ShuntScope

ShuntScope

Autoclavable reusable SHUNTSCOPE® is designed to facilitate the endoscopic ventricular drainage placement during shunt surgery.

A retrospective analysis of all pediatric patients undergoing ventricular catheter placement using the ShuntScope from 01/2012 to 01/2022 in the Department of Neurosurgery, Saarland University Medical Center, Homburg was performed. Demographic, clinical, and radiological data were evaluated. The visualization quality of the intraoperative endoscopy was stratified into the categories of excellent, medium, and poor and compared to the postoperative catheter tip placement. Follow-up evaluation included the surgical revision rate due to proximal catheter occlusion.

A total of 65 ShuntScope-assisted surgeries have been performed on 51 children. The mean age was 5.1 years. The most common underlying pathology was a tumor- or cyst-related hydrocephalus in 51%. Achieved image quality was excellent in 41.5%, medium in 43%, and poor in 15.5%. Ideal catheter placement was achieved in 77%. There were no intraoperative ventricular catheter placement complications and no technique-related morbidity associated with the ShuntScope. The revision rate due to proximal occlusion was 4.61% during a mean follow-up period of 39.7 years. No statistical correlation between image grade and accuracy of catheter position was observed (p-value was 0.290).

The ShuntScope can be considered a valuable addition to standard surgical tools in pediatric hydrocephalus treatment. Even suboptimal visualization contributes to high rates of correct catheter placement and, thereby, to a favorable clinical outcome 1).


The purpose of the study is to compare the accuracy of catheter placement and the complication and revision rates between SG and freehand (FH) techniques.

A retrospective study based on a prospectively acquired database of patients who underwent VC placement between September 2018 and July 2021. The accuracy of catheter placement was graded on postoperative imaging using a three-point Hayhurst grading system. Complication and revision rates were documented and compared between both groups with an average follow-up period of 20.84 months.

Results: Fifty-seven patients were included. SG technique was used in 29 patients (mean age was 6.3 years, 1.4 -27.7 years, 48.1% females), and FH technique was used in 28 patients (mean age was 26.7 years, 0.83 – 79.5 years, 67.9% female). The success rate for the optimal placement of the VC with a grade I on the Hayhurst scale was significantly higher in the SG group (93.1%) than in the FH group (60.7%), P = 0.012. The revision rate was higher in the FH group with 35.7% vs. 20.7% of in the SG group, P = 0.211.

Conclusion: VC placement using the SG technique is a safe and effective procedure, which enabled a significantly higher success rate and lower revision and complication rate. Accordingly, we recommend using the SG technique especially in patients with difficult anatomy 2)


The experience of shuntscope-guided ventriculoperitoneal shunt in 9 cases done from June 2015 to April 2016. Shuntscope is a 1 mm outer diameter semi-rigid scope from Karl Storz with 10000 pixels of magnification. It has a fiber optic lens system with a camera and light source attachment away from the scope to make it lightweight and easily maneuverable.

Results: In all cases, VC was placed in the ipsilateral frontal horn away from choroid plexuses, septae, or membranes. Septum pellucidum perforation and placement to the opposite side of the ventricle was identified with shunt scope assistance and corrected.

Conclusion: Although our initial results are encouraging, larger case series would be helpful. Complications and cost due to shunt dysfunction can thus be reduced to a great extent with shuntscope 3)


The semi-rigid ShuntScope (Karl Storz GmbH & Co.KG, Tuttlingen, Germany) with an outer diameter of 1.0 mm and an image resolution of 10,000 pixels was used in a series of 27 children and adolescents (18 males, 9 females, age range 2 months-18 years). Indications included catheter placement in aqueductal stenting (n = 4), first-time shunt placement (n = 5), burr hole reservoir insertion (n = 4), catheter placement after endoscopic procedures (n = 7) and revision surgery of the ventricle catheter (n = 7).

ShuntScope-guided precise catheter placement was achieved in 26 of 27 patients. In one case of aqueductal stenting, the procedure had to be abandoned. One single wound healing problem was noted as a complication. Intraventricular image quality was always sufficient to recognize the anatomical structures. In the case of catheter removal, it was helpful to identify adherent vessels or membranes. Penetration of small adhesions or thin membranes was feasible. Postoperative imaging studies demonstrated catheter tip placements analogous to the intraoperative findings.

Misplacements of shunt catheters are completely avoidable with the presented intra-catheter technique including slit ventricles or even aqueductal stenting. Potential complications can be avoided during revision surgery. The implementation of the ShuntScope is recommended in pediatric neurosurgery 4).


1)

Prajsnar-Borak A, Teping F, Oertel J. Image quality and related outcomes of the ShuntScope for catheter implantation in pediatric hydrocephalus-experience of 65 procedures. Childs Nerv Syst. 2022 Dec 2. doi: 10.1007/s00381-022-05776-1. Epub ahead of print. PMID: 36459211.
2)

Issa M, Nofal M, Miotik N, Seitz A, Unterberg A, El Damaty A. ShuntScope®-Guided Versus Free Hand Technique for Ventricular Catheter Placement: A Retrospective Comparative Study of Intra-Ventricular Catheter Tip Position and Complication Rate. J Neurol Surg A Cent Eur Neurosurg. 2022 Feb 10. doi: 10.1055/a-1768-3892. Epub ahead of print. PMID: 35144299.
3)

Agrawal V, Aher RB. Endoluminal Shuntscope-Guided Ventricular Catheter Placement: Early Experience. Asian J Neurosurg. 2018 Oct-Dec;13(4):1071-1073. doi: 10.4103/ajns.AJNS_98_17. PMID: 30459870; PMCID: PMC6208226.
4)

Senger S, Antes S, Salah M, Tschan C, Linsler S, Oertel J. The view through the ventricle catheter – The new ShuntScope for the therapy of pediatric hydrocephalus. J Clin Neurosci. 2018 Feb;48:196-202. doi: 10.1016/j.jocn.2017.10.046. Epub 2017 Nov 6. PubMed PMID: 29102235.

Middle meningeal artery embolization for chronic subdural hematoma trials

Middle meningeal artery embolization for chronic subdural hematoma trials

Several randomized controlled trials are planned or ongoing. In most of these trials, conventional neurosurgical treatment with or without adjunctive endovascular embolization is compared.


Given the encouraging results with a 91% long-term success rate in the series of Link et al., a large scale clinical trial is warranted 1).

https://clinicaltrials.gov/ct2/show/NCT03307395


A proposed trial aimed to conduct a head-to-head comparison between neurosurgical and endovascular treatment as stand-alone treatments.

The trial is academically driven and funded within existing public healthcare systems and infrastructure. Patients with uni- or bilateral cSDH, presenting with mild-to moderate symptoms, and admitted to neurosurgery on clinical grounds will be offered participation. Subjects are randomized 1:1 between conventional neurosurgical treatment (control) and endovascular embolization of the middle meningeal artery (intervention). Primary endpoint is reoperation due to clinically and/or radiologically significant recurrence within 3 months. Secondary endpoints include safety, technical success rate, neurological disability, and quality of life.

There are mounting retrospective data suggesting eMMA, as sole treatment or as an adjunctive to neurosurgery for cSDH, is safe and effective with a reoperation rate lower than neurosurgical hematoma evacuation alone. If randomized controlled trials confirm these findings, there is a potential for a paradigm shift in the treatment of cSDH where a minimally invasive procedure can replace open surgery in a large and oftentimes old and fragile patient cohort.

Trial registration: ClinicalTrials.gov, ClinicalTrials.gov Identifier NCT05267184 . Registered March 4, 2022 2).


MEMBRANE is an investigator-initiated, single-center, randomized controlled trial. Male, female, and diverse patients older than 18 years scheduled for surgical evacuation of a first chronic subdural hematoma will be assigned in a 1:1 fashion by block randomization to the chronic subdural hematoma treatment (surgery plus endovascular MMA embolization) or the control group (surgery alone). The primary trial endpoint is chronic subdural hematoma recurrence within 3 months of follow-up after surgery. Secondary endpoints comprise neurological deficits assessed by the modified Rankin Scale (mRS) and recurrence- or intervention-associated complications (see Chronic subdural hematoma surgery complications) see Middle meningeal artery embolization for chronic subdural hematoma complications during 3 months of follow-up. Assuming a risk difference of 20% of rebleeding and surgical revision, a power of 80%, and a drop-out rate of 10%, 154 patients will be enrolled in this trial, employing an adaptive O’Brien-Fleming approach with a planned interim analysis halfway.

The MEMBRANE trial will provide the first clinical experimental evidence on the effectiveness of endovascular embolization of the MMA as an adjunct to surgery to reduce the risk of recurrence after the evacuation of cSDH.

Trial registration: German Clinical Trials Registry (Deutsches Register Klinischer Studien [DRKS]) DRKS00020465. Registered on 18 Nov 2021 3).


1)

Link TW, Boddu S, Paine SM, Kamel H, Knopman J. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma: A Series of 60 Cases. Neurosurgery. 2019 Dec 1;85(6):801-807. doi: 10.1093/neuros/nyy521. PMID: 30418606.
2)

Drake M, Ullberg T, Nittby H, Marklund N, Wassélius J. Swedish trial on embolization of middle meningeal artery versus surgical evacuation in chronic subdural hematoma (SWEMMA)-a national 12-month multi-center randomized controlled superiority trial with parallel group assignment, open treatment allocation and blinded clinical outcome assessment. Trials. 2022 Nov 8;23(1):926. doi: 10.1186/s13063-022-06842-4. PMID: 36348417.
3)

Hoenning A, Lemcke J, Rot S, Stengel D, Hoppe B, Zappel K, Schuss P, Mutze S, Goelz L. Middle Meningeal Artery Embolization Minimizes Burdensome Recurrence Rates After Newly Diagnosed Chronic Subdural Hematoma Evacuation (MEMBRANE): study protocol for a randomized controlled trial. Trials. 2022 Aug 22;23(1):703. doi: 10.1186/s13063-022-06506-3. PMID: 35996195.

Stenotrophomonas maltophilia meningitis

Stenotrophomonas maltophilia meningitis

Stenotrophomonas maltophilia treatment

The clinical characteristics of six Stenotrophomonas maltophilia ABM cases, collected during a study period of nine years (2001-2009) were included. In the related literature, 13 S. maltophilia ABM cases were reported, and their clinical data were also collected.

The 19 S. maltophilia ABM cases included 11 men and 8 women, aged 28-70 years. Of these 19 cases, 89.5% (17/19) had underlying neurosurgical (NS) conditions as the preceding event. Before the development of S. maltophilia ABM, 52.6% (10/19) of them had long stays in hospital and 63.2% (12/19) had undergone antibiotic treatment. Among the implicated S. maltophilia cases, three strains were found to have a resistance to sulfamethoxazole-trimethoprim (SMZ-TMP). Two of our five cases had resistant strains to levofloxacin. Among the antibiotics chosen for treatment, SMZ-TMP was the most common followed by quinolone (ciprofloxacin, levofloxacin, moxifloxacin). The therapeutic results showed 2 cases expired while the other 17 cases survived.

S. maltophilia ABM usually develops in patients with a preceding neurosurgical condition, a long hospital stay and antibiotic use. SMZ-TMP and quinolones, especially the ciprofloxacin, are the major antibiotic used. This study also shows the emergence of clinical S. maltophilia strains which are not susceptible to SMZ-TMP and quinolones and this development may pose a more serious threat in the near future because treatment options may become depleted and limited despite the mortality rate of this specific group of ABM not being high at this time 1).

A young female patient with history of multiple shunt revisions in the past, came with shunt dysfunction and exposure of the ventriculoperitoneal shunt tube in the neck. The abdominal end of the shunt tube was seen migrating into the bowel during shunt revision. The cerebrospinal fluid analysis showed evidence of Stenotrophomonas maltophilia growth. This is the first reported case of Stenotrophomonas maltophilia meningitis associated with ventriculoperitoneal shunt migration into the bowel. 2).


A patient who developed C. utilis and S. maltophilia after undergoing neurosurgery and received effective nosocomial meningitis treatment. Multiple neurosurgeries were required for a 16-year-old girl due to complications. For probable nosocomial meningitis, she was treated with cefepime with vancomycin. Meropenem and liposomal amphotericin B were prescribed after her seizure and positive CSF culture for Candida utilis. Consequently, S. maltophilia was discovered in the CSF, and ceftazidime and trimethoprim-sulfamethoxazole were prescribed. The patient has been hemodynamically stable for the past two months, and consecutive CSF cultures have been negative. To the best of our knowledge, this is the first case of C. utilis and S. maltophilia co-infection that has been successfully handled. 3).


Two cases of S. maltophilia meningitis following neurosurgical procedures. The first patient was a 60-year-old female. She was admitted to the hospital with a left basal ganglia bleed and underwent placement of an external ventricular drain for the treatment of hydrocephalus. She developed S. maltophilia meningitis 20 days after surgery. She was successfully treated with a combination of trimethoprim-sulfamethoxazole and intravenous colistin and the removal of the drain. She successfully underwent a ventriculoperitoneal (VP) shunt placement at the therapeutic midway point. The second patient was a 35-year-old male with a history of intracranial aneurysm bleeding. He had undergone a craniotomy and placement of a ventriculoperitoneal shunt two years previously. His shunt was replaced twice due to blockage. The last replacement had occurred 15 days prior to the development of meningitis. He was treated with a combination of trimethoprim-sulfamethoxazole and ceftazidime (as well as undergoing another shunt replacement) and experienced an excellent recovery. S. maltophilia is a rare but important cause of nosocomial meningitis. It is strongly associated with prior hospitalization and neurosurgical intervention, which is also found in our case series. The management of S. maltophilia meningitis is a therapeutic challenge due to its high resistance to multiple antibiotics. Optimal therapy is based on antimicrobial sensitivity, and the trimethoprim-sulfamethoxazole-based combination has been shown to be successful. The duration of therapy is debatable, but like most gram-negative meningitis infections, therapy lasting up to three weeks appears to be adequate. 4).


Stenotrophomonas maltophilia CSF infection in infants after neurosurgery 5).


A 4-year-old boy who developed meningitis associated with this organism, after several neurosurgical procedures and previous treatment with a broad-spectrum antibiotic. He was treated successfully with a combination of trimethoprim-sulfamethoxazole, ceftazidime and levofloxacin. Stenotrophomonas maltophilia should be considered as a potential cause of meningitis, especially among severely debilitated or immunosuppressed patients. Antimicrobial therapy is complicated by the high resistance of the organism to multiple antibiotics. 6).


A case of a six months old, male child who developed meningitis caused by Stenotrophomonas maltophilia, after he underwent a neurosurgical procedure. 7).


A 30-year-old male patient who developed meningitis associated with this organism after several neurosurgical procedures. A review of the literature revealed only 15 previous reports. Most cases were associated with neurosurgical procedures. Antimicrobial therapy is complicated by multiple drug resistance of the organism, and trimethoprim-sulfamethoxazole is the recommended agent for treatment. 8).


A case of generalized infection by S. maltophilia, including meningitis, bacteremia and respiratory tract infection, in a patient who had undergone multiple neurosurgical procedures and who was treated with trimethoprim-sulphamethoxazole 9).


Two cases of meningitis caused by Stenotrophomonas maltophilia in cancer patients following placement of an Ommaya reservoir for treatment of meningeal carcinomatosis. In addition, they review eight other cases of S. maltophilia that have been reported to date. Stenotrophomonas maltophilia meningitis is often associated with neurosurgical procedures; however, spontaneous infection may also occur, mainly in neonates. The disease’s clinical presentation is similar to that of other forms of meningitis caused by Gram-negative bacilli. The overall mortality rate of this disease is 20% and is limited to neonates with spontaneous meningitis in whom effective antibiotic therapy is delayed. Meningitis caused by S. maltophilia in the modern era should be considered in immunocompromised hosts with significant central nervous system disease who have undergone neurosurgical procedures and who do not readily respond to broad-spectrum antimicrobial coverage. 10).


1)

Huang CR, Chen SF, Tsai NW, Chang CC, Lu CH, Chuang YC, Chien CC, Chang WN. Clinical characteristics of Stenotrophomonas maltophilia meningitis in adults: a high incidence in patients with a postneurosurgical state, long hospital staying and antibiotic use. Clin Neurol Neurosurg. 2013 Sep;115(9):1709-15. doi: 10.1016/j.clineuro.2013.03.006. Epub 2013 Apr 20. PMID: 23611735.
2)

Manuel A, Jayachandran A, Harish S, Sunil T, K R VD, K R, Jo J, Unnikrishnan M, George K, Bahuleyan B. <i>Stenotrophomonas maltophilia</i> as a rare cause of meningitis and ventriculoperitoneal shunt infection. Access Microbiol. 2021 Oct 7;3(10):000266. doi: 10.1099/acmi.0.000266. PMID: 34816086; PMCID: PMC8604181.
3)

Mohzari Y, Al Musawa M, Asdaq SMB, Alattas M, Qutub M, Bamogaddam RF, Yamani A, Aldabbagh Y. Candida utilis and Stenotrophomonas maltophilia causing nosocomial meningitis following a neurosurgical procedure: A rare co-infection. J Infect Public Health. 2021 Nov;14(11):1715-1719. doi: 10.1016/j.jiph.2021.10.004. Epub 2021 Oct 13. PMID: 34700290.
4)

Khanum I, Ilyas A, Ali F. Stenotrophomonas maltophilia Meningitis – A Case Series and Review of the Literature. Cureus. 2020 Oct 28;12(10):e11221. doi: 10.7759/cureus.11221. PMID: 33269149; PMCID: PMC7704165.
5)

Mukherjee S, Zebian B, Chandler C, Pettorini B. Stenotrophomonas maltophilia CSF infection in infants after neurosurgery. Br J Hosp Med (Lond). 2017 Dec 2;78(12):724-725. doi: 10.12968/hmed.2017.78.12.724. PMID: 29240495.
6)

Correia CR, Ferreira ST, Nunes P. Stenotrophomonas maltophilia: rare cause of meningitis. Pediatr Int. 2014 Aug;56(4):e21-2. doi: 10.1111/ped.12352. PMID: 25252064.
7)

Sood S, Vaid VK, Bhartiya H. Meningitis due to Stenotrophomonas maltophilia after a Neurosurgical Procedure. J Clin Diagn Res. 2013 Aug;7(8):1696-7. doi: 10.7860/JCDR/2013/5614.3248. Epub 2013 Aug 1. PMID: 24086879; PMCID: PMC3782936.
8)

Yemisen M, Mete B, Tunali Y, Yentur E, Ozturk R. A meningitis case due to Stenotrophomonas maltophilia and review of the literature. Int J Infect Dis. 2008 Nov;12(6):e125-7. doi: 10.1016/j.ijid.2008.03.028. Epub 2008 Jun 24. PMID: 18579427.
9)

Platsouka E, Routsi C, Chalkis A, Dimitriadou E, Paniara O, Roussos C. Stenotrophomonas maltophilia meningitis, bacteremia and respiratory infection. Scand J Infect Dis. 2002;34(5):391-2. doi: 10.1080/00365540110080520. PMID: 12069028.
10)

Papadakis KA, Vartivarian SE, Vassilaki ME, Anaissie EJ. Stenotrophomonas maltophilia meningitis. Report of two cases and review of the literature. J Neurosurg. 1997 Jul;87(1):106-8. doi: 10.3171/jns.1997.87.1.0106. PMID: 9202275.
WhatsApp WhatsApp us
%d bloggers like this: