Raloxifene

Raloxifene

Raloxifene, sold under the brand name Evista among others, is a medication which is used in the prevention and treatment of osteoporosis in postmenopausal women and to reduce the risk of breast cancer in postmenopausal women with osteoporosis or at high risk for breast cancer. It is taken by mouth.


Choudhary et al., evaluated the effect of raloxifene on prolactin levels in addition to dopamine agonist (DA) therapy in patients with prolactinoma.

They conducted a retrospective chart review of 14 patients with prolactinoma on stable dose of DA for 6 months who received raloxifene 60 mg daily as Prolactin (PRL) could not be normalized despite being on fairly high doses of DA. Patients were informed that raloxifene is not FDAapproved for prolactinoma treatment. Prolactin level was measured at 1-6 months after starting raloxifene and at 1-3 months following its discontinuation. Raloxifene was stopped in 8 out of 14 after 2 (1-6) months of treatment as the absolute change in prolactin level was felt to be small. Results The median age and female/male sex ratios were 50 years (range 18-63), 6/8 respectively. The baseline DA dose was 3 mg/week (0.5-7) for cabergoline and 15 mg/day for bromocriptine. 10 patients had an absolute and percentage decrease in prolactin of 8.3 ng/ml (1.5-54.2), and 25.9% (8-55%) from baseline after 1-6 months on raloxifene treatment, respectively. Among 10 patients with a decrease in prolactin level, 2 (20%) achieved prolactin normalization. Two patients had no change in prolactin and two patients had an increase in prolactin level by 22.8 ng/ml and 8.8 ng/ml (47% and 23.6%) respectively.

Raloxifene was associated with 25.9% (8-55%) decrease in prolactin levels in 10/14 (71%) of patients with prolactinoma who were on stable doses of DA including two patients (14%) who achieved normoprolactinemia 1).


Hannen et al., analyzed the effects of fulvestrant and three Selective estrogen receptor modulators (SERMs), bazedoxifene, clomifene, and raloxifene, on pituitary adenomas cell lines AtT20, TtT/GF, and GH3. In cell survival assays, clomifene was shown to be the most potent compound in all three cell lines with IC50 values ranging between 2, 6, and 10 μM, respectively, depending on the cell type. Raloxifene and bazedoxifene were also effective but to a lower extent. Also, all SERMs affected migratory and invasive behavior of pituitary adenoma cells. Mechanistically, treatment of cells with SERMs caused cell apoptosis, as demonstrated by Caspase 3/7 activity and western blot assays. In addition, western blots demonstrate activation of p53 in TtT/GF cells and loss of ERK1/2 activation in AtT20 cells. In contrast, fulvestrant was only effective in GH3 cells. Thus, the general applicability of SERMs for pituitary adenoma cells might be promising in clinical applications for the treatment of pituitary adenomas 2).


The aim of a study was to investigate the ability of a SERM, RLX, to prevent vasospasm in a rabbit model of SAH.

Thirty-four New Zealand white rabbits were allocated into 3 groups randomly. Subarachnoid hemorrhage was induced by injecting autologous blood into the cisterna magna. The treatment groups were as follows: (1) sham operated (no SAH [n = 12]), (2) SAH only (n = 12), and (3) SAH plus RLX (n = 10). Basilar artery lumen areas and arterial wall thickness were measured to assess vasospams in all groups.

There was a statistically significant difference between the mean basilar artery cross-sectional areas and the mean arterial wall thickness measurements of the control and SAH-only groups (P < .05). The difference between the mean basilar artery cross-sectional areas and the mean arterial wall thickness measurements in the RLX-treated group was statistically significant (P < .05). The difference between the SAH group and the SAH + RLX group was also statistically significant (P < .05).

These findings demonstrate that RLX has marked vasodilatatory effect in an experimental model of SAH in rabbits. This observation may have clinical implications suggesting that this SERM drug could be used as possible anti-vasospastic agent in patients without major adverse effects 3).


The effect of raloxifene on cerebral vasospasm following experimental subarachnoid hemorrhage (SAH) was investigated in a rat model. Seven groups of seven rats underwent no SAH, no treatment; SAH only; SAH plus vehicle; SAH plus 3 days intraperitoneal raloxifene treatment; SAH plus 4 days intraperitoneal raloxifene treatment; SAH plus 3 days intrathecal raloxifene treatment; and SAH plus 4 days intrathecal raloxifene treatment. The basilar artery cross-sectional areas were measured at 72 or 96 hours following SAH. The results showed raloxifene decreased SAH-induced cerebral vasospasm in all treatment groups, and suggested no difference between intraperitoneal and intrathecal application, or between 3 days and 4 days of raloxifene treatment. The present study demonstrates that raloxifene is a potential therapeutic agent against cerebral vasospasm after SAH 4).


To directly test whether exogenous 17beta estradiol and raloxifene affect the number of glial cells in brain, C57BL/6NIA female mice aged 20-24 months received bilateral ovariectomy followed by s.c. placement of a 60-day release pellet containing 17beta estradiol (1.7 mg), raloxifene (10 mg), or placebo (cholesterol). After 60 days, numbers of microglia and astrocytes were quantified in dentate gyrus and CA1 regions of the hippocampal formation using immunocytochemistry and design-based stereology. The results show that long-term 17beta estradiol treatment in aged female mice significantly lowered the numbers of astrocytes and microglial cells in dentate gyrus and CA1 regions compared with placebo. After long-term treatment with raloxifene, a similar reduction was observed in numbers of astrocytes and microglial cells in the hippocampal formation. These findings indicate that estrogen and selective estrogen receptor modulators can influence glial-mediated inflammatory pathways and possibly protect against age- and disease-related neuropathology 5).

References

1)

Choudhary C, Hamrahian AH, Bena JF, Recinos P, Kennedy L, Dobri G. THE EFFECT OF RALOXIFENE ON SERUM PROLACTIN LEVEL IN PATIENTS WITH PROLACTINOMA. Endocr Pract. 2019 Mar 13. doi: 10.4158/EP-2018-0321. [Epub ahead of print] PubMed PMID: 30865525.
2)

Hannen R, Steffani M, Voellger B, Carl B, Wang J, Bartsch JW, Nimsky C. Effects of anti-estrogens on cell invasion and survival in pituitary adenoma cells: A systematic study. J Steroid Biochem Mol Biol. 2019 Mar;187:88-96. doi: 10.1016/j.jsbmb.2018.11.005. Epub 2018 Nov 13. PubMed PMID: 30439415.
3)

Gürses L, Seçkin H, Simşek S, Senel OO, Yigitkanli K, Oztürk E, Beşalti O, Belen D, Bavbek M. Effects of raloxifene on cerebral vasospasm after experimental Subarachnoid Hemorrhage in rabbits. Surg Neurol. 2009 Nov;72(5):490-4; discussion 494-5. doi: 10.1016/j.surneu.2008.11.007. Epub 2009 Jan 14. PubMed PMID: 19147193.
4)

Gulsen S, Inci S, Yuruk S, Yasar U, Ozgen T. Effect of raloxifene on cerebral vasospasm following experimental subarachnoid hemorrhage in rats. Neurol Med Chir (Tokyo). 2007 Dec;47(12):537-42; discussion 542. PubMed PMID: 18159137.
5)

Lei DL, Long JM, Hengemihle J, O’Neill J, Manaye KF, Ingram DK, Mouton PR. Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice. Neuroscience. 2003;121(3):659-66. PubMed PMID: 14568026.

Foramen ovale puncture

Foramen ovale puncture

Complications

Although Gasserian ganglion block is an established treatment for trigeminal neuralgia, the foramen ovale cannot always be clearly visualized by classical X-ray radiography.

Cannulation procedures, including those utilizing neuronavigational technology, are occasionally complicated by anatomical variation of the FO, sometimes resulting in miscannulation and subsequent adverse events. The FO, while commonly thought of as oval-shaped, has also been described as “almond,” “banana,” “D shape,” “pear,” and “triangular.” 1).

Advancement of the catheter more than 10 mm from the foramen ovale is likely to damage the internal carotid artery and the abducens nerve at the medial side of the petrolingual ligament. Thermocoagulation of the lateral wall of the cavernous sinus may damage the cranial nerves by heat, giving rise to pareses 2).


Guo et al., described a technique that includes a stereotactic approach in the preoperative plan in cases where the foramen ovale is difficult to access for radiofrequency thermocoagulation of the Gasserian ganglion.

The study included 395 patients for whom three-dimensional computed tomographic reconstruction of the skull base, maxilla, and mandible was conducted before surgery. Accessibility of the foramen ovale was defined using numerical data from the three-dimensional computed tomographic reconstruction images. In those patients for whom accessibility of the foramen ovale was considered difficult, the authors used a stereotactic frame to design an individual operative plan. Adjustments of a single point of data,-that is, a change in X axis, Y axis, or an arc angle-were guided by radiographic fluoroscopy images. After verifying successful cannulation and electroneurophysiology, thermocoagulation targets-especially multiple targets recorded as data on the Z axis of the stereotactic approach-were identified and treated.

There were 24 patients who met the predetermined criteria for having a difficult-to-access foramen ovales-that is, they had at least two contributing factors and/or involvement of division V1 . Twenty-one of the 24 patients required a single satisfactory puncture; three patients required two to three punctures to successfully access the foramen ovale. There were no permanent complications from the procedure.

The authors conclude that this stereotactic approach combined with three-dimensional computed tomographic reconstruction model can improve the accuracy, safety, and efficiency of percutaneous radiofrequency thermocoagulation in patients with trigeminal neuralgia for whom the foramen ovale is difficult to access 3).


Ding et al., assessed the feasibility of accessing the Gasserian ganglion through the FO from a mandibular angle under computed tomography (CT) and neuronavigation guidance.A total of 108 patients with TN were randomly divided into 2 groups (Group G and Group H) using a random number table. In Group H, anterior Hartel approach was used to puncture the FO; whereas in Group G, a percutaneous puncture through a mandibular angle was used to reach the FO. In both groups, procedures were guided by CT imaging and neuronavigation. The success rates, therapeutic effects, complications, and recurrence rates of the 2 groups were compared.The puncture success rates in Group H and Group G were 52/54 (96.30%) and 49/54 (90.74%), respectively (P = 0.24). The 2 procedural failures in Group H were rescued by using submandibular trajectory, and the 5 failures in Group G were successfully reapproached by Hartel method. Therapeutic effects as measured by Barrow Neurological Institute Pain Scale (P = 0.03) and quality of life (QOL) scores (P = 0.04) were significantly better in Group G than those in Group H at 36 months posttreatment. Hematoma developed in 1/54 (1.85%) cases in Group H, and no cases of hematoma were observed in Group G (P = 0.33). In Group H, RFT resulted in injury to the unintended trigeminal nerve branches and motor fibers in 27/52 (51.92%) cases; in Group G, it resulted in the same type of injury in 7/49 cases (14.29%) (P < 0.01). In Group H, the 24- and 36-month recurrence rates were 12/51 (23.53%) and 20/51 (39.22%), respectively; in Group G, these recurrence rates were 7/49 (12.24%) and 9/49 (16.33%, P = 0.03), respectively.CT- and neuronavigation-guided puncture from a mandibular angle through the FO into the Gasserian ganglion can be safely and effectively used to deliver RFT for the treatment of pTN. This method may represent a viable option to treat TN in addition to Hartel approach 4).


The goals of a study of Peris-Celda et al., were to demonstrate the anatomical basis of complications related to FO puncture, and provide anatomical landmarks for improvement of safety, selective lesioning of the trigeminal nerve (TN), and optimal placement of electrodes.

Both sides of 50 dry skulls were studied to obtain the distances from the FO to relevant cranial base references. A total of 36 sides from 18 formalin-fixed specimens were dissected for Meckel cave and TN measurements. The best radiographic projection for FO visualization was assessed in 40 skulls, and the optimal trajectory angles, insertion depths, and topographies of the lesions were evaluated in 17 specimens. In addition, the differences in postoperative pain relief after the radiofrequency procedure among different branches of the TN were statistically assessed in 49 patients to determine if there was any TN branch less efficiently targeted.

Most severe complications during FO puncture are related to incorrect needle placement intracranially or extracranially. The needle should be inserted 25 mm lateral to the oral commissure, forming an approximately 45° angle with the hard palate in the lateral radiographic view, directed 20° medially in the anteroposterior view. Once the needle reaches the FO, it can be advanced by 20 mm, on average, up to the petrous ridge. If the needle/radiofrequency electrode tip remains more than 18 mm away from the midline, injury to the cavernous carotid artery is minimized. Anatomically there is less potential for complications when the needle/radiofrequency electrode is advanced no more than 2 mm away from the clival line in the lateral view, when the needle pierces the medial part of the FO toward the medial part of the trigeminal impression in the petrous ridge, and no more than 4 mm in the lateral part. The 40°/45° inferior transfacial-20° oblique radiographic projection visualized 96.2% of the FOs in dry skulls, and the remainder were not visualized in any other projection of the radiograph. Patients with V1 involvement experienced postoperative pain more frequently than did patients with V2 or V3 involvement. Anatomical targeting of V1 in specimens was more efficiently achieved by inserting the needle in the medial third of the FO; for V2 targeting, in the middle of the FO; and for V3 targeting, in the lateral third of the FO.

Knowledge of the extracranial and intracranial anatomical relationships of the FO is essential to understanding and avoiding complications during FO puncture. These data suggest that better radiographic visualization of the FO can improve lesioning accuracy depending on the part of the FO to be punctured. The angles and safety distances obtained may help the neurosurgeon minimize complications during FO puncture and TN lesioning 5).


Koizuka et al., presented a new method for percutaneous radio-frequency thermocoagulation of the Gasserian ganglion, in which computed tomography (CT) fluoroscopy is used to guide needle placement.

In the present study, 15 patients with trigeminal neuralgia underwent percutaneous radio-frequency thermocoagulation of the Gasserian ganglion guided by high-speed real-time CT fluoroscopy.

RESULTS: Trigeminal neuralgia was improved in all patients after treatment without any severe complications. Moderate dysesthesia occurred in only one case.

CT fluoroscopy-guided percutaneous radio-frequency thermocoagulation of the Gasserian ganglion was safe, quick, and effective for patients with intractable idiopathic trigeminal neuralgia 6).

Videos

References

1)

Zdilla MJ, Fijalkowski KM. The Shape of the Foramen Ovale: A Visualization Aid for Cannulation Procedures. J Craniofac Surg. 2016 Dec 23. doi: 10.1097/SCS.0000000000003325. [Epub ahead of print] PubMed PMID: 28027173.
2)

Kaplan M, Erol FS, Ozveren MF, Topsakal C, Sam B, Tekdemir I. Review of complications due to foramen ovale puncture. J Clin Neurosci. 2007 Jun;14(6):563-8. Epub 2006 Dec 13. PubMed PMID: 17169562.
3)

Guo Z, Wu B, Du C, Cheng M, Tian Y. Stereotactic Approach Combined with 3D CT Reconstruction for Difficult-to-Access Foramen Ovale on Radiofrequency Thermocoagulation of the Gasserian Ganglion for Trigeminal Neuralgia. Pain Med. 2016 Sep;17(9):1704-16. doi: 10.1093/pm/pnv108. Epub 2016 Feb 13. PubMed PMID: 26874883.
4)

Ding W, Chen S, Wang R, Cai J, Cheng Y, Yu L, Li Q, Deng F, Zhu S, Yu W. Percutaneous radiofrequency thermocoagulation for trigeminal neuralgia using neuronavigation-guided puncture from a mandibular angle. Medicine (Baltimore). 2016 Oct;95(40):e4940. PubMed PMID: 27749549; PubMed Central PMCID: PMC5059051.
5)

Peris-Celda M, Graziano F, Russo V, Mericle RA, Ulm AJ. Foramen ovale puncture, lesioning accuracy, and avoiding complications: microsurgical anatomy study with clinical implications. J Neurosurg. 2013 Nov;119(5):1176-93. doi: 10.3171/2013.1.JNS12743. Epub 2013 Apr 19. PubMed PMID: 23600929.
6)

Koizuka S, Saito S, Sekimoto K, Tobe M, Obata H, Koyama Y. Percutaneous radio-frequency thermocoagulation of the Gasserian ganglion guided by high-speed real-time CT fluoroscopy. Neuroradiology. 2009 Sep;51(9):563-6. doi: 10.1007/s00234-009-0541-8. Epub 2009 Jun 5. PubMed PMID: 19499214.

Mesial temporal lobe lesion approaches

Mesial temporal lobe lesion approaches

There are several ways to safely access mesial temporal structures. The transsylvian-transcisternal approach is a good way to access the mesial structures while preserving the lateral and basal temporal structures. Actual lesions associated with epileptogenesis in focal cortical dysplasia (FCD) may be larger than they appear on magnetic resonance imaging. For this reason, evaluations to locate sufficient epileptogenic foci, including invasive studies, should be completed for FCD, and epilepsy surgery should be performed according to these results. Regardless, the ultimate goal of all epilepsy surgeries is to maximize seizure control while maintaining neurological function. Therefore, a tailored approach based on the properties of the lesion is needed1).

For Campero et al., dividing the mesial temporal region (MTR) into 3 regions allows us to adapt the approach to lesion location. Thus, the anterior sector can be approached via the sylvian fissure, the middle sector can be approached transtemporally, and the posterior sector can be approached via the supracerebellar approach 2).

There are limited reports on the transcortical approach for the resection of tumors within this region.

Morshed et al., from the UCSF Medical Center, described the technical considerations and functional outcomes in patients undergoing transcortical resection of gliomas of the mesial temporal lobe (MTL).

Patients with a glioma (WHO grades I-IV) located within the MTL who had undergone the transcortical approach in the period between 1998 and 2016 were identified through the University of California, San Francisco (UCSF) tumor registry and were classified according to tumor location: preuncus, uncus, hippocampus/parahippocampus, and various combinations of the former groups. Patient and tumor characteristics and outcomes were determined from operative, radiology, pathology, and other clinical reports that were available through the UCSF electronic medical record.

Fifty patients with low- or high grade glioma were identified. The mean patient age was 46.8 years, and the mean follow-up was 3 years. Seizures were the presenting symptom in 82% of cases. Schramm classification types A, C, and D represented 34%, 28%, and 38% of the tumors, and the majority of lesions were located at least in part within the hippocampus/parahippocampus. For preuncus and preuncus/uncus tumors, a transcortical approach through the temporal pole allowed for resection. For most tumors of the uncus and those extending into the hippocampus/parahippocampus, a corticectomy was performed within the middle and/or inferior temporal gyri to approach the lesion. To locate the safest corridor for the corticectomy, language mapping was performed in 96.9% of the left-sided tumor cases, and subcortical motor mapping was performed in 52% of all cases. The mean volumetric extent of resection of low- and high-grade tumors was 89.5% and 96.0%, respectively, and did not differ by tumor location or Schramm type. By 3 months’ follow-up, 12 patients (24%) had residual deficits, most of which were visual field deficits. Three patients with left-sided tumors (9.4% of dominant-cortex lesions) experienced word-finding difficulty at 3 months after resection, but 2 of these patients demonstrated complete resolution of symptoms by 1 year.

Mesial temporal lobe gliomas, including larger Schramm type C and D tumors, can be safely and aggressively resected via a transcortical equatorial approach when used in conjunction with cortical and subcortical mapping 3).


Microsurgery was performed via transsylviantranstemporal, or subtemporal approaches on 62 patients with mesial temporal lobe gliomas, 33 with localized tumors within the mesial temporal structures (type A), 19 in anterior portion (type A1), and 14 extending to posterior portion (type A2); 19 patients with multicompartmental tumors involving the mesial temporal lobe, insular lobe, and posterior frontorbital gurus (type B); 14 patients with tumors involving the temporal pole and lateral areas of the temporal horn (type C); and 6 patients with tumors infiltrating the brain stem, basal nuclei and thalamus (type D).

Trans-sylvian approach was performed in 25 cases of which total tumor removal was achieved in 14 cases, subtotal removal in 6 cases, and gross removal in 5 cases. Primary visual deficits worsened after surgery in 5 cases. Trans-temporal approach was used in 23 cases of which total tumor resection was achieved in 15 cases, subtotal resection in 5 cases, and gross resection in 3 cases. Primary visual deficits worsened after surgery in 5 cases. Four patients in which preoperative vision were good presented with visual deficits postoperatively. Subtemporal approach was used in 14 cases of which total tumor removal was achieved in 10 cases, and subtotal removal in 4 cases. All 14 patients did not develop worsened vision after surgery.

Trans-sylvian and subtemporal approaches can reduce possible harm to parenchyma and optic radiation, whereas approaches to the temporal horn through the superior and middle temporal gyri will induce damage to parenchyma and optic radiation 4).


The aim of Faust et al., was to categorize temporal lobe tumors based on anatomical, functional, and vascular considerations and to devise a systematic field manual of surgical approaches.

Tumors were classified into four main types with assigned approaches: Type I-lateral: transcortical; type II-polar: pterional/transcortical; type III-central: transsylvian/transopercular; type IV-mesial: transsylvian/trans-cisternal if more anterior (=Type IV A), and supratentorial/infraoccipital if more posterior (=type IV B). 105 patients have been operated on prospectively using the advocated guidelines. Outcomes were evaluated.

Systematic application of the proposed classification facilitated a tailored approach, with gross total tumor resection of 88 %. Neurological and surgical morbidity were less than 10 %. The proposed classification may prove a valuable tool for surgical planning 5).


Twenty formalin-fixed, adult cadaveric specimens were studied. Ten brains provided measurements to compare different surgical strategies. Approaches were demonstrated using 10 silicon-injected cadaveric heads. Surgical cases were used to illustrate the results by the different approaches. Transverse lines at the level of the inferior choroidal point and quadrigeminal plate were used to divide the medial temporal region into anterior, middle, and posterior portions. Surgical approaches to the medial temporal region were classified into four groups: superior, lateral, basal, and medial, based on the surface of the lobe through which the approach was directed. The approaches through the medial group were subdivided further into an anterior approach, the transsylvian transcisternal approach, and two posterior approaches, the occipital interhemispheric and supracerebellar transtentorial approaches.

The anterior portion of the medial temporal region can be reached through the superior, lateral, and basal surfaces of the lobe and the anterior variant of the approach through the medial surface. The posterior group of approaches directed through the medial surface are useful for lesions located in the posterior portion. The middle part of the medial temporal region is the most challenging area to expose, where the approach must be tailored according to the nature of the lesion and its extension to other medial temporal areas.

Each approach to medial temporal lesions has technical or functional drawbacks that should be considered when selecting a surgical treatment for a given patient. Dividing the medial temporal region into smaller areas allows for a more precise analysis, not only of the expected anatomic relationships, but also of the possible choices for the safe resection of the lesion. The systematization used here also provides the basis for selection of a combination of approaches 6).


Germano described a transsulcal temporal approach to mesiotemporal lesions and its application in three patients. Gross-total resection of the lesion was accomplished in all cases. An anatomical cadaveric study was also performed to delineate the microsurgical anatomy of this approach. Precise knowledge of temporal intraventricular landmarks allows navigation to the lesion without the need for a navigational system. This approach is helpful for neurologically intact patients with mesiotemporal lesions 7).

References

1)

Chong S, Phi JH, Lee JY, Kim SK. Surgical Treatment of Lesional Mesial Temporal Lobe Epilepsy. J Epilepsy Res. 2018 Jun 30;8(1):6-11. doi: 10.14581/jer.18002. eCollection 2018 Jun. Review. PubMed PMID: 30090756; PubMed Central PMCID: PMC6066696.
2)

Campero A, Ajler P, Rica C, Rhoton A Jr. Cavernomas and Arteriovenous Malformations in the Mesial Temporal Region: Microsurgical Anatomy and Approaches. Oper Neurosurg (Hagerstown). 2017 Feb 1;13(1):113-123. doi: 10.1227/NEU.0000000000001239. PubMed PMID: 28931254.
3)

Morshed RA, Young JS, Han SJ, Hervey-Jumper SL, Berger MS. The transcortical equatorial approach for gliomas of the mesial temporal lobe: techniques and functional outcomes. J Neurosurg. 2018 Apr 20:1-9. doi: 10.3171/2017.10.JNS172055. [Epub ahead of print] PubMed PMID: 29676697.
4)

Jiang ZL, Wang ZC, Jiang T. [Surgical outcomes of different approaches for mesial temporal lobe gliomas]. Zhonghua Yi Xue Za Zhi. 2005 Sep 7;85(34):2428-32. Chinese. PubMed PMID: 16321253.
5)

Faust K, Schmiedek P, Vajkoczy P. Approaches to temporal lobe lesions: a proposal for classification. Acta Neurochir (Wien). 2014 Feb;156(2):409-13. doi: 10.1007/s00701-013-1917-4. Epub 2013 Nov 8. Review. PubMed PMID: 24201756.
6)

Campero A, Tróccoli G, Martins C, Fernandez-Miranda JC, Yasuda A, Rhoton AL Jr. Microsurgical approaches to the medial temporal region: an anatomical study. Neurosurgery. 2006 Oct;59(4 Suppl 2):ONS279-307; discussion ONS307-8. PubMed PMID: 17041498.
7)

Germano IM. Transsulcal approach to mesiotemporal lesions. Anatomy, technique, and report of three cases. Neurosurg Focus. 1996 Nov 15;1(5):e4. PubMed PMID: 15099055.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: