

Outcome data were analyzed for 3897 patients from 46 studies (7 prospective, 39 retrospective). Overall, 76.0% of patients achieved pain freedom after MVD with a mean follow-up of 1.7 ± 1.3 (standard deviation) yr. Predictors of pain freedom on meta-analysis using random effects models included (1) disease duration ≤5 yr (OR = 2.06, 95% CI = 1.08-3.95); (2) arterial compression over venous or other (OR = 3.35, 95% CI = 1.91-5.88); (3) superior cerebellar artery involvement (OR = 2.02, 95% CI = 1.02-4.03), and (4) type 1 Burchiel classification (OR = 2.49, 95% CI = 1.32-4.67).

Approximately three-quarters of patients with drug-resistant TN achieve pain freedom after MVD. Shorter disease duration, arterial compression, and type 1 Burchiel classification may predict a more favorable outcome. These results may improve patient selection and provider expectations 5).

Microvascular decompression for trigeminal neuralgia technique.

Microvascular decompression for trigeminal neuralgia outcome.

Microvascular decompression for trigeminal neuralgia complications

Microvascular decompression for trigeminal neuralgia case series.


1)

Sivakanthan S, Van Gompel JJ, Alikhani P, van Loveren H, Chen R, Agazzi S. Surgical management of trigeminal neuralgia: use and cost-effectiveness from an analysis of the medicare claims database. Neurosurgery. 2014 Sep;75(3):220-6. doi: 10.1227/NEU.0000000000000430. PubMed PMID: 24871139.
2)

Pressman E, Jha RT, Zavadskiy G, Kumar JI, van Loveren H, van Gompel JJ, Agazzi S. Teflon™ or Ivalon®: a scoping review of implants used in microvascular decompression for trigeminal neuralgia. Neurosurg Rev. 2019 Nov 30. doi: 10.1007/s10143-019-01187-0. [Epub ahead of print] Review. PubMed PMID: 31786660.
3)

Li Ching Ng A, Di Ieva A. How I do it: 3D exoscopic endoscope-assisted microvascular decompression. Acta Neurochir (Wien). 2019 May 29. doi: 10.1007/s00701-019-03954-w. [Epub ahead of print] PubMed PMID: 31144166.
4)

Peng WC, Guan F, Hu ZQ, Huang H, Dai B, Zhu GT, Mao BB, Xiao ZY, Zhang BL, Liang X. [Efficacy analysis of fully endoscopic microvascular decompression in primary trigeminal neuralgia via keyhole approach]. Zhonghua Yi Xue Za Zhi. 2021 Mar 30;101(12):856-860. Chinese. doi: 10.3760/cma.j.cn112137-20200630-02002. PMID: 33789367.
5)

Holste K, Chan AY, Rolston JD, Englot DJ. Pain Outcomes Following Microvascular Decompression for Drug-Resistant Trigeminal Neuralgia: A Systematic Review and Meta-Analysis. Neurosurgery. 2020 Feb 1;86(2):182-190. doi: 10.1093/neuros/nyz075. PubMed PMID: 30892607.

Mesial temporal lobe epilepsy

Mesial temporal lobe epilepsy

Temporal lobe epilepsy (TLE) is a chronic neurological condition characterized by recurrent seizures (epilepsy) which originate in the temporal lobe of the brain with progressive neurological disabilities, including cognitive deficitanxiety and depression.

The seizures involve sensory changes, for example smelling an unusual odour that is not there, and disturbance of memory.

Mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) is the most common type of focal epilepsy.

see Temporal lobe epilepsy etiology.

In order to understand the pathophysiology of temporal lobe epilepsy (TLE), and thus to develop new pharmacological treatments, in vivo animal models that present features similar to those seen in TLE patients have been developed during the last four decades. Some of these models are based on the systemic administration of chemoconvulsants to induce an initial precipitating injury (status epilepticus) that is followed by the appearance of recurrent seizures originating from limbic structures.

Kainic acid and pilocarpine models, have been widely employed in basic epilepsy research. Their behavioral, electroencephalographic and neuropathologic features and response of these models to antiepileptic drugs and the impact they might have in developing new treatments are explained in the work of Lévesque et al. 1).


The transition to the ictal stage is accompanied by increasing global synchronization and a more ordered spectral content of the signals, indicated by lower spectral entropy. The interictal connectivity imbalance (lower ipsilateral connectivity) is sustained during the seizure, irrespective of any appreciable imbalance in the spectral entropy of the mesial recordings 2).

Recurrent seizures (epilepsy) which originate in the temporal lobe of the brain with progressive neurological disabilities, including cognitive deficitanxiety and depression.

The seizures involve sensory changes, for example smelling an unusual odour that is not there, and disturbance of memory.

Olfactory function was significantly impaired in patients with MTLE compared with healthy controls in all domains, namely threshold, discrimination, and identification. In addition, the olfactory bulb volume was smaller in patients with olfactory dysfunction 3).

Earlier tachycardia for seizures originating from the right versus left hemisphere in a patient with bilateral mesial temporal lobe epilepsy 4).


A strong association of this ailment has been established with psychiatric comorbidities, primarily mood and anxiety disorders. The side of epileptogenic may contribute to depressive and anxiety symptoms; thus, in a study, Radaelli et al. performed a systematic review to evaluate the prevalence of depression in TLE in surgical patients. The literature search was performed using PubMed/MedlineWeb of Science, and PsycNet to gather data from inception until January 2019. The search strategy was related to TLE, depressive disorder, and anxiety. After reading full texts, 14 articles meeting the inclusion criteria were screened. The main method utilized for psychiatric diagnosis was Diagnostic and Statistical Manual of Structured Clinical Interview for DSM Disorders. However, most studies failed to perform the neuropsychological evaluation. For those with lateralization of epilepsy, focus mostly occurred in the left hemisphere. For individual depressive diagnosis, 9 studies were evaluated, and 5 for anxiety. Therefore, from the data analyzed in both situations, no diagnosis was representative in preoperative and postoperative cases. In order to estimate the efficacy of surgery in the psychiatry episodes and its relation to seizure control, the risk of depression and anxiety symptoms in epileptic patients need to be determined before surgical procedures. Rigorous preoperative and postoperative evaluation is essential for psychiatry conditions in patients with refractory epilepsy candidates for surgery 5).

pilot study demonstrates that seizures in mesial temporal and temporal-plus epilepsies (i.e., temporoperisylvian) can be detected reliably in the anterior thalamic nucleus (ATN). Further studies are needed to validate these findings 6).

Fractional anisotropy asymmetry (FAA) values can be potentially used to identify the seizures of origin of TLE and to help understand the relationship between fiber tracts with the side of seizure origin of TLE 7).

The area of predominant perifocal 18F positron emission tomography hypometabolism and reduced [11C]flumazenil (11C-FMZ) -binding on PET scans is currently considered to contain the epileptogenic zone and corresponds anatomically to the area localizing epileptogenicity in patients with temporal lobe epilepsy (TLE).

Mesial temporal lobe epilepsy differential diagnosis.

Drug resistant epilepsy is a major clinical challenge affecting about 30% of temporal lobe epilepsy (TLE) patients.

The reasons for failure of surgical treatment for mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) remain unclear.

Mesial temporal lobe epilepsy treatment.

Temporal lobe epilepsy (TLE) is considered to be the most common form of epilepsy, and it has been seen that most patients are refractory to antiepileptic drugs.

After surgery for intractable mesiotemporal lobe epilepsy (mTLE) seizures recur in 30-40%. One predictor for seizure recurrence is the distribution of seizure onset and interictal epileptiform discharges (IED).

Preoperative bilateral ictal foci are a negative predictor for seizure outcome. Contrarily, IED exceeding the affected temporal lobe in the ipsilateral hemisphere or even bilateral IED had favorable seizure outcome if seizure onset is strictly limited to the affected temporal lobe. Reoperation for seizure persistence constitutes a promising therapeutic option 8).


The extent of pre-surgical perifocal PET abnormalities, the extent of their resection, and the extent of non-resected abnormalities were not useful predictors of individual freedom from seizures in patients with TLE 9).

see Mesial temporal lobe epilepsy case series.


1)

Lévesque M, Avoli M, Bernard C. Animal Models of temporal Lobe Epilepsy Following Systemic Chemoconvulsant Administration. J Neurosci Methods. 2015 Mar 10. pii: S0165-0270(15)00091-6. doi: 10.1016/j.jneumeth.2015.03.009. [Epub ahead of print] PubMed PMID: 25769270.
2)

Vega-Zelaya L, Pastor J, de Sola RG, Ortega GJ. Disrupted Ipsilateral Network Connectivity in Temporal Lobe Epilepsy. PLoS One. 2015 Oct 21;10(10):e0140859. doi: 10.1371/journal.pone.0140859. eCollection 2015. PubMed PMID: 26489091.
3)

Türk BG, Metin B, Tekeli H, Sayman ÖA, Kızılkılıç O, Uzan M, Özkara Ç. Evaluation of olfactory and gustatory changes in patients with mesial temporal lobe epilepsy. Seizure. 2020 Jan 7;75:110-114. doi: 10.1016/j.seizure.2020.01.001. [Epub ahead of print] PubMed PMID: 31945715.
4)

Yanai K, Shimada S, Kunii N, Takasago M, Takabatake K, Saito N. Earlier tachycardia for seizures originating from the right versus left hemisphere in a patient with bilateral mesial temporal lobe epilepsy [published online ahead of print, 2020 Jun 25]. Clin Neurophysiol. 2020;131(9):2168-2170. doi:10.1016/j.clinph.2020.06.011
5)

Radaelli G, Majolo F, Leal-Conceição E, de Souza Santos F, Escobar V, Zanirati GG, Portuguez MW, Scorza FA, da Costa JC. Left Hemisphere Lateralization of Epileptic Focus Can Be More Frequent in Temporal Lobe Epilepsy Surgical Patients with No Consensus Associated with Depression Lateralization. Dev Neurosci. 2021 Mar 31:1-8. doi: 10.1159/000513537. Epub ahead of print. PMID: 33789300.
6)

Pizarro D, Ilyas A, Toth E, Romeo A, Riley KO, Esteller R, Vlachos I, Pati S. Automated detection of mesial temporal and temporoperisylvian seizures in the anterior thalamic nucleus. Epilepsy Res. 2018 Jul 23;146:17-20. doi: 10.1016/j.eplepsyres.2018.07.014. [Epub ahead of print] PubMed PMID: 30055392.
7)

Li H, Xue Z, Dulay MF Jr, Verma A, Karmonik C, Grossman RG, Wong ST. Fractional anisotropy asymmetry and the side of seizure origin for partial onset-temporal lobe epilepsy. Comput Med Imaging Graph. 2014 Jul 2. pii: S0895-6111(14)00102-5. doi: 10.1016/j.compmedimag.2014.06.009. [Epub ahead of print] PubMed PMID: 25037096.
8)

Schmeiser B, Zentner J, Steinhoff BJ, Brandt A, Schulze-Bonhage A, Kogias E, Hammen T. The role of presurgical EEG parameters and of reoperation for seizure outcome in temporal lobe epilepsy. Seizure. 2017 Sep 6;51:174-179. doi: 10.1016/j.seizure.2017.08.015. [Epub ahead of print] PubMed PMID: 28888215.
9)

Stanišić M, Coello C, Ivanović J, Egge A, Danfors T, Hald J, Heminghyt E, Mikkelsen MM, Krossnes BK, Pripp AH, Larsson PG. Seizure outcomes in relation to the extent of resection of the perifocal fluorodeoxyglucose and flumazenil PET abnormalities in anteromedial temporal lobectomy. Acta Neurochir (Wien). 2015 Sep 8. [Epub ahead of print] PubMed PMID: 26350516.

Stealth Autoguide

Stealth Autoguide

Stereotaxy is routinely performed for brain biopsydeep brain stimulation, and placement of stereoelectroencephalography (SEEG) electrodes for epilepsy. The developed Stealth Autoguide (MedtronicMinneapolis, MN, USA) device does not require patients to don a stereotactic frame.

In a preclinical study, Brandman et al. sought to quantitatively compare the Stealth Autoguide robotic system to 2 devices commonly used in clinical practice: the Navigus biopsy system (Medtronic) and the Leksell stereotactic frame (Elekta Ltd., StockholmSweden).

In the first experimental setup, they compared target accuracy of the Stealth Autoguide to the Navigus system by using phantom heads filled with gelatin to simulate the brain tissue. In the second experimental setup, they inserted SEEG electrodes to targets within cadaveric heads in a simulated operating room environment.

Using a homogeneous gelatin-filled phantom 3D reconstruction of a human head, they found that using the Stealth Autoguide system while maintaining accuracy, was faster to use than the Navigus system. In the simulated operating room environment using nonliving human cadaveric heads, they found the accuracy of the Stealth Autoguide robotic device to be comparable to that of the Leksell stereotactic frame.

These results compare the use of the Stealth Autoguide robotic guidance system with commonly used stereotactic devices, and this is the first study to compare its use and accuracy with the Leksell frame. These findings provide mounting evidence that Stealth Autoguide will have potential clinical uses in various stereotactic neurosurgical procedure1).


1)

Brandman D, Hong M, Clarke DB. Preclinical Evaluation of the Stealth Autoguide Robotic Guidance Device for Stereotactic Cranial Surgery: A Human Cadaveric Study. Stereotact Funct Neurosurg. 2021 Feb 10:1-8. doi: 10.1159/000512508. Epub ahead of print. PMID: 33567429.
WhatsApp WhatsApp us
%d bloggers like this: