Chronic subdural hematoma recurrence

Chronic subdural hematoma recurrence

Epidemiology

In 2 large cohorts of US patients, approximately 5% to 10% of patients who underwent surgery for nontraumatic SDH were required to undergo repeated operation within 30 to 90 days. These results may inform the design of future prospective studies and trials and help practitioners calibrate their index of suspicion to ensure that patients are referred for timely surgical care 1).

Recurrence rates after chronic subdural hematoma (CSDH) evacuation with any of actual techniques twist drill craniostomy (TDC), burr hole craniostomy, craniotomy range from 5% to 30%. 2).

Grading

Oslo grading system.

Risk factors

In the series of Santos et al. it was possible to demonstrate an age-related protective factor, analyzed as a continuous variable, regarding the recurrence of the chronic subdural hematoma (CSDH), with a lower rate of recurrence the higher the age.

The results indicate that, among possible factors associated with recurrence, only age presented a protective factor with statistical significance. The fact that no significant difference between the patients submitted to trepanning or craniotomy was found favors the preferential use of burr-hole surgery as a procedure of choice due to its fast and less complex execution 3).

In the series of Han et al. independent risk factors for recurrence were as follows: age > 75 years (HR 1.72, 95% CI 1.03-2.88; p = 0.039), obesity (body mass index ≥ 25.0 kg/m2), and a bilateral operation 4).

Chon et al. shown that postoperative midline shifting (≥5 mm), diabetes mellitus, preoperative seizure, preoperative width of hematoma (≥20 mm), and anticoagulant therapy were independent predictors of the recurrence of chronic subdural hematoma.

According to internal architecture of hematoma, the rate of recurrence was significantly lower in the homogeneous and the trabecular type than the laminar and separated type 5).


The recurrence rate of chronic subdural hematoma cSDH seems to be related to the excessive neoangiogenesis in the parietal membrane, which is mediated via vascular endothelial growth factor (VEGF). This is found to be elevated in the hematoma fluid and is dependent on eicosanoid/prostaglandin and thromboxane synthesis via cyclooxygenase-2 (COX-2).

Anticoagulant therapy

see Chronic subdural hematoma and anticoagulant therapy.

Antiplatelet therapy

Antiplatelet therapy significantly influences the recurrence of CSDH 6).

Pneumocephalus

Remaining pneumocephalus is seen as an approved factor of recurrence 7) 8).

Septation

Jack et al.found a 12% reoperation rate. CSDH septation (seen on computed tomogram scan) was found to be an independent risk factor for recurrence requiring reoperation (p=0.04). Larger post-operative subdural haematoma volume was also significantly associated with requiring a second drainage procedure (p<0.001). Independent risk factors of larger post-operative haematoma volume included septations within a CSDH (p<0.01), increased pre-operative haematoma volume (p<0.01), and a greater amount of parenchymal atrophy (p=0.04). A simple scoring system for quantifying recurrence risk was created and validated based on patient age (< or ≥80 years), haematoma volume (< or ≥160cc), and presence of septations within the subdural collection (yes or no).

Septations within CSDHs are associated with larger post-operative residual haematoma collections requiring repeat drainage. When septations are clearly visible within a CSDH, craniotomy might be more suitable as a primary procedure as it allows greater access to a septated subdural collection. The proposed scoring system combining haematoma volume, age, and presence of septations might be useful in identifying patients at higher risk for recurrence 9).

Membranectomy

Opening the internal hematoma membrane does not alter the rate of patients requiring revision surgery and the number of patients showing a marked residual hematoma six weeks after evacuation of a CSDH 10).

In the study of Lee et al, an extended surgical approach with partial membranectomy has no advantages regarding the rate of reoperation and the outcome. As initial treatment, burr-hole drainage with irrigation of the hematoma cavity and closed-system drainage is recommended. Extended craniotomy with membranectomy is now reserved for instances of acute rebleeding with solid hematoma 11).

Diabetes

Surgeons should consider informing patients with diabetes mellitus that this comorbidity is associated with an increased likelihood of recurrence

12) 13) 14).


Balser et al. report 11% recurrence, which included individuals who recurred as late as 3 years after initial diagnosis 15).

Close imaging follow-up is important for CSDH patients for recurrence prediction. Using quantitative CT volumetric analysis, strong evidence was provided that changes in the residual fluid volume during the ‘self-resolution’ period can be used as significantly radiological predictors of recurrence 16).

A structural equation model showed a significant association between increased antiinflammatory activity in hematoma fluid samples and a lower risk of recurrence, but this relationship was not statistically significant in venous blood samples. Moreover, these findings indicate that anti-inflammatory activities in the hematoma may play a role in the risk of a recurrence of CSDH 17).

Irrigation with artificial cerebrospinal fluid (ACF) decreased the rate of CSDH recurrence 18).

Treatment

There is no definite operative procedure for patients with intractable chronic subdural hematoma (CSDH).

Most recurrent hematomas are managed successfully with burr hole craniostomies with postoperative closed-system drainage. Refractory hematomas may be managed with a variety of techniques, including craniotomy or subdural-peritoneal shunt placement 19).

Although many studies have reported risk factors or treatments in efforts to prevent recurrence, those have focused on single recurrence, and little cumulative data is available to analyze refractory CSDH.

Matsumoto et al. defined refractory CSDH as ≥2 recurrences, then analyzed and compared clinical factors between patients with single recurrence and those with refractory CSDH in a cohort study, to clarify whether patients with refractory CSDH experience different or more risk factors than patients with single recurrence, and whether burr-hole irrigation with closed-system drainage reduces refractory CSDH.

Seventy-five patients had at least one recurrence, with single recurrence in 62 patients and ≥2 recurrences in 13 patients. In comparing clinical characteristics, patients with refractory CSDH were significantly younger (P=0.04) and showed shorter interval to first recurrence (P<0.001). Organized CSDH was also significantly associated with refractory CSDH (P=0.02). Multivariate logistic regression analysis identified first recurrence interval <1 month (OR 6.66, P<0.001) and age <71 years (OR 4.16, P<0.001) as independent risk factors for refractory CSDH. On the other hand, burr-hole irrigation with closed-system drainage did not reduce refractory CSDH.

When patients with risk factors for refractory CSDH experience recurrence, alternative surgical procedures may be considered as the second surgery, because burr-hole irrigation with closed-system drainage did not reduce refractory CSDH 20).

Implantation of a reservoir 21) 22) 23).

Subdural-peritoneal shunt 24).

Middle meningeal artery embolization

Embolization of the MMA is effective for refractory CSDH or CSDH patients with a risk of recurrence, and is considered an effective therapeutic method to stop hematoma enlargement and promote resolution 25) 26) 27) 28) 29) 30).

A pilot study indicated that perioperative middle meningeal artery (MMA) embolization could be offered as the least invasive and most effectual means of treatment for resistant patients of CSDHs with 1 or more recurrences 31).

Chihara et al. have treated three cases of CSDH with MMA embolization to date, but there was a postoperative recurrence in one patient, which required a craniotomy for hematoma removal and capsulectomy. MMA embolization blocks the blood supply from the dura to the hematoma outer membrane in order to prevent recurrences of refractory CSDH. Histopathologic examination of the outer membrane of the hematoma excised during craniotomy showed foreign-body giant cells and neovascular proliferation associated with embolization. Because part of the hematoma was organized in this case, the CSDH did not resolve when the MMA was occluded, and the development of new collateral pathways in the hematoma outer membrane probably contributed to the recurrence. Therefore, in CSDH with some organized hematoma, MMA embolization may not be effective. Magnetic resonance imaging (MRI) should be performed in these patients before embolization 32).

Case series

see Chronic subdural hematoma recurrence case series.

Case reports

Chronic subdural hematoma recurrence case reports.

References

1)

Knopman J, Link TW, Navi BB, Murthy SB, Merkler AE, Kamel H. Rates of Repeated Operation for Isolated Subdural Hematoma Among Older Adults. JAMA Netw Open. 2018 Oct 5;1(6):e183737. doi: 10.1001/jamanetworkopen.2018.3737. PubMed PMID: 30646255.
2)

Escosa Baé M, Wessling H, Salca HC, de Las Heras Echeverría P. Use of twist-drill craniostomy with drain in evacuation of chronic subdural hematomas: independent predictors of recurrence. Acta Neurochir (Wien). 2011 May;153(5):1097-103. doi: 10.1007/s00701-010-0903-3. Epub 2010 Dec 31. PubMed PMID: 21193935.
3)

Santos RGD, Xander PAW, Rodrigues LHDS, Costa GHFD, Veiga JCE, Aguiar GB. Analysis of predisposing factors for chronic subdural hematoma recurrence. Rev Assoc Med Bras (1992). 2019 Jul 22;65(6):834-838. doi: 10.1590/1806-9282.65.6.834. PubMed PMID: 31340313.
4)

Han MH, Ryu JI, Kim CH, Kim JM, Cheong JH, Yi HJ. Predictive factors for recurrence and clinical outcomes in patients with chronic subdural hematoma. J Neurosurg. 2017 Nov;127(5):1117-1125. doi: 10.3171/2016.8.JNS16867. Epub 2016 Dec 16. PubMed PMID: 27982768.
5)

Chon KH, Lee JM, Koh EJ, Choi HY. Independent predictors for recurrence of chronic subdural hematoma. Acta Neurochir (Wien). 2012 Sep;154(9):1541-8. doi: 10.1007/s00701-012-1399-9. Epub 2012 Jun 1. PubMed PMID: 22653496.
6)

Wada M, Yamakami I, Higuchi Y, Tanaka M, Suda S, Ono J, Saeki N. Influence of antiplatelet therapy on postoperative recurrence of chronic subdural hematoma: a multicenter retrospective study in 719 patients. Clin Neurol Neurosurg. 2014 May;120:49-54. doi: 10.1016/j.clineuro.2014.02.007. Epub 2014 Feb 24. PubMed PMID: 24731576.
7)

Mori K, Maeda M (2001) Surgical treatment of chronic subdural hematoma in 500 consecutive cases: clinical characteristics, surgical outcome, complications, and recurrence rate. Neurol Med Chir (Tokyo) 41:371–381
8)

Stanišić M, Hald J, Rasmussen IA, Pripp AH, Ivanović J, Kolstad F, Sundseth J, Züchner M, Lindegaard KF (2013) Volume and densities of chronic subdural haematoma obtained from CT imaging as predictors of postoperative recurrence: a prospective study of 107 operated patients. Acta Neurochir 155:323–333
9)

Jack A, O’Kelly C, McDougall C, Max Findlay J. Predicting Recurrence after Chronic Subdural Haematoma Drainage. Can J Neurol Sci. 2015 Jan 5:1-6. [Epub ahead of print] PubMed PMID: 25557536.
10)

Unterhofer C, Freyschlag CF, Thomé C, Ortler M. Opening the Internal Hematoma Membrane does not Alter the Recurrence Rate of Chronic Subdural Hematomas – A Prospective Randomized Trial. World Neurosurg. 2016 May 2. pii: S1878-8750(16)30210-8. doi: 10.1016/j.wneu.2016.04.081. [Epub ahead of print] PubMed PMID: 27150644.
11)

Lee JY, Ebel H, Ernestus RI, Klug N. Various surgical treatments of chronic subdural hematoma and outcome in 172 patients: is membranectomy necessary? Surg Neurol. 2004 Jun;61(6):523-7; discussion 527-8. PubMed PMID: 15165784.
12)

Matsumoto K, Akagi K, Abekura M, Ryujin H, Ohkawa M, Iwasa N, Akiyama C. Recurrence factors for chronic subdural hematomas after burr-hole craniostomy and closed system drainage. Neurol Res. 1999 Apr;21(3):277-80. PubMed PMID: 10319336.
13)

Yamamoto H, Hirashima Y, Hamada H, Hayashi N, Origasa H, Endo S. Independent predictors of recurrence of chronic subdural hematoma: results of multivariate analysis performed using a logistic regression model. J Neurosurg. 2003 Jun;98(6):1217-21. PubMed PMID: 12816267.
14)

Pang CH, Lee SE, Kim CH, Kim JE, Kang HS, Park CK, Paek SH, Kim CH, Jahng TA, Kim JW, Kim YH, Kim DG, Chung CK, Jung HW, Yoo H. Acute intracranial bleeding and recurrence after bur hole craniostomy for chronic subdural hematoma. J Neurosurg. 2015 Jul;123(1):65-74. doi: 10.3171/2014.12.JNS141189. Epub 2015 Feb 13. PubMed PMID: 25679282.
15)

Balser D, Rodgers SD, Johnson B, Shi C, Tabak E, Samadani U. Evolving management of symptomatic chronic subdural hematoma: experience of a single institution and review of the literature. Neurol Res. 2013 Apr;35(3):233-42. doi: 10.1179/1743132813Y.0000000166. Review. PubMed PMID: 23485050.
16)

Xu FF, Chen JH, Leung GK, Hao SY, Xu L, Hou ZG, Mao X, Shi GZ, Li JS, Liu BY. Quantitative computer tomography analysis of post-operative subdural fluid volume predicts recurrence of chronic subdural haematoma. Brain Inj. 2014;28(8):1121-6. doi: 10.3109/02699052.2014.910702. Epub 2014 May 6. PubMed PMID: 24801643.
17)

Pripp AH, Stanišić M. The Correlation between Pro- and Anti-Inflammatory Cytokines in Chronic Subdural Hematoma Patients Assessed with Factor Analysis. PLoS One. 2014 Feb 27;9(2):e90149. doi: 10.1371/journal.pone.0090149. eCollection 2014. PubMed PMID: 24587250.
18)

Adachi A, Higuchi Y, Fujikawa A, Machida T, Sueyoshi S, Harigaya K, Ono J, Saeki N. Risk factors in chronic subdural hematoma: comparison of irrigation with artificial cerebrospinal fluid and normal saline in a cohort analysis. PLoS One. 2014 Aug 4;9(8):e103703. doi: 10.1371/journal.pone.0103703. eCollection 2014. PubMed PMID: 25089621; PubMed Central PMCID: PMC4121178.
19)

Desai VR, Scranton RA, Britz GW. Management of Recurrent Subdural Hematomas. Neurosurg Clin N Am. 2017 Apr;28(2):279-286. doi: 10.1016/j.nec.2016.11.010. Epub 2017 Jan 4. Review. PubMed PMID: 28325462.
20)

Matsumoto H, Hanayama H, Okada T, Sakurai Y, Minami H, Masuda A, Tominaga S, Miyaji K, Yamaura I, Yoshida Y, Yoshida K. Clinical investigation of refractory chronic subdural hematoma: a comparison of clinical factors between single and repeated recurrences. World Neurosurg. 2017 Aug 24. pii: S1878-8750(17)31402-X. doi: 10.1016/j.wneu.2017.08.101. [Epub ahead of print] PubMed PMID: 28844917.
21)

Sato M, Iwatsuki K, Akiyama C, Masana Y, Yoshimine T, Hayakawa T. [Use of Ommaya CSF reservoir for refractory chronic subdural hematoma]. No Shinkei Geka. 1999 Apr;27(4):323-8. Japanese. PubMed PMID: 10347846.
22)

Sato M, Iwatsuki K, Akiyama C, Kumura E, Yoshimine T. Implantation of a reservoir for refractory chronic subdural hematoma. Neurosurgery. 2001 Jun;48(6):1297-301. PubMed PMID: 11383733.
23)

Laumer R. Implantation of a reservoir for refractory chronic subdural hematoma. Neurosurgery. 2002 Mar;50(3):672. PubMed PMID: 11841742.
24)

Misra M, Salazar JL, Bloom DM. Subdural-peritoneal shunt: treatment for bilateral chronic subdural hematoma. Surg Neurol. 1996 Oct;46(4):378-83. PubMed PMID: 8876720.
25)

Mandai S, Sakurai M, Matsumoto Y. Middle meningeal artery embolization for refractory chronic subdural hematoma. Case report. J Neurosurg. 2000 Oct;93(4):686-8. PubMed PMID: 11014549.
26)

Takahashi K, Muraoka K, Sugiura T, Maeda Y, Mandai S, Gohda Y, Kawauchi M, Matsumoto Y. [Middle meningeal artery embolization for refractory chronic subdural hematoma: 3 case reports]. No Shinkei Geka. 2002 May;30(5):535-9. Japanese. PubMed PMID: 11993178.
27)

Hirai S, Ono J, Odaki M, Serizawa T, Nagano O. Embolization of the Middle Meningeal Artery for Refractory Chronic Subdural Haematoma. Usefulness for Patients under Anticoagulant Therapy. Interv Neuroradiol. 2004 Dec 24;10 Suppl 2:101-4. Epub 2008 May 15. PubMed PMID: 20587257; PubMed Central PMCID: PMC3522210.
28)

Tsukamoto Y, Oishi M, Shinbo J, Fujii Y. Transarterial embolisation for refractory bilateral chronic subdural hematomas in a case with dentatorubral-pallidoluysian atrophy. Acta Neurochir (Wien). 2011 May;153(5):1145-7. doi: 10.1007/s00701-010-0891-3. Epub 2010 Dec 2. PubMed PMID: 21125409.
29)

Mino M, Nishimura S, Hori E, Kohama M, Yonezawa S, Midorikawa H, Kaimori M, Tanaka T, Nishijima M. Efficacy of middle meningeal artery embolization in the treatment of refractory chronic subdural hematoma. Surg Neurol Int. 2010 Dec 13;1:78. doi: 10.4103/2152-7806.73801. PubMed PMID: 21206540; PubMed Central PMCID: PMC3011107.
30)

Hashimoto T, Ohashi T, Watanabe D, Koyama S, Namatame H, Izawa H, Haraoka R, Okada H, Ichimasu N, Akimoto J, Haraoka J. Usefulness of embolization of the middle meningeal artery for refractory chronic subdural hematomas. Surg Neurol Int. 2013 Aug 19;4:104. doi: 10.4103/2152-7806.116679. eCollection 2013. PubMed PMID: 24032079; PubMed Central PMCID: PMC3766342.
31)

Kim E. Embolization Therapy for Refractory Hemorrhage in Patients with Chronic Subdural Hematomas. World Neurosurg. 2017 May;101:520-527. doi: 10.1016/j.wneu.2017.02.070. Epub 2017 Feb 27. PubMed PMID: 28249828.
32)

Chihara H, Imamura H, Ogura T, Adachi H, Imai Y, Sakai N. Recurrence of a Refractory Chronic Subdural Hematoma after Middle Meningeal Artery Embolization That Required Craniotomy. NMC Case Rep J. 2014 May 9;1(1):1-5. doi: 10.2176/nmccrj.2013-0343. eCollection 2014 Oct. PubMed PMID: 28663942; PubMed Central PMCID: PMC5364934.

Nosocomial infection

Nosocomial infection

see also Nosocomial meningitis.


Hospital-acquired infection (HAI) — also known as nosocomial infection — is an infection whose development is favored by a hospital environment, such as one acquired by a patient during a hospital visit or one developing among hospital staff.


In a single-center, retrospective analysis of critically ill pediatric trauma patients, nosocomial infections were more frequently observed in patients admitted following polytrauma with traumatic brain injury than in patients with isolated traumatic brain injury or trauma without traumatic brain injury 1).


In the last few decades, there has been a tremendous advancement in foetal and maternal care, and it has led to premature babies born as early as 25 weeks of gestation being nursed and cared for in neonatal and pediatric intensive care units. However, these children can pick up a number of uncommon and rare hospital-acquired infections including central nervous system infections.

Wagh and Sinha have given their own insight as to the prevention of healthcare-associated infections in paediatric intensive care settings and reviewed the current literature on the topic.

Healthcare-associated infections are largely preventable provided adequate prevention and protective measures are put in place and prevention guidelines are stritctly followed 2).


In the United States, the Centers for Disease Control and Prevention estimated roughly 1.7 million hospital-associated infections, from all types of microorganisms, including bacteria, combined, cause or contribute to 99,000 deaths each year.

In Europe, where hospital surveys have been conducted, the category of gram-negative infections are estimated to account for two-thirds of the 25,000 deaths each year. Nosocomial infections can cause severe pneumonia and infections of the urinary tract, bloodstream and other parts of the body. Many types are difficult to attack with antibiotics, and antibiotic resistance is spreading to gram-negative bacteria that can infect people outside the hospital.

Hospital-acquired infections are an important category of hospital-acquired conditions. HAI is sometimes expanded as healthcare associated infection to emphasize that infections can be correlated with health care in various settings (not just hospitals), which is also true of hospital-acquired conditions generally.


Data on nosocomial bloodstream infections (NBSI) in neurosurgery is limited. A study aimed to analyze the epidemiology, microbiology, outcome, and risk factors for death in neurosurgical patients with NBSI in a multidrug resistant setting.

Neurosurgical patients with a confirmed NBSI within the period 2003-2012 were retrospectively analyzed. NBSI was diagnosed when a pathogen was isolated from a blood sample obtained after the first 48 h of hospitalization. Patients’ demographic, clinical, and microbiological data were recorded and analyzed using univariate and multivariate analysis.

A total of 236 patients with nosocomial infection (NI) were identified and 378 isolates were recovered from blood cultures. Incidence of NI was 4.3 infections/1000 bed-days. Gram negative bacteria slightly predominated (54.5 %). The commonest bacteria were coagulase-negative Staphylococcus (CoNS, 26 %), Klebsiella pneumoniae (15.3 %), Pseudomonas aeruginosa (14.8 %), and Acinetobacter baumannii(13.2 %). Carbapenem resistance was found in 90 % of A. baumannii, in 66 % of P. aeruginosa, and in 22 % (2003-2007) to 77 % (2008-2012) of K. pneumoniae isolates (p < 0.05). Most CoNS and Staphylococcus aureus isolates (94 and 80 %, respectively) were methicillin-resistant. All Gram-negative isolates were sensitive to colistin and all Gram-positive isolates were sensitive to vancomycin and linezolid. Antimicrobial consumption decreased after 2007 (p < 0.05). Overall mortality was 50.4 %. In multivariate analysis, advanced age and stay in an Intermediate Care Unit (IMCU) were independent risk factors for in-hospital mortality (p < 0.05).

Overall, high incidence of NBSI and considerable resistance of Gram positive and particularly Gram negative bacteria were noted in neurosurgical patients. Mortality was high with advanced age and stay in IMCU being the most important death-related factor 3).


Case series

In one hundred fifty-three patients with aSAH. Delayed cerebral ischemia (DCI) was identified in 32 patients (20.9%). Nosocomial infection (odds ratio [OR] 3.5, 95% confidence interval [CI] 1.09-11.2, p = 0.04), ventriculitis (OR 25.3, 95% CI 1.39-458.7, p = 0.03), aneurysm re-rupture (OR 7.55, 95% CI 1.02-55.7, p = 0.05), and clinical vasospasm (OR 43.4, 95% CI 13.1-143.4, p < 0.01) were independently associated with the development of DCI. Diagnosis of nosocomial infection preceded the diagnosis of DCI in 15 (71.4%) of 21 patients. Patients diagnosed with nosocomial infection experienced significantly worse outcomes as measured by the modified Rankin Scale score at discharge and 1 year (p < 0.01 and p = 0.03, respectively).

Nosocomial infection is independently associated with DCI. This association is hypothesized to be partly causative through the exacerbation of systemic inflammation leading to thrombosis and subsequent ischemia 4).

References

1)

Sribnick EA, Hensley J, Moore-Clingenpeel M, Muszynski JA, Thakkar RK, Hall MW. Nosocomial Infection Following Severe Traumatic Injury in Children. Pediatr Crit Care Med. 2020 Feb 25. doi: 10.1097/PCC.0000000000002238. [Epub ahead of print] PubMed PMID: 32106190.
2)

Wagh A, Sinha A. Prevention of healthcare associated infections in pediatric intensive care unit. Childs Nerv Syst. 2018 Aug 18. doi: 10.1007/s00381-018-3909-4. [Epub ahead of print] PubMed PMID: 30121831.
3)

Tsitsopoulos PP, Iosifidis E, Antachopoulos C, Anestis DM, Karantani E, Karyoti A, Papaevangelou G, Kyriazidis E, Roilides E, Tsonidis C. Nosocomial bloodstream infections in neurosurgery: a 10-year analysis in a center with high antimicrobial drug-resistance prevalence. Acta Neurochir (Wien). 2016 Sep;158(9):1647-54. doi: 10.1007/s00701-016-2890-5. Epub 2016 Jul 25. PubMed PMID: 27452903.
4)

Foreman PM, Chua M, Harrigan MR, Fisher WS 3rd, Vyas NA, Lipsky RH, Walters BC, Tubbs RS, Shoja MM, Griessenauer CJ. Association of nosocomial infections with delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. J Neurosurg. 2016 Dec;125(6):1383-1389. PubMed PMID: 26871202.

Intraoperative ultrasound for intradural spinal tumor

Intraoperative ultrasound for intradural spinal tumor

Intraoperative ultrasound is a valuable tool to detect spinal tumors, evaluate the surgical approach and plan the surgical strategy considering the position and relationships of the lesion with bony, neural and vascular structures 1).

Surgeons should consider the use of intraoperative ultrasound when approaching intradural spinal tumor or when addressing pathology ventral to the thecal sac via a posterior approach 2).

Three-dimensional intraoperative ultrasound for intradural spinal tumor

see Three-dimensional intraoperative ultrasound for intradural spinal tumor


In 69 intradural spinal tumors, operated on between 2012 and 2016. A 5-8 MHz probe of IOUSG was used, before and after durotomy to perform the exact durotomy and myelotomy, and after tumor resection, to detect a residual tumor. A retrospective review of parameters including demographic data, localization, and histopathology of the tumor, IOUSG findings, and the amount of tumor resection was made.

In a total of 69 intradural spinal tumors (42 extramedullary, and 27 intramedullary tumors) IOUSG was used during surgery. Total excision was performed in 68 cases, and subtotal excision in one case. Pre-durotomy IOUSG showed sufficient laminectomy in 62 cases. In 7 cases, as the IOUSG failed to show all borders of the tumor, laminectomy was extended.

IOUSG is an important tool, which contributes to intradural spine surgery. This modality shows the tumor appearance before durotomy and is therefore helpful in deciding the amount of laminectomy and durotomy in addition to the exact location of myelotomy. It also provides the surgeon with information about residual tumor after excision, thereby increasing the safety and success of the surgical procedure 3).


From January to July 2016, Stefini et al. performed 10 navigated procedures for intradural spinal tumors by merging MRI and 3-D fluoro images. Nine patients had an intradural extramedullary tumor, 6 had neurinomas, and 3 had meningiomas; 1 patient had an intramedullary spinal cord metastasis. : The surgically demonstrated benefits of spinal navigation for the removal of intradural tumors include the decreased risk of surgery at the wrong spinal level, a minimal length of skin incision and muscle strip, and a reduction in bone removal extension. Furthermore, this technique offers the advantage of opening the dura as much as is necessary and, in the case of intrinsic spinal cord tumors, it allows the tumor to be centered. Otherwise, this would not be visible, thus enabling the precise level and the posterior midline sulcus to be determined when performing a mielotomy 4).


A total number of 158 intradural spinal lesions were operated on using iUS. Of these, 107 lesions (68%) were intradural extramedullary and 51 (32%) were intramedullary. All lesions were clearly visible using the ultrasound probe. The high-frequency linear probes (10-12 MHz) provided a better image quality compared with lower-frequency probes. Color and power-angiography modes were helpful in assessing the vascularization of the tumors and location of the major vessels in the vascular lesions.

Ivanov et al. documented how iUS was used to facilitate safe and efficient spinal tumor resection at each stage of the operation. iUS was beneficial in confirmation of tumor location and extension, planning myelotomy, and estimation of degree of resection of the intramedullary tumors. It was particularly helpful in guiding the approach in redo surgeries for recurrent spinal cord tumors.

iUS has a fast learning curve and offers additional intraoperative information that can help improve surgical accuracy and therefore may reduce procedure-related morbidity 5).


Twenty-six patients with intradural spinal cord tumors were surgically treated under intraoperative ultrasonographic guidance between January 2007 and May 2011. Guidance with IOUSG was used in 26 patients, of which 14 fourteen had extramedullary and 12 had intramedullary tumors. Intraoperative ultrasound assistance was used to localize each tumor exactly before opening the dura. The extent of tumor resection was verified using axial and sagittal sonographic views. The extent of tumor resection achieved with IOUSG guidance was assessed on postoperative early control MRI sections.

Total tumor resection was achieved in 22 (84%) of 26 cases. All of the residual tumors were typically intramedullary and infiltrative. The sensitivity of IOUSG for the determination of the extent of resection was found to be 92%. Ultrasonography was found to be effective in identification of tumor boundaries and protection of spinal cord vessels. The average time spent for IOUSG assessment was 7 minutes.

Intraoperative ultrasonography is practical, reliable and highly sensitive for spinal cord surgery. It not only enhances surgical orientation, but also reduces morbidity and helps to resect the tumor completely 6).


Between January 2006 and July 2007, 30 patients with suspected intradural spinal tumours underwent surgery with the aid of IOUS. There were 13 patients with intramedullary tumours (ependymoma=2, astrocytoma=5, hemangioblastoma=2 and metastasis=4); and 14 patients with extramedullary tumours (meningioma=6, neurinoma=6, filum terminale ependymoma=1 and lipoma=1). In 3 patients histopathology did not reveal any neoplasm despite an MRI suggesting tumour. Their sonographic features are analyzed and the advantages of IOUS are discussed.

The shape and expansion of intradural tumours could be visualized on IOUS. The sonographic visualization allowed adapting the approach to an appropriate location and size before dura opening. Certain sonographic features can be used for a differential diagnosis of different intradural tumours. In addition, IOUS can inform neurosurgeons about the location of the neoplastic tissue, its relation to the spinal cord and the size of residual tumour following excision.

IOUS is a sensitive intraoperative tool. When appropriately applied to assist surgical procedures, it offers additional intraoperative information that helps to improve surgical precision and therefore might reduce the procedure related morbidity 7).


From 1997 to 9/2002 32 patients with the diagnosis of an ependymoma (n = 9), astrocytoma (n = 5), haemangioblastoma (n = 5), neurinoma (n = 4), meningeoma (n = 4) and filum terminale ependymoma (n = 5) were investigated by intraoperative transdural sonography. The sonographic results were correlated to the preoperative MRI-findings and histopathological work-up.

Intramedullary tumours characteristically present with a heterogenous morphology, sometimes carrying intralesional or perilesional cysts. The tumour margins are frequently poorly defined, and there is a perifocal oedema. Extramedullary tumours frequently display a homogenous signal intensity, well defined tumour margins and the abscence of perifocal oedema. Haemangioblastomas turned out to be a specific sonographic entity among intramedullary tumours, as they most often contain only a cystic part with a small tumour nodule. IOUS influenced the surgical approach as laminotomy has to be extended in 7/32 cases to reach the tips of the tumour.

The precision of surgical exposure of intradural spinal lesions can be optimised by IOUS which shows a high correlation with MRI characterizing extra- and intramedullary tumours. Using IOUS, the exact position of the laminectomy/laminotomy can be adapted to the true extent of the tumour, thus avoiding the necessity of further bone work in the case of the frequently oedematous spinal cord protruding through the opening in the dura. Overall, IOUS guidance can help to reduce postoperative morbidity in surgery for all spinal intradural lesions 8).

References

1)

Prada F, Vetrano IG, Filippini A, Del Bene M, Perin A, Casali C, Legnani F, Saini M, DiMeco F. Intraoperative ultrasound in spinal tumor surgery. J Ultrasound. 2014 Jun 7;17(3):195-202. doi: 10.1007/s40477-014-0102-9. eCollection 2014 Sep. PubMed PMID: 25177392; PubMed Central PMCID: PMC4142127.
2)

Vasudeva VS, Abd-El-Barr M, Pompeu YA, Karhade A, Groff MW, Lu Y. Use of Intraoperative Ultrasound During Spinal Surgery. Global Spine J. 2017 Oct;7(7):648-656. doi: 10.1177/2192568217700100. Epub 2017 May 31. PubMed PMID: 28989844; PubMed Central PMCID: PMC5624373.
3)

Haciyakupoglu E, Yuvruk E, Onen MR, Naderi S. The Use of Intraoperative Ultrasonography in Intradural Spinal Tumor Surgery. Turk Neurosurg. 2019;29(2):237-241. doi: 10.5137/1019-5149.JTN.23296-18.3. PubMed PMID: 30649794.
4)

Stefini R, Peron S, Mandelli J, Bianchini E, Roccucci P. Intraoperative Spinal Navigation for the Removal of Intradural Tumors: Technical Notes. Oper Neurosurg (Hagerstown). 2018 Jul 1;15(1):54-59. doi: 10.1093/ons/opx179. PubMed PMID: 28962027.
5)

Ivanov M, Budu A, Sims-Williams H, Poeata I. Using Intraoperative Ultrasonography for Spinal Cord Tumor Surgery. World Neurosurg. 2017 Jan;97:104-111. doi: 10.1016/j.wneu.2016.09.097. Epub 2016 Oct 3. PubMed PMID: 27713065.
6)

Toktas ZO, Sahin S, Koban O, Sorar M, Konya D. Is intraoperative ultrasound required in cervical spinal tumors? A prospective study. Turk Neurosurg. 2013;23(5):600-6. doi: 10.5137/1019-5149.JTN.7199-12.1. PubMed PMID: 24101306.
7)

Zhou H, Miller D, Schulte DM, Benes L, Bozinov O, Sure U, Bertalanffy H. Intraoperative ultrasound assistance in treatment of intradural spinal tumours. Clin Neurol Neurosurg. 2011 Sep;113(7):531-7. doi: 10.1016/j.clineuro.2011.03.006. Epub 2011 Apr 20. PubMed PMID: 21507563.
8)

Regelsberger J, Langer N, Fritzsche E, Westphal M. [Intraoperative ultrasound of intra- and extramedullary tumours]. Ultraschall Med. 2003 Dec;24(6):399-403. German. PubMed PMID: 14658083.

COVID-19 is an emerging, rapidly evolving situation.

Get the latest public health information

WhatsApp WhatsApp us
%d bloggers like this: