Stenotrophomonas maltophilia meningitis

Stenotrophomonas maltophilia meningitis

Stenotrophomonas maltophilia treatment

The clinical characteristics of six Stenotrophomonas maltophilia ABM cases, collected during a study period of nine years (2001-2009) were included. In the related literature, 13 S. maltophilia ABM cases were reported, and their clinical data were also collected.

The 19 S. maltophilia ABM cases included 11 men and 8 women, aged 28-70 years. Of these 19 cases, 89.5% (17/19) had underlying neurosurgical (NS) conditions as the preceding event. Before the development of S. maltophilia ABM, 52.6% (10/19) of them had long stays in hospital and 63.2% (12/19) had undergone antibiotic treatment. Among the implicated S. maltophilia cases, three strains were found to have a resistance to sulfamethoxazole-trimethoprim (SMZ-TMP). Two of our five cases had resistant strains to levofloxacin. Among the antibiotics chosen for treatment, SMZ-TMP was the most common followed by quinolone (ciprofloxacin, levofloxacin, moxifloxacin). The therapeutic results showed 2 cases expired while the other 17 cases survived.

S. maltophilia ABM usually develops in patients with a preceding neurosurgical condition, a long hospital stay and antibiotic use. SMZ-TMP and quinolones, especially the ciprofloxacin, are the major antibiotic used. This study also shows the emergence of clinical S. maltophilia strains which are not susceptible to SMZ-TMP and quinolones and this development may pose a more serious threat in the near future because treatment options may become depleted and limited despite the mortality rate of this specific group of ABM not being high at this time 1).

A young female patient with history of multiple shunt revisions in the past, came with shunt dysfunction and exposure of the ventriculoperitoneal shunt tube in the neck. The abdominal end of the shunt tube was seen migrating into the bowel during shunt revision. The cerebrospinal fluid analysis showed evidence of Stenotrophomonas maltophilia growth. This is the first reported case of Stenotrophomonas maltophilia meningitis associated with ventriculoperitoneal shunt migration into the bowel. 2).


A patient who developed C. utilis and S. maltophilia after undergoing neurosurgery and received effective nosocomial meningitis treatment. Multiple neurosurgeries were required for a 16-year-old girl due to complications. For probable nosocomial meningitis, she was treated with cefepime with vancomycin. Meropenem and liposomal amphotericin B were prescribed after her seizure and positive CSF culture for Candida utilis. Consequently, S. maltophilia was discovered in the CSF, and ceftazidime and trimethoprim-sulfamethoxazole were prescribed. The patient has been hemodynamically stable for the past two months, and consecutive CSF cultures have been negative. To the best of our knowledge, this is the first case of C. utilis and S. maltophilia co-infection that has been successfully handled. 3).


Two cases of S. maltophilia meningitis following neurosurgical procedures. The first patient was a 60-year-old female. She was admitted to the hospital with a left basal ganglia bleed and underwent placement of an external ventricular drain for the treatment of hydrocephalus. She developed S. maltophilia meningitis 20 days after surgery. She was successfully treated with a combination of trimethoprim-sulfamethoxazole and intravenous colistin and the removal of the drain. She successfully underwent a ventriculoperitoneal (VP) shunt placement at the therapeutic midway point. The second patient was a 35-year-old male with a history of intracranial aneurysm bleeding. He had undergone a craniotomy and placement of a ventriculoperitoneal shunt two years previously. His shunt was replaced twice due to blockage. The last replacement had occurred 15 days prior to the development of meningitis. He was treated with a combination of trimethoprim-sulfamethoxazole and ceftazidime (as well as undergoing another shunt replacement) and experienced an excellent recovery. S. maltophilia is a rare but important cause of nosocomial meningitis. It is strongly associated with prior hospitalization and neurosurgical intervention, which is also found in our case series. The management of S. maltophilia meningitis is a therapeutic challenge due to its high resistance to multiple antibiotics. Optimal therapy is based on antimicrobial sensitivity, and the trimethoprim-sulfamethoxazole-based combination has been shown to be successful. The duration of therapy is debatable, but like most gram-negative meningitis infections, therapy lasting up to three weeks appears to be adequate. 4).


Stenotrophomonas maltophilia CSF infection in infants after neurosurgery 5).


A 4-year-old boy who developed meningitis associated with this organism, after several neurosurgical procedures and previous treatment with a broad-spectrum antibiotic. He was treated successfully with a combination of trimethoprim-sulfamethoxazole, ceftazidime and levofloxacin. Stenotrophomonas maltophilia should be considered as a potential cause of meningitis, especially among severely debilitated or immunosuppressed patients. Antimicrobial therapy is complicated by the high resistance of the organism to multiple antibiotics. 6).


A case of a six months old, male child who developed meningitis caused by Stenotrophomonas maltophilia, after he underwent a neurosurgical procedure. 7).


A 30-year-old male patient who developed meningitis associated with this organism after several neurosurgical procedures. A review of the literature revealed only 15 previous reports. Most cases were associated with neurosurgical procedures. Antimicrobial therapy is complicated by multiple drug resistance of the organism, and trimethoprim-sulfamethoxazole is the recommended agent for treatment. 8).


A case of generalized infection by S. maltophilia, including meningitis, bacteremia and respiratory tract infection, in a patient who had undergone multiple neurosurgical procedures and who was treated with trimethoprim-sulphamethoxazole 9).


Two cases of meningitis caused by Stenotrophomonas maltophilia in cancer patients following placement of an Ommaya reservoir for treatment of meningeal carcinomatosis. In addition, they review eight other cases of S. maltophilia that have been reported to date. Stenotrophomonas maltophilia meningitis is often associated with neurosurgical procedures; however, spontaneous infection may also occur, mainly in neonates. The disease’s clinical presentation is similar to that of other forms of meningitis caused by Gram-negative bacilli. The overall mortality rate of this disease is 20% and is limited to neonates with spontaneous meningitis in whom effective antibiotic therapy is delayed. Meningitis caused by S. maltophilia in the modern era should be considered in immunocompromised hosts with significant central nervous system disease who have undergone neurosurgical procedures and who do not readily respond to broad-spectrum antimicrobial coverage. 10).


1)

Huang CR, Chen SF, Tsai NW, Chang CC, Lu CH, Chuang YC, Chien CC, Chang WN. Clinical characteristics of Stenotrophomonas maltophilia meningitis in adults: a high incidence in patients with a postneurosurgical state, long hospital staying and antibiotic use. Clin Neurol Neurosurg. 2013 Sep;115(9):1709-15. doi: 10.1016/j.clineuro.2013.03.006. Epub 2013 Apr 20. PMID: 23611735.
2)

Manuel A, Jayachandran A, Harish S, Sunil T, K R VD, K R, Jo J, Unnikrishnan M, George K, Bahuleyan B. <i>Stenotrophomonas maltophilia</i> as a rare cause of meningitis and ventriculoperitoneal shunt infection. Access Microbiol. 2021 Oct 7;3(10):000266. doi: 10.1099/acmi.0.000266. PMID: 34816086; PMCID: PMC8604181.
3)

Mohzari Y, Al Musawa M, Asdaq SMB, Alattas M, Qutub M, Bamogaddam RF, Yamani A, Aldabbagh Y. Candida utilis and Stenotrophomonas maltophilia causing nosocomial meningitis following a neurosurgical procedure: A rare co-infection. J Infect Public Health. 2021 Nov;14(11):1715-1719. doi: 10.1016/j.jiph.2021.10.004. Epub 2021 Oct 13. PMID: 34700290.
4)

Khanum I, Ilyas A, Ali F. Stenotrophomonas maltophilia Meningitis – A Case Series and Review of the Literature. Cureus. 2020 Oct 28;12(10):e11221. doi: 10.7759/cureus.11221. PMID: 33269149; PMCID: PMC7704165.
5)

Mukherjee S, Zebian B, Chandler C, Pettorini B. Stenotrophomonas maltophilia CSF infection in infants after neurosurgery. Br J Hosp Med (Lond). 2017 Dec 2;78(12):724-725. doi: 10.12968/hmed.2017.78.12.724. PMID: 29240495.
6)

Correia CR, Ferreira ST, Nunes P. Stenotrophomonas maltophilia: rare cause of meningitis. Pediatr Int. 2014 Aug;56(4):e21-2. doi: 10.1111/ped.12352. PMID: 25252064.
7)

Sood S, Vaid VK, Bhartiya H. Meningitis due to Stenotrophomonas maltophilia after a Neurosurgical Procedure. J Clin Diagn Res. 2013 Aug;7(8):1696-7. doi: 10.7860/JCDR/2013/5614.3248. Epub 2013 Aug 1. PMID: 24086879; PMCID: PMC3782936.
8)

Yemisen M, Mete B, Tunali Y, Yentur E, Ozturk R. A meningitis case due to Stenotrophomonas maltophilia and review of the literature. Int J Infect Dis. 2008 Nov;12(6):e125-7. doi: 10.1016/j.ijid.2008.03.028. Epub 2008 Jun 24. PMID: 18579427.
9)

Platsouka E, Routsi C, Chalkis A, Dimitriadou E, Paniara O, Roussos C. Stenotrophomonas maltophilia meningitis, bacteremia and respiratory infection. Scand J Infect Dis. 2002;34(5):391-2. doi: 10.1080/00365540110080520. PMID: 12069028.
10)

Papadakis KA, Vartivarian SE, Vassilaki ME, Anaissie EJ. Stenotrophomonas maltophilia meningitis. Report of two cases and review of the literature. J Neurosurg. 1997 Jul;87(1):106-8. doi: 10.3171/jns.1997.87.1.0106. PMID: 9202275.

Vancomycin

Vancomycin

Vancomycin is a glycopeptide antibiotic medication.

Blood levels may be measured to determine the correct dose.

When taken by mouth it is poorly absorbed.

A study described the cerebrospinal fluid (CSF) exposure of vancomycin in 8 children prescribed intravenous vancomycin therapy for cerebral ventricular shunt infection. Vancomycin CSF concentrations ranged from 0.06 to 9.13 mg/L and the CSF: plasma ratio ranged from 0 to 0.66. Two of 3 children with a staphylococcal CSF infection had CSF concentrations greater than the minimal inhibitory concentration at the end of the dosing interval 1).


Cerebrospinal fluid (CSF) penetration and the pharmacokinetics of vancomycin were studied after continuous infusion (50 to 60 mg/kg of body weight/day after a loading dose of 15 mg/kg) in 13 mechanically ventilated patients hospitalized in an intensive care unit. Seven patients were treated for sensitive bacterial meningitis and the other six patients, who had a severe concomitant neurologic disease with intracranial hypertension, were treated for various infections. Vancomycin CSF penetration was significantly higher (P < 0.05) in the meningitis group (serum/CSF ratio, 48%) than in the other group (serum/CSF ratio, 18%). Vancomycin pharmacokinetic parameters did not differ from those obtained with conventional dosing. No adverse effect was observed, in particular with regard to renal function 2).


Ichinose et al. evaluated the concentration of Vancomycin in the plasma and CSF of postoperative neurosurgical patients with bacterial meningitis and evaluated the factors that affect the transferability of VCM to CSF. The concentrations of VCM in plasma (trough) and CSF were determined in eight patients (four males and four females) with bacterial meningitis who were treated with VCM using High-performance liquid chromatography. The ratio of the VCM concentrations in CSF/plasma was also calculated by estimating the blood VCM concentration at the same time as the VCM concentration in CSF was measured. The results showed that the VCM concentration in CSF was 0.9-12.7 µg/mL and the CSF/plasma VCM concentration ratio was 0.02-0.62. They examined the effect of drainage on the transferability of VCM to CSF, which showed that the VCM concentration in CSF and the CSF/plasma VCM concentration ratio were significantly higher in patients not undergoing drainage than in patients who were undergoing drainage. The CSF protein and glucose concentrations, which are diagnostic indicators of meningitis, were positively correlated with the VCM concentration in CSF and the CSF/plasma VCM concentration ratio. Thus, VCM transferability to CSF may be affected by changes in the status of the blood-brain barrier and blood-cerebrospinal fluid barrier due to drainage or meningitis 3).

Vancomycin Indications.

see Vancomycin powder.

Intraventricular Vancomycin


1)

Autmizguine J, Moran C, Gonzalez D, Capparelli EV, Smith PB, Grant GA, Benjamin DK Jr, Cohen-Wolkowiez M, Watt KM. Vancomycin cerebrospinal fluid pharmacokinetics in children with cerebral ventricular shunt infections. Pediatr Infect Dis J. 2014 Oct;33(10):e270-2. doi: 10.1097/INF.0000000000000385. PMID: 24776517; PMCID: PMC4209191.
2)

Albanèse J, Léone M, Bruguerolle B, Ayem ML, Lacarelle B, Martin C. Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob Agents Chemother. 2000 May;44(5):1356-8. doi: 10.1128/AAC.44.5.1356-1358.2000. PMID: 10770777; PMCID: PMC89870.
3)

Ichinose N, Shinoda K, Yoshikawa G, Fukao E, Enoki Y, Taguchi K, Oda T, Tsutsumi K, Matsumoto K. Exploring the Factors Affecting the Transferability of Vancomycin to Cerebrospinal Fluid in Postoperative Neurosurgical Patients with Bacterial Meningitis. Biol Pharm Bull. 2022;45(9):1398-1402. doi: 10.1248/bpb.b22-00361. PMID: 36047211.

Cerebral venous sinus thrombosis after Vaccine-induced Immune Thrombotic Thrombocytopenia

Cerebral venous sinus thrombosis after Vaccine-induced Immune Thrombotic Thrombocytopenia

Health care providers should be familiar with the clinical presentations, pathophysiology, diagnostic criteria, and management consideration of this rare but severe and potentially fatal complication of the SARS-COV2 vaccine


Cerebral venous sinus thrombosis (CVT) prior to the COVID pandemic was rare, responsible for 0.5 of all strokes, at the onset of the pandemic on the East Coast, overall cross-sectional imaging volumes declined due to maintaining ventilation, high levels of care and limiting disease spread, although COVID-19 patients have a 30-60 times greater risk of CVT compared to the general population, and vaccination is currently the best option to mitigate severe disease. In early 2021, reports of adenoviral vector COVID vaccines causing CTV and Vaccine-induced Immune Thrombotic Thrombocytopenia (VITT), led to a 39.65% increase in cross-sectional venography, however, in this study unvaccinated patients in 2021 had a higher incidence of CVT (10.1%), compared to the vaccinated patients (4.5%). Clinicians should be aware that VITT CVT may present with a headache 5-30 days post-vaccination with thrombosis best diagnosed on CTV or MRV. If thrombosis is present with thrombocytopenia, platelets <150 × 109, elevated D-Dimer >4000 FEU, and positive anti-PF4 ELISA assay, the diagnosis is definitive. VITT CVT resembles spontaneous autoimmune heparin-induced thrombocytopenia (HIT) and is postulated to occur from platelet factor 4 (PF4) binding to vaccine adenoviral vectors forming a novel antigen, anti-PF4 memory B-cells, and anti-PF4 (VITT) antibodies. 1).

Neurosurgical management involves treating intracranial hypertension however survival outcomes in a cohort were poor. In these series, decompression was performed in deteriorating patients however prophylactic decompression, in the presence of extensive venous sinus thrombosis, should be considered on a case-by-case basis. As vaccination programs accelerate across the world, neurosurgeons are likely to be increasingly involved in managing intracranial hypertension in patients with VITT-related sinus thromboses. 2).


A distinct clinical profile and a high mortality rate were observed in patients meeting the criteria for thrombocytopenia syndrome (TTS) after SARS-CoV-2 vaccination 3).


Non-heparin anticoagulants and immunoglobulin treatment might improve outcomes of VITT-associated cerebral venous thrombosis 4)

Sixty-two studies reporting 160 cases were included from 16 countries. Patients were predominantly females with a median age of 42.50 (22) years. AZD1222 was administered to 140 patients (87·5%). TTS onset occurred in a median of 9 (4) days after vaccination. Venous thrombosis was most common (61.0%). Most patients developed cerebral venous sinus thrombosis (CVST; 66.3%). CVST was significantly more common in female vs male patients (p = 0·001) and in patients aged <45 years vs ≥45 years (p = 0·004). The mortality rate was 36.2%, and patients with suspected TTS, venous thrombosis, CVST, pulmonary embolism, or intraneural complications, patients not managed with non-heparin anticoagulants or IVIG, patients receiving platelet transfusions, and patients requiring intensive care unit admission, mechanical ventilation, or inpatient neurosurgery were more likely to expire than recover. 5)

Cerebral venous thrombosis caused by vaccine-induced immune thrombotic thrombocytopenia (VITT-CVT) is a rare adverse effect of adenovirus-based SARS-COV2 vaccines. In March 2021, after autoimmune pathogenesis of VITT was discovered, treatment recommendations were developed. This comprised immunomodulation, nonheparin anticoagulants, and avoidance of platelet transfusion. The aim of the study was to evaluate adherence to these recommendations and their association with mortality.

Scutelnic et al. used data from an international prospective registry of patients with CVT after adenovirus-based SARS-CoV-2 vaccination. They analyzed possible, probable, or definite VITT-CVT cases included until 18 January 2022. Immunomodulation entailed the administration of intravenous immunoglobulins and/or plasmapheresis.

99 VITT-CVT patients from 71 hospitals in 17 countries were analyzed. Five of 38 (13%), 11/24 (46%), and 28/37 (76%) of patients diagnosed in March, April, and from May onwards, respectively, were treated in-line with VITT recommendations (p<0.001). Overall, treatment according to recommendations had no statistically significant influence on mortality (14/44 (32%) vs 29/55 (52%), adjusted OR 0.43 (95%CI 0.16-1.19)). However, patients who received immunomodulation had lower mortality (19/65 (29%) vs 24/34 (70%), adjusted OR 0.19 (95%CI 0.06-0.58)). Treatment with non-heparin anticoagulants instead of heparins was not associated with lower mortality (17/51 (33%) vs 13/35 (37%), adjusted OR 0.70 (95%CI 0.24-2.04)). Mortality was also not significantly influenced by platelet transfusion (17/27 (63%) vs 26/72 (36%), adjusted OR 2.19 (95%CI 0.74-6.54)).

In VITT-CVT patients, adherence to VITT treatment recommendations improved over time. Immunomodulation seems crucial for reducing mortality of VITT-CVT 6).


During a 2-week period, we encountered five cases presenting with a combination of cerebral venous thrombosis (CVT), intracerebral hemorrhage, and thrombocytopenia. A clinical hallmark was the rapid and severe progression of disease in spite of maximum treatment efforts, resulting in fatal outcomes for 4 out of 5 patients. All cases had received the ChAdOx1 nCov-19 vaccine 1-2 weeks earlier and developed a characteristic syndrome thereafter. The rapid progressive clinical course and high fatality rate of CVT in combination with thrombocytopenia in such a cluster and in otherwise healthy adults is a recent phenomenon. Cerebral autopsy findings were those of venous hemorrhagic infarctions and thrombi in dural venous sinuses, including thrombus material apparently rich in thrombocytes, leukocytes, and fibrin. Vessel walls were free of inflammation. Extra-cerebral manifestations included leech-like thrombi in large veins, fibrin clots in small venules, and scattered hemorrhages on skin and membranes. CVT with thrombocytopenia after adenovirus vectored COVID-19 vaccination is a new clinical syndrome that needs to be recognized by clinicians is challenging to treat and seems associated with a high mortality rate 7)

A patient was rapidly treated with steroids, immunoglobulin, and fondaparinux. She underwent within 6 h after hospital admission a mechanical thrombectomy in order to allow flow restoration in cerebral venous systems. Neuroendovascular treatment in cerebral venous thrombosis related to VITT has never been described before. It can represent a complementary tool along with the other therapies and a multidisciplinary approach 8).


Two cases of ChAdOx1 nCov-19 (AstraZeneca)-are associated with thrombotic thrombocytopenia syndrome (TTS) and cerebral venous sinus thrombosis (CVST). At the time of emergency room presentation due to persistent headache, blood serum levels revealed reduced platelet counts. Yet, 1 or 4 days after the onset of the symptom, the first MR-angiography provided no evidence of CVST. Follow-up imaging, performed upon headache refractory to nonsteroidal pain medication verified CVST 2-10 days after initial negative MRI. Both the patients received combined treatment with intravenous immunoglobulins and parenteral anticoagulation leading to an increase in platelet concentration in both individuals and resolution of the occluded cerebral sinus in one patient 9).


Rodriguez et al. reported the first described post Ad26.COV2.S (Janssen, Johnson & Johnson) vaccine-induced immune thrombocytopenia (VITT) case outside US. CASE DESCRIPTION: CA young woman without any medical history presented an association of deep vein thrombosis and thrombocytopenia at day 10 after vaccine injection. The patient was treated with low-molecular-weight heparin at a first medical institution. Twelve days post Ad26.COV2.S vaccination, the patient was admitted to the hospital for neurological deterioration and right hemiplegia. Medical imaging using MRI showed thrombosis of the major anterior part of the sagittal superior sinus with bilateral intraparenchymal hemorrhagic complications. Screening tests for antibodies against platelet factor 4 (PF4)-heparin by rapid lateral flow immunoassay and chemiluminescence techniques were negative. Platelet activation test using heparin-induced multiple electrode aggregometry confirmed the initial clinical hypothesis. Despite immediate treatment with intravenous immunoglobulin, dexamethasone, danaparoid, and attempted neurosurgery the patient evolved toward brain death.

Even though it is an extremely rare complication of vaccination physicians should maintain a high index of suspicion of VITT in patients who received an adenovirus-vector-based SARS-CoV-2 vaccine within the last 30 days with persistent complaints compatible with VITT or thromboembolic event associated with thrombocytopenia. The diagnosis should not be excluded if the rapid anti-PF4 immunological or chemiluminescence techniques yield negative results. An adapted functional assay should be performed to confirm the diagnosis. Early treatment with intravenous immunoglobulin and non-heparin anticoagulants is essential as delayed diagnosis and administration of appropriate treatment are associated with poor prognosis 10).


A case of VITT in a young female who presented 11 days after receiving the first dose of the Covishield vaccine, with severe headache and hemiparesis. She was diagnosed with CSVT with a large intraparenchymal bleed, requiring decompressive craniectomy and an extended period of mechanical ventilation.

The patient was successfully treated with intravenous immunoglobulin and discharged after 19 days in ICU. Although she was left with long-term neurological deficits, an early presentation and a multidisciplinary approach to management contributed to a relatively short stay in the hospital and avoided mortality 11).


1)

Franceschi AM, Petrover DR, McMahon TM, Libman RB, Giliberto L, Clouston SAP, Castillo M, Kirsch C. Retrospective review COVID-19 vaccine induced thrombotic thrombocytopenia and cerebral venous thrombosis-what can we learn from the immune response. Clin Imaging. 2022 Jul 15;90:63-70. doi: 10.1016/j.clinimag.2022.06.020. Epub ahead of print. PMID: 35926315; PMCID: PMC9283127.
2)

Eltayeb M, Jayakumar N, Coulter I, Johnson C, Crossman J. Decompressive craniectomy for intracranial hypertension in vaccine-induced immune thrombotic thrombocytopaenia: a case series. Br J Neurosurg. 2022 Aug 25:1-4. doi: 10.1080/02688697.2022.2115007. Epub ahead of print. PMID: 36004613.
3)

Sánchez van Kammen M, Aguiar de Sousa D, Poli S, Cordonnier C, Heldner MR, van de Munckhof A, Krzywicka K, van Haaps T, Ciccone A, Middeldorp S, Levi MM, Kremer Hovinga JA, Silvis S, Hiltunen S, Mansour M, Arauz A, Barboza MA, Field TS, Tsivgoulis G, Nagel S, Lindgren E, Tatlisumak T, Jood K, Putaala J, Ferro JM, Arnold M, Coutinho JM; Cerebral Venous Sinus Thrombosis With Thrombocytopenia Syndrome Study Group, Sharma AR, Elkady A, Negro A, Günther A, Gutschalk A, Schönenberger S, Buture A, Murphy S, Paiva Nunes A, Tiede A, Puthuppallil Philip A, Mengel A, Medina A, Hellström Vogel Å, Tawa A, Aujayeb A, Casolla B, Buck B, Zanferrari C, Garcia-Esperon C, Vayne C, Legault C, Pfrepper C, Tracol C, Soriano C, Guisado-Alonso D, Bougon D, Zimatore DS, Michalski D, Blacquiere D, Johansson E, Cuadrado-Godia E, De Maistre E, Carrera E, Vuillier F, Bonneville F, Giammello F, Bode FJ, Zimmerman J, d’Onofrio F, Grillo F, Cotton F, Caparros F, Puy L, Maier F, Gulli G, Frisullo G, Polkinghorne G, Franchineau G, Cangür H, Katzberg H, Sibon I, Baharoglu I, Brar J, Payen JF, Burrow J, Fernandes J, Schouten J, Althaus K, Garambois K, Derex L, Humbertjean L, Lebrato Hernandez L, Kellermair L, Morin Martin M, Petruzzellis M, Cotelli M, Dubois MC, Carvalho M, Wittstock M, Miranda M, Skjelland M, Bandettini di Poggio M, Scholz MJ, Raposo N, Kahnis R, Kruyt N, Huet O, Sharma P, Candelaresi P, Reiner P, Vieira R, Acampora R, Kern R, Leker R, Coutts S, Bal S, Sharma SS, Susen S, Cox T, Geeraerts T, Gattringer T, Bartsch T, Kleinig TJ, Dizonno V, Arslan Y. Characteristics and Outcomes of Patients With Cerebral Venous Sinus Thrombosis in SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia. JAMA Neurol. 2021 Nov 1;78(11):1314-1323. doi: 10.1001/jamaneurol.2021.3619. PMID: 34581763; PMCID: PMC8479648.
4)

Perry RJ, Tamborska A, Singh B, Craven B, Marigold R, Arthur-Farraj P, Yeo JM, Zhang L, Hassan-Smith G, Jones M, Hutchcroft C, Hobson E, Warcel D, White D, Ferdinand P, Webb A, Solomon T, Scully M, Werring DJ, Roffe C; CVT After Immunisation Against COVID-19 (CAIAC) collaborators. Cerebral venous thrombosis after vaccination against COVID-19 in the UK: a multicentre cohort study. Lancet. 2021 Sep 25;398(10306):1147-1156. doi: 10.1016/S0140-6736(21)01608-1. Epub 2021 Aug 6. PMID: 34370972; PMCID: PMC8346241.
5)

Waqar U, Ahmed S, Gardezi SMHA, Tahir MS, Abidin ZU, Hussain A, Ali N, Mahmood SF. Thrombosis with Thrombocytopenia Syndrome After Administration of AZD1222 or Ad26.COV2.S Vaccine for COVID-19: A Systematic Review. Clin Appl Thromb Hemost. 2021 Jan-Dec;27:10760296211068487. doi: 10.1177/10760296211068487. PMID: 34907794; PMCID: PMC8689609.
6)

Scutelnic A, Krzywicka K, Mbroh J, van de Munckhof A, Sánchez van Kammen M, Aguiar de Sousa D, Lindgren E, Jood K, Günther A, Hiltunen S, Putaala J, Tiede A, Maier F, Kern R, Bartsch T, Althaus K, Ciccone A, Wiedmann M, Skjelland M, Medina A, Cuadrado-Godia E, Cox T, Aujayeb A, Raposo N, Garambois K, Payen JF, Vuillier F, Franchineau G, Timsit S, Bougon D, Dubois MC, Tawa A, Tracol C, De Maistre E, Bonneville F, Vayne C, Mengel A, Michalski D, Pelz J, Wittstock M, Bode F, Zimmermann J, Schouten J, Buture A, Murphy S, Palma V, Negro A, Gutschalk A, Nagel S, Schoenenberger S, Frisullo G, Zanferrari C, Grillo F, Giammello F, Martin MM, Cervera A, Burrow J, Garcia Esperon C, Chew BLA, Kleinig TJ, Soriano C, Zimatore DS, Petruzzellis M, Elkady A, Miranda MS, Fernandes J, Hellström Vogel Å, Johansson E, Philip AP, Coutts SB, Bal S, Buck B, Legault C, Blacquiere D, Katzberg HD, Field TS, Dizonno V, Gattringer T, Jacobi C, Devroye A, Lemmens R, Kristoffersen ES, Bandettini di Poggio M, Ghiasian M, Karapanayiotides T, Chatterton S, Wronski M, Ng K, Kahnis R, Geeraerts T, Reiner P, Cordonnier C, Middeldorp S, Levi M, van Gorp ECM, van de Beek D, Brodard J, Kremer Hovinga JA, Kruip MJHA, Tatlisumak T, Ferro JM, Coutinho JM, Arnold M, Poli S, Heldner MR. Management of cerebral venous thrombosis due to adenoviral COVID-19 vaccination. Ann Neurol. 2022 Jun 10. doi: 10.1002/ana.26431. Epub ahead of print. PMID: 35689346.
7)

Wiedmann M, Skattør T, Stray-Pedersen A, Romundstad L, Antal EA, Marthinsen PB, Sørvoll IH, Leiknes Ernstsen S, Lund CG, Holme PA, Johansen TO, Brunborg C, Aamodt AH, Schultz NH, Skagen K, Skjelland M. Vaccine Induced Immune Thrombotic Thrombocytopenia Causing a Severe Form of Cerebral Venous Thrombosis With High Fatality Rate: A Case Series. Front Neurol. 2021 Jul 30;12:721146. doi: 10.3389/fneur.2021.721146. PMID: 34393988; PMCID: PMC8363077.
8)

Mirandola L, Arena G, Pagliaro M, Boghi A, Naldi A, Castellano D, Vaccarino A, Silengo D, Aprà F, Cavallo R, Livigni S. Massive cerebral venous sinus thrombosis in vaccine-induced immune thrombotic thrombocytopenia after ChAdOx1 nCoV-19 serum: case report of a successful multidisciplinary approach. Neurol Sci. 2022 Mar;43(3):1499-1502. doi: 10.1007/s10072-021-05805-y. Epub 2022 Jan 10. PMID: 35001190; PMCID: PMC8743093.
9)

Braun T, Viard M, Juenemann M, Struffert T, Schwarm F, Huttner HB, Roessler FC. Case Report: Take a Second Look: Covid-19 Vaccination-Related Cerebral Venous Thrombosis and Thrombotic Thrombocytopenia Syndrome. Front Neurol. 2021 Nov 22;12:763049. doi: 10.3389/fneur.2021.763049. PMID: 34880826; PMCID: PMC8645635.
10)

Rodriguez EVC, Bouazza FZ, Dauby N, Mullier F, d’Otreppe S, Jissendi Tchofo P, Bartiaux M, Sirjacques C, Roman A, Hermans C, Cliquennois M. Fatal vaccine-induced immune thrombotic thrombocytopenia (VITT) post Ad26.COV2.S: first documented case outside US. Infection. 2022 Apr;50(2):531-536. doi: 10.1007/s15010-021-01712-8. Epub 2021 Oct 9. PMID: 34626338; PMCID: PMC8501343.
11)

Kotal R, Jacob I, Rangappa P, Rao K, Hosurkar G, Anumula SK, Kuberappa AM. A rare case of vaccine-induced immune thrombosis and thrombocytopenia and approach to management. Surg Neurol Int. 2021 Aug 16;12:408. doi: 10.25259/SNI_689_2021. PMID: 34513173; PMCID: PMC8422498.
WhatsApp WhatsApp us
%d bloggers like this: