Microvascular decompression for hemifacial spasm outcome

Microvascular decompression for hemifacial spasm outcome

Microvascular decompression is an effective treatment for hemifacial spasm. Given that postoperative delayed cure was unavoidable, even with accurate identification of the offending vessel and sufficient decompression of the root exit zone, the delayed cure should be considered in patients undergoing reoperation due to lack of remission or relapse after the operation. Additionally, the timing of efficacy assessments should be delayed 1).

The definitive treatment for hemifacial spasm is microvascular decompression (MVD), which cures the disease in 85% to 95% of patients according to reported series. In expert hands, the MVD procedure can be done with relatively low morbidity.

Post-operatively, there may be episodes of mild HFS, however they usually begin to diminish 2–3 days following MVD. Severe spasm that does not abate suggests failure to achieve adequate decompression, and reoperation should be considered.

Surgical results of MVD depends on the duration of symptoms (shorter duration has better prognosis) as well as on the age of the patient (elderly patients do less well). Complete resolution of HFS occurred in 44 (81%) of 54 patients undergoing MVD, however, 6 of these patients had relapse 2). 5 patients (9%) had partial improvement, and 5 (9%) had no relief.


Complete resolution of spasm occurs in ≈ 85–93% 3) 4) 5) 6) 7). Spasm is diminished in 9%, and unchanged in 6% 8). Of 29 patients with complete relief, 25 (86%) had immediate post-op resolution, and the remaining 4 patients took from 3 mos to 3 yrs to attain quiescence.

Recurrence

References

1)

Li MW, Jiang XF, Wu M, He F, Niu C. Clinical Research on Delayed Cure after Microvascular Decompression for Hemifacial Spasm. J Neurol Surg A Cent Eur Neurosurg. 2019 Oct 10. doi: 10.1055/s-0039-1698461. [Epub ahead of print] PubMed PMID: 31600810.
2)

Auger RG, Peipgras DG, Laws ER. Hemifacial Spasm: Results of Microvascular Decompression of the Facial Nerve in 54 Patients. Mayo Clin Proc. 1986; 61:640–644
3)

Rhoton AL. Comment on Payner T D and Tew J M: Recurren ce of Hemifacial Spasm After Microvascular Decompression. Neurosurgery. 1996; 38
4)

Jannetta PJ. Neurovascular Compression in Cranial Nerve and Systemic Disease. Ann Surg. 1980; 192:518–525
5)

Loeser JD, Chen J. Hemifacial Spasm: Treatment by Microsurgical Facial Nerve Decompression. Neurosurgery. 1983; 13:141–146
6)

Huang CI, Chen IH, Lee LS. Microvascular Decompression for Hemifacial Spasm: Analyses of Operative Findings and Results in 310 Patients. Neurosurgery. 1992; 30:53–57
7) , 8)

Payner TD, Tew JM. Recurrence of Hemifacial Spasm After Microvascular Decompression. Neurosurgery. 1996; 38:686–691

Gamma Knife radiosurgery for trigeminal neuralgia

Gamma Knife radiosurgery for trigeminal neuralgia

Gamma knife radiosurgery (GKRS) is one of the alternatives for treatment for classical trigeminal neuralgia (TN).

The first use of SRS by Lars Leksell was for the treatment of trigeminal neuralgia. Initially, this was reserved for refractory cases following multiple operations 1).

The Leksell Gamma Knife and the Accuray CyberKnife systems have been used in the radiosurgical treatment of trigeminal neuralgia. The 2 techniques use different delivery methods and different treatment parameters. In the past, CyberKnife treatments have been associated with an increased incidence of treatment-related complications, such as facial numbness.

CyberKnife radiosurgical parameters can be optimized to mimic the dose distribution of Gamma Knife plans. However, Gamma Knife plans result in superior sparing of critical structures (brainstem, temporal lobe,and cranial nerves VII and VIII) and in steeper dose fall off away from the target. The clinical significance of these effects is unknown 2).

Indications

Generally recommended for patients with co-morbidities, high-risk medical illness, pain refractory to prior surgical procedures, or those on anticoagulants (anticoagulation does not have to be reversed to have SRS).

Mechanism

Treatment plan

4 -5 mm isocenter in the trigeminal nerve root entry zone identified on MRI. Use 70–80 Gy at the center, keeping the 80% isodose curve outside of the brainstem.

Results: Significant pain reduction after initial SRS: 80–96% 3) 4) 5) 6) but only ≈ 65% become pain free. Median latency to pain relief: 3 months (range: 1 d-13 months) 7).

Recurrent pain occurs with in three years in 10–25%. Patients with TN and multiple sclerosis are less likely to respond to SRS than those without MS. SRS can be repeated, but only after four months following the original procedure.

Outcome

Repeat Radiosurgery for Trigeminal Neuralgia

Case series

A total of 263 patients contributed by 9 member tertiary referral Gamma Knife centers (2 in Canada and 7 in USA) of the International Gamma Knife Research Consortium (IGKRF) constituted this study.

The median latency period of Facial pain response (PR) after SRS was 1 mo. Reasonable pain control (Barrow Neurological Institute Pain Scale I-IIIb) was achieved in 232 patients (88.2%). The median maintenance period from SRS was 14.1 months (range, 10 days to 10 years). The actuarial reasonable pain control maintenance rates at 1 yr, 2 yr, and 4 yr were 54%, 35%, and 24%, respectively. There was a correlation between the status of achieving BNI-I and the maintenance of facial pain recurrence-free rate. The median recurrence-free rate was 36 mo and 12.2 mo in patients achieving BNI-I and BNI > I, respectively (P = .046). Among 210 patients with known status of post-SRS complications, the new-onset of facial numbness (BNI-I or II) after SRS occurred in 21 patients (10%).

In this largest series SRS offers a reasonable benefit to risk profile for patients who have exhausted medical management. More favorable initial response to SRS may predict a long-lasting pain control 8).

2016

One hundred seventeen patients with medically refractory TN treated by GKRS at the Department of Functional Neurosurgery and Gamma Knife Radiosurgery, and Department of Neurology, Ruber International Hospital, Madrid, Spain were followed up between 1993 and 2011. Mean maximum dose was 86.5 Gy (range: 80-90 Gy; median: 90 Gy). Clinical response was defined based on the Burchiel classification. They considered classes I and II as a complete response. For toxicity, they use the Barrow Neurological Institute Pain Scale. Mean duration of follow-up was 66 months (range: 24-171 months).

Complete response at last follow-up in our patients was 81%, with an excellent response while off medication in 52%. Pain-free rates without medication (class I) were 85% at 3 years (confidence interval [CI]: 78%-94%), 81% at 5 years (CI: 72%-91%), and 76% at 7 years (CI: 65%-90%). Complete response rates (classes I-II) were 91% at 3 years (CI: 86%-97%), 86% at 5 years (CI: 79%-93%), and 82% at 7 years (CI: 72%-93%). Poor treatment response rates differed significantly between patients who had undergone previous surgery and were refractory to management with medication prior to GKRS. New or worsening facial numbness was reported in 32.5% (30% score II and 2.5% score III). No anesthesia dolorosa was reported. Permanent recurrence pain rate was 12%.

GKRS achieved favorable outcomes compared with surgery in terms of pain relief and complication rates in our cohort of patients, notwithstanding decreasing pain-free survival rates over time. They consider GKRS to be an initial treatment in the management of medically intractable TN in selected patients 9).


In a single-center, retrospective comparative study, 202 patients with MS and concomitant TN were evaluated. A minimum follow-up of 24 months was required. Patients with a history of microvascular decompression or previous intervention were excluded. There were 78 PBC procedures performed and 124 first-dosage GKRS procedures for a total of 202 patients between February 2009 and December 2013. The PBC procedures were successfully completed in all cases. The two groups were compared with regards to initial effect, duration of effect, and rate of complication(s), including the type and severity of the complication(s).

Immediate pain relief resulted in 87% of patients treated with PBC and in 23% of patients treated with GKRS. The Kaplan-Meier plots for the two treatment modalities were similar. The 50% recurrence rate was at 12 months for the PBC and 18 months for the GKRS. The rates of complication (excluding numbness) were 3% for GKRS and 21% for PBC. The difference was statistically significant (Chi-square test, p = 0.03).

PBC and GKRS are effective techniques for the treatment of TN in patients with MS, with GKRS presenting fewer complications and superior long-term relief. For these reasons, we consider GKRS as the first option for the treatment of TN in MS patients, reserving PBC for patients with acute, intractable pain 10).

Case reports

A 72-year-old -female presented with trigeminal neuralgia (TN) and radiological evidence of neurovascular compression on the affected side. She had complete resolution of her pain for 7 years after treatment with GKRS. The patient experienced recurrence and underwent repeat GKRS, this time resulting in another 3 years of pain relief. After the second recurrence, repeat intracranial imaging demonstrated resolution of neurovascular compression.

GKRS is an important treatment option for TN, although the mechanisms behind pain relief from this procedure still remain unclear. While prior histological and radiological studies point to ablative mechanisms for pain relief, this case report suggests that GKRS may result in a decompressive effect in TN due to changes in neurovascular architecture. Despite this finding, TN is known to occur and recur in the absence of neurovascular compression; thus, further work is necessary to understand the etiology of TN and its treatments.

In this case, Moosa et al. demonstrated that vessel-nerve relationships may change over time in TN patients treated with GKRS, which raises the possibility that GKRS could release a neurovascular compression 11).

References

1)

Lunsford LD. Comment on Taha J M and Tew J M: Comparison of Surgical Treatmen ts for Trigemin al Neuralgia: Reevaluation of Radiofrequency Rhizotomy. Neurosurgery. 1996; 38
2)

Descovich M, Sneed PK, Barbaro NM, McDermott MW, Chuang CF, Barani IJ, Nakamura JL, Lijun M. A dosimetric comparison between Gamma Knife and CyberKnife treatment plans for trigeminal neuralgia. J Neurosurg. 2010 Dec;113 Suppl:199-206. PubMed PMID: 21222296.
3)

Brisman R. Gamma knife surgery with a dose fo 75 to 76.8 Gray for trigeminal neuralgia. J Neurosurg. 2004; 100:848–854
4)

Pollock BE, Phuong LK, Foote RL, Sta ord SL, Gorman DA. High-dose trigeminal neuralgia radiosurgery associated with increased risk of trigeminal nerve dysfunction. Neurosurgery. 2001; 49:58–62; discussion 62-4
5)

Kondziolka D, Lunsford LD, Flickinger JC. Stereotact ic radiosurgery for the treatment of trigeminal neuralgia. Clin J Pain. 2002; 18:42–47
6)

Massager N, Lorenzoni J, Devriendt D, Desmedt F, Brotch i J, Levivier M. Gamma kn ife surgery for idiopathic trigeminal neuralgia performed using a far-anterior cisternal target and a high dose of radiation. J Neurosurg. 2004; 100:597–605
7)

Urgosik D, Liscak R, Novotny J, Jr, Vymazal J, Vladyka V. Treatment of essential trigeminal neuralgia with gamma knife surgery. J Neurosurg. 2005; 102 Suppl:29–33
8)

Xu Z, Mathieu D, Heroux F, Abbassy M, Barnett G, Mohammadi AM, Kano H, Caruso J, Shih HH, Grills IS, Lee K, Krishnan S, Kaufmann AM, Lee JYK, Alonso-Basanta M, Kerr M, Pierce J, Kondziolka D, Hess JA, Gerrard J, Chiang V, Lunsford LD, Sheehan JP. Stereotactic Radiosurgery for Trigeminal Neuralgia in Patients With Multiple Sclerosis: A Multicenter Study. Neurosurgery. 2019 Feb 1;84(2):499-505. doi: 10.1093/neuros/nyy142. PubMed PMID: 29688562.
9)

Martínez Moreno NE, Gutiérrez-Sárraga J, Rey-Portolés G, Jiménez-Huete A, Martínez Álvarez R. Long-Term Outcomes in the Treatment of Classical Trigeminal Neuralgia by Gamma Knife Radiosurgery: A Retrospective Study in Patients With Minimum 2-Year Follow-up. Neurosurgery. 2016 Dec;79(6):879-888. PubMed PMID: 27560193.
10)

Alvarez-Pinzon AM, Wolf AL, Swedberg HN, Barkley KA, Cucalon J, Curia L, Valerio JE. Comparison of Percutaneous Retrograsserian Balloon Compression and Gamma Knife Radiosurgery for the Treatment of Trigeminal Neuralgia in Multiple Sclerosis: A Clinical Research Study Article. World Neurosurg. 2016 Oct 15. pii: S1878-8750(16)31016-6. doi: 10.1016/j.wneu.2016.10.028. PubMed PMID: 27756676.
11)

Moosa S, Wang TR, Mastorakos P, Sheehan JP, Elias WJ. Gamma Knife Radiosurgery for Trigeminal Neuralgia Reduces Neurovascular Compression: A Case Report after 11 Years. Stereotact Funct Neurosurg. 2019 Sep 5:1-5. doi: 10.1159/000501624. [Epub ahead of print] PubMed PMID: 31487732.

Hemifacial spasm etiology

Hemifacial spasm etiology

Although classical hemifacial spasm (HFS) has been attributed to an atraumatic pulsatile vascular compression around the root exit zone (REZ) of the facial nerve, rare tumor-related HFS associated with meningiomas, epidermoid tumors, lipomas, and schwannomas in the cerebellopontine angle have been reported. The exact mechanism and the necessity of microvascular decompression for tumor-induced HFS is not clear, especially for vestibular schwannomas.

In clinical pediatric neurosurgery practice, fourth ventricle tumor and cerebellar tumors are not rare. However, reports of secondary refractory hemifacial spasm are very rare. No report is currently available on the treatment of hemifacial spasm secondary to fourth ventricle and cerebellar tumors in China. Zamponi et al. [Childs Nerv Syst 2011 Jun;27(6):1001-5] reported that these lesions can occur in neonates and infants, and surgical resection is effective 1).


Imaging data of 341 patients with a HFS who underwent microvascular decompression were reviewed retrospectively and compared with 360 controls. The hemodynamics of typical anatomical variations of the vertebral artery (VA) were analyzed using computational fluid dynamics (CFD) software.

Asymmetry of the left and right VAs was prevalent, and the left VA was the most dominant VA. A dominant VA was more prevalent in the HFS group than in the control group (p=0.026). A Left HFS had a significantly higher proportion of a left dominant VA, and a right HFS had a significantly higher proportion of right dominant VA (p<0.001). CFD models showed that angulation and tortuosity of vessels caused remarkable pressure difference between vascular walls of opposite sides. Dynamic clinical observations showed the mode of vessel transposition coincided with biomechanical characteristics.

Anatomical variations and hemodynamics of the vertebrobasilar arterial system are likely to contribute to vascular compression formation in a HFS2).


Liu et al. retrospectively analyzed 10 patients with vestibular schwannomas out of 5218 cases of hemifacial spasm between 2004 and 2014.

Hemifacial spasm occurred ipsilateral to the vestibular schwannoma in 9 patients and contralateral to the lesion in 1 patient. The mean follow-up period was 86 months (range, 22-140 months). All patients underwent surgery for resection of the vestibular schwannoma. Following the principle of neurovascular compression, offending vessels were found in 7 patients, no offending vessels in 2 patients, and a tumor with the displacement of brain stem contributing to contralateral facial nerve compression in 1 patient. HFS was relieved immediately postoperatively in 9 patients, whereas it improved gradually and then resolved after one month in one patient with a contralateral vestibular schwannoma.

For HFS induced by vestibular schwannomas in this study, the majority of cases are caused by a combination of tumor and vascular co-compression at the REZ. Surgical intervention resulted in resolution of symptoms. For HFS with ipsilateral vestibular schwannoma, exploration of the facial nerve root for vascular compression should be performed routinely after tumor resection. It is critical to check that no vessel is contact with the entire nerve root 3).


During the period from October 1984 to October 2008, Han et al. treated 6,910 HFS patients using a microsurgical procedure. Of these HFS patients, 55 cases were associated with cerebellopontine angle tumors. A small craniectomy was performed in order to excise the tumor. All tumors were found to compress the root exit zone (REZ) of the facial nerve to different extents, but concomitant vascular compression of the facial nerve was observed in a majority of cases, and microvascular decompression of the facial nerve at REZ was conducted in 43 of 55 patients (78.2%) by displacing the co-compressing vasculature away from the REZ and retaining it using a Teflon pad. Intraoperative findings and postoperative pathological examinations suggested that the tumors were epidermoid cysts, meningiomas, and Schwannomas. Follow-up in 48 of 55 patients for 4-230 months after surgery showed that the clinical symptoms of HFS disappeared in 43 cases, improved in two cases, and recurred in three cases. Ten patients had sequelae associated with the operation. They concluded from this study that the majority of cases of tumor-related HFS are caused by combined tumor and vascular co-compression at the REZ, and tumor removal and microvascular decompression are required in order to relieve the symptoms 4).


Kindling-like hyperactivity of the facial motor nucleus induced by constant stimulation of compressing artery is considered as the predominant mechanism underlying the pathogenesis of Hemifacial spasm (HFS).

Trigeminal neuralgia, hemifacial spasm, vestibulocochlear neuralgia and glossopharyngeal neuralgia represent the most common neurovascular compression syndromes.

In nearly all cases, primary hemifacial spasm is related to arterial compression of the facial nerve at root exit zone (REZ). The offending arterial loops originate from the posterior inferior cerebellar artery (PICA), anterior inferior cerebellar artery (AICA), or vertebrobasilar artery (VB). In as many as 40% of the patients, neurovascular conflicts are multiple. The cross-compression is almost always seen on magnetic resonance imagingcombined with magnetic resonance angiography.


Hemifacial spasm (HFS) associated with type 1 Chiari malformation is particularly uncommon and is limited to isolated case report.

Li et al retrospectively evaluated 13 patients who had simultaneously HFS and type 1 Chiari malformation among 675 HFS patients. Clinical features and radiological findings were collected from each patient and analyzed. All these 13 patients were surgically treated with MVD through retro-mastoid microsurgical approach, and postoperative outcomes were evaluated. A review of literature about this association was also provided. In this study, the frequency of type 1 Chiari malformation in HFS patients was 1.9 %. The clinical profile of this series of patients did not differ from typical form of primary HFS. MVD achieved satisfactory results in 11 patients (85 %) in short- and long-term follow-up. There was no mortality or severe complication occurred postoperatively. Although rare, clinician should be aware of the association of HFS and type 1 Chiari malformation and consider MVD as an effective surgical management 5).

References

1)

Cai Y, Ge M, Qi X, Sun H, Zhang D. Ocular Dyskinesia and Hemifacial Spasm Secondary to Fourth Ventricular Tumor: Report of 4 Cases and Review of the Literature. Pediatr Neurosurg. 2019 Aug 22:1-8. doi: 10.1159/000501915. [Epub ahead of print] PubMed PMID: 31437843.
2)

Wang QP, Yuan Y, Xiong NX, Fu P, Huang T, Yang B, Liu J, Chu X, Zhao HY. Anatomical variation and hemodynamic evolution of vertebrobasilar arterial system may contribute to the development of vascular compression in hemifacial spasm. World Neurosurg. 2018 Dec 26. pii: S1878-8750(18)32897-3. doi: 10.1016/j.wneu.2018.12.074. [Epub ahead of print] PubMed PMID: 30593967.
3)

Liu J, Liu P, Zuo Y, Xu X, Liu H, Du R, Yu Y, Yuan Y. Hemifacial Spasm as Rare Clinical Presentation of Vestibular Schwannomas. World Neurosurg. 2018 Aug;116:e889-e894. doi: 10.1016/j.wneu.2018.05.124. Epub 2018 May 28. PubMed PMID: 29852302.
4)

Han H, Chen G, Zuo H. Microsurgical treatment for 55 patients with hemifacial spasm due to cerebellopontine angle tumors. Neurosurg Rev. 2010 Jul;33(3):335-9; discussion 339-40. doi: 10.1007/s10143-010-0250-0. Epub 2010 Mar 9. PubMed PMID: 20217169.
5)

Li N, Zhao WG, Pu CH, Yang WL. Hemifacial spasm associated with type 1 Chiari malformation: a retrospective study of 13 cases. Neurosurg Rev. 2016 Jul 15. [Epub ahead of print] PubMed PMID: 27422274.
WhatsApp WhatsApp us
%d bloggers like this: