Disproportionately enlarged subarachnoid space hydrocephalus

Disproportionately enlarged subarachnoid space hydrocephalus

The presence of disproportionately enlarged subarachnoid space hydrocephalus (DESH) on brain imaging is a recognized finding of idiopathic normal pressure hydrocephalus (iNPH), but the features of DESH can vary across patients.

Results indicate that findings of enlarged basal cisterns and sylvian fissures and of focally dilated sulci support, rather than exclude, the diagnosis of shunt-responsive idiopathic NPH and suggest that this condition is caused by a suprasylvian subarachnoid block 1).

Tight high-convexity and medial subarachnoid spaces, and enlarged Sylvian fissures with ventriculomegaly, defined as disproportionately enlarged subarachnoid-space hydrocephalus (DESH), are worthwhile for the diagnosis of iNPH 2).

Lipocalin-type prostaglandin D synthaseL (PGDS) might work as a surrogate marker for DESH features, white matter damage, and frontal lobe dysfunction 3).


see DESH score.

Case series

Subjects aged 60 and over in a memory clinic and a community-based cohort were assessed for the presence of ventriculomegaly, Sylvian fissure dilatation, and high convexity tightness by neuroimaging, and a clinical triad of iNPH symptoms, i.e. cognitive, gait and urinary symptoms.

In the memory clinic-based study (548 subjects), the prevalence of DESH was 1.1% and increased with age. The clinical triad was significantly more frequent in subjects with DESH (50%) compared to those with normal images (none), Sylvian dilatation (7%), and ventriculomegaly (12%). Gait disturbance was also significantly more frequent in DESH (83%) compared to those with normal images (2%), Sylvian dilatation (14%), and ventriculomegaly (26%). In the community-based cohort (946 subjects), the prevalence of DESH was 1.0% and increased with age. The clinical triad (11%) was significantly more common in subjects with DESH compared to those with normal images (none), Sylvian dilatation (2%), and ventriculomegaly (7%). Gait disturbance was also significantly more common in DESH (33%) compared to those with normal images (1%), Sylvian dilatation (4%), and ventriculomegaly (10%).

The reported prevalence of DESH was approximately 1% and increased with age. DESH and high convexity tightness were specifically associated with the clinical triad of iNPH. Of the triad, gait disturbance was associated to DESH and high convexity tightness 4).


Radovnický et al., analysed 1.5-T MRI scans of patients fulfilling the criteria of probable or possible iNPH and positive supplementary tests before and after surgery (ventriculo-peritoneal shunt). FA was measured in the anterior and posterior limb of the internal capsule (PLIC) and in the corpus callosum. Patients were divided into the Disproportionately enlarged subarachnoid space hydrocephalus (DESH) and non-DESH group. These data were also compared to FA values in the control group.

Twenty-seven patients and 24 healthy controls were enrolled. DESH was present in 15 patients and lacking in 12. Twenty-three iNPH patients were shunt responders (85.2 %), and 4 were non-responders (14.8 %). All patients in the DESH group were shunt responders. In the non-DESH group, eight patients were responders (66.7 %). A significant difference between the DESH and non-DESH group was found in the FA of the PLIC. The mean value of FA in the PLIC was 0.72 in the DESH group and 0.66 in the non-DESH group. After the surgery FA decreased in both groups. In the DESH iNPH group FA PLIC decreased to 0.65 and in the non-DESH iNPH group to 0.60. In the healthy controls, the mean FA in the PLIC was 0.58.

DESH on MRI scans is related to a higher FA in the PLIC with a decrease after the surgery. It reflects a more severe compression of the white matter than in non-DESH patients or healthy volunteers. DESH patients had better outcome than non-DESH patients. This study confirmed the importance of DESH as a supportive sign for iNPH 5).


Eight participants with DESH-iNPH (1.6%) and 76 with ex vacuo hydrocephalus (16.1%) at baseline were identified. The mean MMSE in DESH-iNPH, ex vacuo hydrocephalus, and normal MRIs was 26.4, 27.9, and 28.3, respectively, and the mean UPDRSM was 9.75, 2.96, and 1.87, respectively. After a 90-month follow-up, the mortality rates for DESH-iNPH, ex vacuo hydrocephalus, and normal MRIs were 25.0%, 21.3%, and 10.9%, respectively. The perivascular-space widening scores were significantly smaller in the DESH-iNPH cases, particularly at the centrum semiovale, compared to cerebral small-vessel disease and ex vacuo hydrocephalus cases.

The prevalence of DESH-iNPH was 1.6% for participants aged 75 years and revealed significantly lower MMSE and higher UPDRSM scores compared to the ex vacuo hydrocephalus and controls. Moreover, it is suggested that perivascular-space narrowing is a morphological and pathophysiological marker of DESH-iNPH 6).



Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol. 1998 Aug;19(7):1277-84. PubMed PMID: 9726467.

Hashimoto M, Ishikawa M, Mori E, Kuwana N; Study of INPH on neurological improvement (SINPHONI). Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res. 2010 Oct 31;7:18. doi: 10.1186/1743-8454-7-18. PubMed PMID: 21040519; PubMed Central PMCID: PMC2987762.

Nishida N, Nagata N, Toda H, Jingami N, Uemura K, Ozaki A, Mase M, Urade Y, Matsumoto S, Iwasaki K, Ishikawa M. Association of lipocalin-type prostaglandin D synthase with disproportionately enlarged subarachnoid-space in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2014 Apr 15;11(1):9. doi: 10.1186/2045-8118-11-9. PubMed PMID: 24731502; PubMed Central PMCID: PMC3991874.

Akiba C, Gyanwali B, Villaraza S, Nakajima M, Miyajima M, Cheng CY, Wong TY, Venketasubramanian N, Hilal S, Chen C. The prevalence and clinical associations of disproportionately enlarged subarachnoid space hydrocephalus (DESH), an imaging feature of idiopathic normal pressure hydrocephalus in community and memory clinic based Singaporean cohorts. J Neurol Sci. 2019 Oct 25;408:116510. doi: 10.1016/j.jns.2019.116510. [Epub ahead of print] PubMed PMID: 31810041.

Radovnický T, Adámek D, Derner M, Sameš M. Fractional anisotropy in patients with disproportionately enlarged subarachnoid space hydrocephalus. Acta Neurochir (Wien). 2016 Aug;158(8):1495-500. doi: 10.1007/s00701-016-2861-x. Epub 2016 Jun 8. PubMed PMID: 27272943.

Akiguchi I, Shirakashi Y, Budka H, Watanabe Y, Watanabe T, Shiino A, Ogita M, Kawamoto Y, Jungwirth S, Krampla W, Fischer P. Disproportionate subarachnoid space hydrocephalus-outcome and perivascular space. Ann Clin Transl Neurol. 2014 Aug;1(8):562-9. doi: 10.1002/acn3.87. Epub 2014 Jul 28. PubMed PMID: 25356428; PubMed Central PMCID: PMC4184559.

Hydrocephalus after aneurysmal subarachnoid hemorrhage

Hydrocephalus after aneurysmal subarachnoid hemorrhage


Hydrocephalus complicates the clinical course of greater than 20% of patients with aneurysmal subarachnoid hemorrhage 1) 2) , and its onset can be acute, within 48 hours after SAH, or rarely chronic, occurring in a delayed fashion weeks and even months after the hemorrhage.


The etiology of hydrocephalus following aSAH has yet to be fully elucidated, but is likely to include the following: obstruction of CSF flow within the basal cisterns and/or ventricles by clotted blood, diminished absorption at the arachnoid granulations, and inflammation 3) 4) 5) 6).

Na et al. found that higher sodium, lower potassium, and higher glucose levels were predictive values for shunt-dependent hydrocephalus from postoperative day (POD) 1 to POD 12-16 after subarachnoid hemorrhage. Strict correction of electrolyte imbalance seems necessary to reduce shunt-dependent hydrocephalus. Further large studies are warranted to confirm the findings 7).

Data suggest that the volume of the third ventricle in the initial CT is a strong predictor for shunt dependency after aSAH 8).


Early recognition of its signs and symptoms and accurate interpretation of computed tomography (CT) studies are important for the management of patients with SAH. Clinically, a poor neurologic grade has the highest correlation with an increased incidence of hydrocephalus. Radiographically, the bicaudate index on CT studies has emerged as the best marker of this condition. Although further studies are needed to understand the complex pathophysiology of this condition, hydrocephalus after SAH can be treated effectively using current technology 9).

Most readmissions after aneurysmal subarachnoid hemorrhage (SAH) relate to late consequences of hemorrhage, such as hydrocephalus, or medical complications secondary to severe neurological injury. Although a minority of readmissions may potentially be avoided with closer medical follow-up in the transitional care environment, readmission after SAH is an insensitive and likely inappropriate hospital performance metric 10).

Data demonstrate that gender influences acute hydrocephalus development in a rat SAH model. Future studies should determine the role of estrogen in SAH-induced hydrocephalus 11).

Hydrocephalus might cause gradual obtundation in the first few hours or days; it can be treated by lumbar puncture or ventricular drainage, dependent on the site of obstruction

Aneurysmal subarachnoid hemorrhage (SAH) has been reported to induce an intrathecal inflammatory reaction reflected by cytokine release, particularly interleukin-6 (IL-6), which correlates with early brain damage and poor outcome.


Hydrocephalus might cause gradual obtundation in the first few hours or days; it can be treated by lumbar puncture or ventricular drainage, dependent on the site of obstruction 12).


Hydrocephalus is a common and potentially devastating complication of aneurysmal subarachnoid hemorrhage (SAH).

Hydrocephalus leads to prolonged hospital and ICU stays, well as to repeated surgical interventions, readmissions, and complications associated with ventriculoperitoneal shunts, including shunt failure and shunt infection. Whether variations in surgical technique at the time of aneurysm treatment may modify rates of shunt dependency remains a matter of debate 13).

Shunt dependency

The indication for and the timing of a permanent shunt operation in patients following acute hydrocephalus (HC) after subarachnoid hemorrhage (SAH) remains controversial because risk factors for chronic HC fail to predict permanent shunt dependency. The amount of cerebrospinal fluid (CSF) drained via an external ventricular drain (EVD) may predict shunt dependency.

Results suggest that the daily amount of external CSF drainage volume in the acute state of SAH might influence the development of HC 14).

CSF IL-6 values of ≥10,000 pg/ml in the early post-SAH period may be a useful diagnostic tool for predicting shunt dependency in patients with acute posthemorrhagic hydrocephalus. The development of shunt-dependent posthemorrhagic hydrocephalus remains a multifactorial process 15).

Reliable prognostic tools to estimate the case fatality rate (CFR) and the development of chronic hydrocephalus (CHC) in aneurysmal subarachnoid hemorrhage (SAH) are not well defined.

Graeb Score or LeRoux score improve the prediction of shunt dependency and in parts of CFR in aneurysmal SAH patients therefore confirming the relevance of the extent and distribution of intraventricular blood for the clinical course in SAH 16).

Case series

One-hundred and fifty-two patients who had undergone an operation for SAH were enrolled in this study. Clinical data, radiological data, and procedural data were investigated. Procedural data included the operating technique (clipping vs. EVT) and the use of additional procedures (no procedure, lumbar drainage, or EVD). Delayed hydrocephalus was defined as a condition in which the Evan’s index was 0.3 or higher, as assessed using brain computed tomography more than 2 weeks after surgery, requiring shunt placement due to neurological deterioration.

Of the 152 patients, 45 (29.6%) underwent surgical clipping and 107 (70.4%) underwent EVT. Twenty-five (16.4%) patients developed delayed hydrocephalus. Age (p = 0.019), procedure duration (p = 0.004), and acute hydrocephalus (p = 0.030) were significantly correlated with the incidence of delayed hydrocephalus. However, the operation technique (p = 0.593) and use of an additional procedure (p = 0.378) were not significantly correlated with delayed hydrocephalus incidence.

No significant difference in the incidence of delayed hydrocephalus was associated with operation technique or use of an additional procedure in patients with SAH. However, delayed hydrocephalus was significantly correlated with old age, long procedural duration, and acute hydrocephalus. Therefore, they recommend that additional procedures should be discontinued as soon as possible 17).


Winkler et al. conducted a retrospective review of 663 consecutive patients with aSAH treated from 2005 to 2015 by open microsurgery via a pterional or orbitozygomatic craniotomy by the senior author (M.T.L.). Data collected from review of the electronic medical record included age, Hunt and Hess grade, Fisher grade, need for an external ventricular drain, and opening pressure. Patients were stratified into those undergoing no fenestration and those undergoing tandem fenestration of the LT and MoL at the time of surgical repair. Outcome variables, including VP shunt placement and timing of shunt placement, were recorded and statistically analyzed. RESULTS In total, shunt-dependent hydrocephalus was observed in 15.8% of patients undergoing open surgical repair following aSAH. Tandem microsurgical fenestration of the LT and MoL was associated with a statistically significant reduction in shunt dependency (17.9% vs 3.2%, p < 0.01). This effect was confirmed with multivariate analysis of collected variables (multivariate OR 0.09, 95% CI 0.03-0.30). Number-needed-to-treat analysis demonstrated that tandem fenestration was required in approximately 6.8 patients to prevent a single VP shunt placement. A statistically significant prolongation in days to VP shunt surgery was also observed in patients treated with tandem fenestration (26.6 ± 19.4 days vs 54.0 ± 36.5 days, p < 0.05). CONCLUSIONS Tandem fenestration of the LT and MoL at the time of open microsurgical clipping and/or bypass to secure ruptured anterior and posterior circulation aneurysms is associated with reductions in shunt-dependent hydrocephalus following aSAH. Future prospective randomized multicenter studies are needed to confirm this result 18).

181 participants with a mean age of 54.4 years. Higher sodium (hazard ratio, 1.53; 95% confidence interval, 1.13-2.07; p = 0.005), lower potassium, and higher glucose levels were associated with higher shunt-dependent hydrocephalus. The receiver operating characteristic curve analysis showed that the areas under the curve of sodium, potassium, and glucose were 0.649 (cutoff value, 142.75 mEq/L), 0.609 (cutoff value, 3.04 mmol/L), and 0.664 (cutoff value, 140.51 mg/dL), respectively.

Despite the exploratory nature of this study, we found that higher sodium, lower potassium, and higher glucose levels were predictive values for shunt-dependent hydrocephalus from postoperative day (POD) 1 to POD 12-16 after subarachnoid hemorrhage. Strict correction of electrolyte imbalance seems necessary to reduce shunt-dependent hydrocephalus. Further large studies are warranted to confirm our findings 19).


The study is designed to determine the efficacy of lamina terminalis fenestration on the reduction of SDH after aneurysm clipping.

METHODS/DESIGN: A total of 288 patients who meet the inclusion criteria will be randomized into single aneurysm clipping or aneurysm clipping plus FLT in the Department of Neurosurgery, West China Hospital. Follow-up was performed 1, 3, 6, and 12 months after aneurysm clipping. The primary outcome is the incidence of SDH and the secondary outcomes include cerebral vasospasm, functional outcome evaluated by the modified Rankin Scale and Extended Glasgow Outcome Scale, and mortality.

DISCUSSION: The FISH trial is a large randomized, parallel controlled clinical trial to define the therapeutic value of FLT, the results of which will help to guide the surgical procedure and resolve the long-puzzled debate in the neurosurgical community.

CONCLUSIONS: This protocol will determine the efficacy of FLT in the setting of aneurysmal subarachnoid hemorrhage 20).


Seven hundred eighteen patients with aneurysmal subarachnoid hemorrhage who were treated between 1990 and 1999 were retrospectively studied, to identify factors contributing to shunt-dependent hydrocephalus. With these data, a stepwise logistic regression procedure was used to determine the effect of each variable on the development of hydrocephalus and to create a scoring system.

Overall, 152 of the 718 patients (21.2%) underwent shunting procedures for treatment of hydrocephalus. Four hundred seventy-nine of the patients (66.7%) were female. Of the factors investigated, the following were associated with shunt-dependent hydrocephalus, as determined with a variety of statistical methods: 1) increasing age (P < 0.001), 2) female sex (P = 0.015), 3) poor admission Hunt and Hess grade (P < 0.001), 4) thick subarachnoid hemorrhage on admission computed tomographic scans (P < 0.001), 5) intraventricular hemorrhage (P < 0.001), 6) radiological hydrocephalus at the time of admission (P < 0.001), 7) distal posterior circulation location of the ruptured aneurysm (P = 0.046), 8) clinical vasospasm (P < 0.001), and 9) endovascular treatment (P = 0.013). The presence of intracerebral hematomas, giant aneurysms, or multiple aneurysms did not influence the development of shunt-dependent hydrocephalus.

The results of this study can help identify patients with a high risk of developing shunt-dependent hydrocephalus. This may help neurosurgeons expedite treatment, may decrease the cost and length of hospital stays, and may result in improved outcomes 21).


In 138 patients with ruptured cerebral aneurysms operated on within 48 to 72 hours after subarachnoid hemorrhage, an external ventricular drainage catheter was inserted before craniotomy and was used intermittently during the first week after surgery. In 51 patients, intracranial pressure (ICP) was measured intraoperatively. The majority of patients showed increased ICP intraoperatively irrespective of the preoperative Hunt and Hess grade and the amount of subarachnoid blood accumulation or intraventricular blood clot. Intraoperative drainage of cerebrospinal fluid allowed easy access for aneurysm dissection by making the brain slack in more than 90% of patients. Postoperative ICP measurements revealed that significant brain swelling did not occur in the majority of patients. In 7 patients, persistently elevated ICP (greater than 20 mm Hg) was recorded. Nine patients (8%) developed shunt-dependent hydrocephalus; all of these patients had suffered an intraventricular hemorrhage. Measurements of the volumes of cerebrospinal fluid drained did not allow prediction of shunt-dependent hydrocephalus 22).


The incidence and clinical aspects of acute hydrocephalus were examined in 200 patients with recently ruptured intracranial aneurysms. The following conclusions were reached: Acute hydrocephalus is an important complication of aneurysmal subarachnoid hemorrhage that occurs in approximately 20% of all cases and exhibits an incidence that tends to parallel clinical grade (Grade I, 3%; Grade II, 5%; “Good” Grade III, 21%; “Bad”Grade III, 40%; Grade IV, 42%; Grade V, 26%). Impaired consciousness leading to a general downgrading of clinical status was the predominant clinical finding (93%), but neither this nor other nonspecific signs of increased intracranial pressure were distinguishable from the effects of the precipitating hemorrhage. The computed tomographic signs of acute hydrocephalus are distinctive and consist of selective ballooning of the frontal horns, rostral-caudal enlargement of the cerebral ventricles, and a halo of periventricular hyperdensity (edema) that evolves in sequence with ventricular changes. The treatment of choice is external ventricular drainage, which results in prompt and often dramatic improvement in approximately two-thirds of the patients 23).


Hydrocephalus, defined as a bicaudate index above the 95th percentile for age, was found in 34 (20%) of 174 prospectively studied patients with subarachnoid hemorrhage (SAH) who survived the first 24 hours and who underwent computerized tomography (CT) scanning within 72 hours. The occurrence of acute hydrocephalus was related to the presence of intraventricular blood, and not to the extent of cisternal hemorrhage. The level of consciousness was depressed in 30 of the 34 patients. Characteristic clinical features were present in 19 patients, including a gradual obtundation after the initial hemorrhage in 16 patients and small nonreactive pupils in nine patients (all with a Glasgow Coma Scale score of 7 or less). In the remaining 15 patients (44%), the diagnosis could be made only by CT scanning. After 1 month, 20 of the 34 patients had died: six from rebleeding (four after shunting), 11 from cerebral infarction (eight after an initial improvement), and three from other or mixed causes. Only one of nine patients in whom a shunt was placed survived, despite rapid improvement in all immediately after shunting. The mortality rate among patients with acute hydrocephalus was significantly higher than in those without, with the higher incidence caused by cerebral infarction (11 of 34 versus 12 of 140 cases, respectively; p less than 0.001). Death from infarction could not be attributed to the extent of cisternal hemorrhage, the use of antifibrinolytic drugs, or failure to apply surgical drainage, but could often be explained by the development of hyponatremia, probably accompanied by hypovolemia 24).


Seventeen patients suffering from SAH and/or intraventricular hemorrhage were studied; all were admitted in Grades II to V according to Hunt and Hess. Eleven patients had a proven aneurysm. The ICP, monitored via an intraventricular catheter, was above 15 mm Hg (2 kPa) during part of the monitoring period in all patients. B-waves at 1/min were noted in all patients. Resistance to outflow of CSF was determined by the following techniques: 1) bolus injection; 2) constant-rate steady-state infusion; or 3) controlled withdrawal (“inverse infusion”). Resistance to outflow of CSF was increased in all patients, ranging from 11.5 to 85 mm Hg/ml/min. The ICP was linearly correlated with outflow resistance. Four (50%) of the eight survivors required a shunt. Neither the presence of hydrocephalus on admission, nor the level of ICP, nor the magnitude of resistance to outflow of CSF was clearly related to the requirement of a permanent CSF diversion 25).



Wilson CD, Safavi-Abbasi S, Sun H, Kalani MY, Zhao YD, Levitt MR, et al: Meta-analysis and systematic review of risk factors for shunt dependency after aneurysmal subarachnoid hemorrhage. J Neurosurg 126:586–595, 2017

Yamada S, Nakase H, Park YS, Nishimura F, Nakagawa I: Discriminant analysis prediction of the need for ventriculo- peritoneal shunt after subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 21:493–497, 2012
3) , 22)

Auer LM, Mokry M. Disturbed cerebrospinal fluid circulation after subarachnoid hemorrhage and acute aneurysm surgery. Neurosurgery. 1990 May;26(5):804-8; discussion 808-9. PubMed PMID: 2352599.

Dorai Z, Hynan LS, Kopitnik TA, Samson D: Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery 52:763–771, 2003

Massicotte EM, Del Bigio MR. Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to chronic hydrocephalus. J Neurosurg. 1999 Jul;91(1):80-4. PubMed PMID: 10389884.
6) , 24)

van Gijn J, Hijdra A, Wijdicks EF, Vermeulen M, van Crevel H. Acute hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurosurg. 1985 Sep;63(3):355-62. PubMed PMID: 4020461.

Na MK, Won YD, Kim CH, Kim JM, Cheong JH, Ryu JI, Han MH. Early variations of laboratory parameters predicting shunt-dependent hydrocephalus after subarachnoid hemorrhage. PLoS One. 2017 Dec 12;12(12):e0189499. doi: 10.1371/journal.pone.0189499. eCollection 2017. PubMed PMID: 29232410; PubMed Central PMCID: PMC5726740.

Pinggera D, Kerschbaumer J, Petr O, Ortler M, Thomé C, Freyschlag CF. The Volume of the Third Ventricle as a Prognostic Marker for Shunt Dependency After Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2017 Dec;108:107-111. doi: 10.1016/j.wneu.2017.08.129. Epub 2017 Sep 1. PubMed PMID: 28867328.

Germanwala AV, Huang J, Tamargo RJ. Hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am. 2010 Apr;21(2):263-70. doi: 10.1016/j.nec.2009.10.013. Review. PubMed PMID: 20380968.

Greenberg JK, Washington CW, Guniganti R, Dacey RG Jr, Derdeyn CP, Zipfel GJ. Causes of 30-day readmission after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2016 Mar;124(3):743-9. doi: 10.3171/2015.2.JNS142771. Epub 2015 Sep 11. PubMed PMID: 26361278.

Shishido H, Zhang H, Okubo S, Hua Y, Keep RF, Xi G. The Effect of Gender on Acute Hydrocephalus after Experimental Subarachnoid Hemorrhage. Acta Neurochir Suppl. 2016;121:335-9. doi: 10.1007/978-3-319-18497-5_58. PubMed PMID: 26463971.

van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007 Jan 27;369(9558):306-18. Review. PubMed PMID: 17258671.
13) , 18)

Winkler EA, Burkhardt JK, Rutledge WC, Rick JW, Partow CP, Yue JK, Birk H, Bach AM, Raygor KP, Lawton MT. Reduction of shunt dependency rates following aneurysmal subarachnoid hemorrhage by tandem fenestration of the lamina terminalis and membrane of Liliequist during microsurgical aneurysm repair. J Neurosurg. 2017 Dec 15:1-7. doi: 10.3171/2017.5.JNS163271. [Epub ahead of print] PubMed PMID: 29243978.

Hayek MA, Roth C, Kaestner S, Deinsberger W. Impact of External Ventricular Drainage Volumes on Shunt Dependency after Subarachnoid Hemorrhage. J Neurol Surg A Cent Eur Neurosurg. 2016 Jul 22. [Epub ahead of print] PubMed PMID: 27448196.

Wostrack M, Reeb T, Martin J, Kehl V, Shiban E, Preuss A, Ringel F, Meyer B, Ryang YM. Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage: The Role of Intrathecal Interleukin-6. Neurocrit Care. 2014 May 20. [Epub ahead of print] PubMed PMID: 24840896.

Czorlich P, Ricklefs F, Reitz M, Vettorazzi E, Abboud T, Regelsberger J, Westphal M, Schmidt NO. Impact of intraventricular hemorrhage measured by Graeb and LeRoux score on case fatality risk and chronic hydrocephalus in aneurysmal subarachnoid hemorrhage. Acta Neurochir (Wien). 2015 Jan 21. [Epub ahead of print] PubMed PMID: 25599911.

Eom TO, Park ES, Park JB, Kwon SC, Sim HB, Lyo IU, Kim MS. Does Neurosurgical Clipping or Endovascular Coiling Lead to More Cases of Delayed Hydrocephalus in Patients with Subarachnoid Hemorrhage? J Cerebrovasc Endovasc Neurosurg. 2018 Jun;20(2):87-95. doi: 10.7461/jcen.2018.20.2.87. Epub 2018 Jun 30. PubMed PMID: 30370242; PubMed Central PMCID: PMC6196142.

Na MK, Won YD, Kim CH, Kim JM, Cheong JH, Ryu JI, Han MH. Early variations of laboratory parameters predicting shunt-dependent hydrocephalus after subarachnoid hemorrhage. PLoS One. 2017 Dec 12;12(12):e0189499. doi: 10.1371/journal.pone.0189499. eCollection 2017. PubMed PMID: 29232410.

Tao C, Fan C, Hu X, Ma J, Ma L, Li H, Liu Y, Sun H, He M, You C. The effect of fenestration of the lamina terminalis on the incidence of shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage (FISH): Study protocol for a randomized controlled trial. Medicine (Baltimore). 2016 Dec;95(52):e5727. doi: 10.1097/MD.0000000000005727. PubMed PMID: 28033279; PubMed Central PMCID: PMC5207575.

Dorai Z, Hynan LS, Kopitnik TA, Samson D. Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003 Apr;52(4):763-9; discussion 769-71. PubMed PMID: 12657171.

Milhorat TH. Acute hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1987 Jan;20(1):15-20. PubMed PMID: 3808257.

Kosteljanetz M. CSF dynamics in patients with subarachnoid and/or intraventricular hemorrhage. J Neurosurg. 1984 May;60(5):940-6. PubMed PMID: 6716162.

Miyazaki syndrome

Miyazaki syndrome

Miyazaki syndrome is a cervical myelopathy or cervical radiculopathy caused by cervical epidural venous congestion, due to shunt overdrainage. The complex pathophysiology includes CSF pressure-changes consistent with the Monro-Kellie hypothesis and a non-functional Starling resistor, leading to spinal epidural venous plexus enlargement and dilation. This venous congestion may be significant enough to exert compression on the spinal cord or nerve roots. The typical clinical and imaging findings together with a history of ventricular CSF shunting may establish the diagnosis, proven by a successful treatment. The aim of treatment is the abrogation of CSF over-drainage. The eligible interventions may be the followings: the increase of the opening-pressure of the valve system by the insertion of a new programmable valve if necessary, closing or removing the shunt.

In 1997 Miyazaki et al. described a case of intracranial hypotension syndrome due to overdrainage of cerebrospinal fluid presented with hearing loss afterventriculoperitoneal shunting procedure. A 69-year-old man suffering from subarachnoid hemorrhage presented with an angiogram showing two aneurysms, one of the right internal carotid artery and one of the middle cerebral artery. Neck clipping was performed. One month later, he developed normal pressure hydrocephalus (NPH), which was treated by ventriculoperitoneal shunting procedure using low pressure Pudenz valve system. Trias of NPH were improved by insertion of shunt system. However, he complained of hearing loss which was worsened by upright position and improved by lying down. Such kinds of phenomenon were demonstrated by audiogram showing that the transitory decrease of hearing and electrocochleography showing the elongation of N1 latency at upright position. These data suggested that his hearing loss was caused by inner ear or auditory nerve lesion. After the shunt system was replaced into the antisiphon device, his hearing disturbance improved. Axial computed tomography of bone window at the level of orbitomeatal line demonstrated widely perilymphatic duct on both sides. This finding suggested that the fluctuation of intracranial pressure was easily transmitted into the cochlear through the widened perilymphatic duct, resulting in hearing disturbance 1).

Várallyay et al. want to call attention to this rare iatrogenic condition with potentially severe consequences.

They performed a systematic literature-review and presented ther five cases.

Once recognized in time, Miyazaki syndrome can be well taken care of.

Patients with chronic ventricular shunt need monitoring for CSF over-drainage to recognise potential complications such as cervical myelopathy or radiculopathy 2).

In 2018 a 33-year-old patient had undergone placement of a ventriculoperitoneal shunt with a pressure-adjustable valve for communicating hydrocephalus years before presenting to our department with the complaints of constant headache and unsteady gait. On the basis of the clinical picture and her history, plain and contrast-enhanced cranial and whole spine magnetic resonance imaging and magnetic resonance angiography examinations were performed, with the scans revealing signs indicative of cerebrospinal fluid hypotension typical of Miyazaki syndrome 3).

In 2015 Caruso et al. reported one case 4).



Miyazaki Y, Tomii M, Sawauchi S, Ikeuchi S, Yuki K, Abe T. [A case of hearing loss caused by overdrainage of cerebrospinal fluid after ventriculo-peritoneal shunting procedure]. No Shinkei Geka. 1997 Apr;25(4):367-71. Japanese. PubMed PMID: 9125722.

Várallyay P, Nagy Z, Szűcs A, Czigléczki G, Markia B, Nagy G, Osztie É, Vajda J, Vitanovics D. Miyazaki syndrome: Cervical myelo/radiculopathy caused by overshunting. A systematic review. Clin Neurol Neurosurg. 2019 Sep 24;186:105531. doi: 10.1016/j.clineuro.2019.105531. [Epub ahead of print] PubMed PMID: 31622897.

Kovács A, Németh T, Csomor A, Novák T, Kövér F, Vörös E. Miyazaki Syndrome due to Ventriculoperitoneal Shunt Treatment. World Neurosurg. 2018 Aug;116:29-34. doi: 10.1016/j.wneu.2018.05.032. Epub 2018 May 31. PubMed PMID: 29775766.

Caruso R, Wierzbicki V, Marrocco L, Pesce A, Piccione E. A Poorly Known Cerebrospinal Fluid Shunt Complication: Miyazaki Syndrome. World Neurosurg. 2015 Sep;84(3):834-8. doi: 10.1016/j.wneu.2015.04.030. Epub 2015 Apr 23. PubMed PMID: 25913430.
WhatsApp WhatsApp us
%d bloggers like this: