Intraventricular antibiotic

Intraventricular antibiotic

Morbidity and revision surgery secondary to ventriculostomy related infection remains high, even while using antibiotic impregnated catheters.


Management of CSF shunt infection should include removal of the device, external drainage, parenteral antibiotics, and shunt replacement once the CSF is sterile 1) 2) 3) 4) 5).

If device removal is not feasible, intraventricular antibiotics may be useful 6).


Failing to respond to systemic treatment or infection with a resistant organism might require intrathecal/intraventricular antibiotic administration. Choose the antimicrobial based on susceptibility. Dosages for intraventricular antibiotics:

Vancomycin: 5mg for slit ventricles, 10mg with normal-sized ventricles, 15–20mg for patients with enlarged ventricles.

Aminoglycoside: Dosing can also be tailored to ventricular size. Frequency can be adjusted based on drain output as well: once daily for drain output > 100 ml/day, every other day if drain output = 50–100 ml/day, every third day if drainage < 50 ml/day

Gentamicin: 4–8mg

Tobramycin: 5–20mg

Amikacin: 5–30mg

○ Colistimethate sodium: 10mg CMS, which is 125,000 IU or 3.75mg CBA (Colistin Base units)

Daptomycin: 2–5mg

● After IT administration of an antimicrobial, clamp the drain for 15–60 minutes to allow the antimicrobial concentration to equilibrate in the CSF before opening the drain 7)

● Expert opinion: wait at least 7–10 days after the CSF cultures become sterile to implant a shunt if needed.


The objective of a study of Lakomkin et al. of the Mount Sinai Hospital, was to determine whether intraoperative injection of antibiotics is independently associated with reduced rates of infection and revision surgery in children undergoing shunt placement.

This was an analysis of a prospectively collected, multicenter, shunt-specific neurosurgical registry consisting of data from over 100 hospitals collected between 2016 and 2017. All patients under 18 yr of age undergoing first-time shunt placement for the definitive treatment of hydrocephalus were included. The primary exposure of interest was injection of intraventricular antibiotics into the shunt catheter following shunt placement and prior to closure. The use of additional surgical adjuncts, such as antibiotic-impregnated shunts, stereotactic guidance, and endoscopy was collected. The primary outcome metric was the need for additional intervention because of an infection.

A total of 2007 pediatric patients undergoing shunt placement for hydrocephalus were identified. Postoperatively, 97 (4.8%) patients had additional intervention secondary to infection. In a multivariable regression model controlling for patient characteristics, etiology of hydrocephalus, prior temporizing measures, and placement of an antibiotic-impregnated shunt, injection of intraventricular antibiotics was associated with a significant reduction in postoperative infections (odds ratio = 0.29, 95% CI: 0.04-0.89, P = .038). Of those receiving intraventricular antibiotics, only 2 (0.38%) went on to undergo re-intervention due to infection.

These data suggest that for this select group of patients, use of intraventricular antibiotics was associated with decreased rates of re-intervention secondary to infection. 8).

References

1) , 6)

Tunkel AR, Hasbun R, Bhimraj A, et al. 2017 Infectious Diseases Society of America’s Clinical Practice Guidelines for Healthcare-Associated Ventriculitis and Meningitis. Clin Infect Dis. 2017;64(6):e34-e65. doi:10.1093/cid/ciw861
2)

Whitehead WE, Kestle JR. The treatment of cerebrospinal fluid shunt infections. Results from a practice survey of the American Society of Pediatric Neurosurgeons. Pediatr Neurosurg. 2001;35(4):205-210. doi:10.1159/000050422
3)

James HE, Walsh JW, Wilson HD, Connor JD, Bean JR, Tibbs PA. Prospective randomized study of therapy in cerebrospinal fluid shunt infection. Neurosurgery. 1980;7(5):459-463. doi:10.1227/00006123-198011000-00006
4)

James HE, Walsh JW, Wilson HD, Connor JD. The management of cerebrospinal fluid shunt infections: a clinical experience. Acta Neurochir (Wien). 1981;59(3-4):157-166. doi:10.1007/BF01406345
5)

Schreffler RT, Schreffler AJ, Wittler RR. Treatment of cerebrospinal fluid shunt infections: a decision analysis. Pediatr Infect Dis J. 2002;21(7):632-636. doi:10.1097/00006454-200207000-00006
7)

Cook AM, Mieure KD, Owen RD, et al. Intracerebroventricular administration of drugs. Pharmacotherapy. 2009; 29:832–845
8)

Lakomkin N, Hadjipanayis CG. The Role of Prophylactic Intraventricular Antibiotics in Reducing the Incidence of Infection and Revision Surgery in Pediatric Patients Undergoing Shunt Placement. Neurosurgery. 2020 Sep 28:nyaa413. doi: 10.1093/neuros/nyaa413. Epub ahead of print. PMID: 32985657.

Asleep subthalamic deep brain stimulation for Parkinson’s disease

Asleep subthalamic deep brain stimulation for Parkinson’s disease

Recent advances in methods used for deep brain stimulation (DBS) include subthalamic nucleus electrode implantation in the “asleep” patient without the traditional use of microelectrode recordings or intraoperative test stimulation.

Meta-Analysis

2019

Liu et al. systematically reviewed the literature to compare the efficacy and safety of awake and asleep deep brain stimulation surgery. They identified cohort studies from the Cochrane libraryMEDLINE, and EMBASE (January 1970 to August 2019) by using Review Manager 5.3 software to conduct a meta-analysis following the PRISMA guidelines. Fourteen cohort studies involving 1,523 patients were included. The meta-analysis results showed that there were no significant differences between the GA and LA groups in UPDRSIII score improvement (standard mean difference [SMD] 0.06; 95% CI -0.16 to 0.28; p = 0.60), postoperative LEDD requirement (SMD -0.17; 95% CI -0.44 to 0.12; p = 0.23), or operation time (SMD 0.18; 95% CI -0.31 to 0.67; p = 0.47). Additionally, there was no significant difference in the incidence of adverse events (OR 0.98; 95% CI 0.53-1.80; p = 0.94), including postoperative speech disturbance and intracranial hemorrhage. However, the volume of intracranial air was significantly lower in the GA group than that in the LA group. In a subgroup analysis, there was no significant difference in clinical efficacy between the microelectrode recording (MER) and non-MER groups. We demonstrated equivalent clinical outcomes of DBS surgery between GA and LA in terms of improvement of symptoms and the incidence of adverse events. Key Messages: MER might not be necessary for DBS implantation. For patients who cannot tolerate DBS surgery while being awake, GA should be an appropriate alternative 1).

Case series

A retrospective review of clinical outcomes of 152 consecutive patients. Their outcomes at 1 yr postimplantation are reported; these include Unified Parkinson’s Disease Rating Scale (UPDRS) assessment, Mobility Tinetti TestPDQ-39 quality of life assessment, Mattis Dementia Rating ScaleBeck Depression Inventory, and Beck Anxiety Inventory. They also report on a new parietal trajectory for electrode implantation.

UPDRS III improved from 39 to 20.5 (47%, P < .001). The total UPDRS score improved from 67.6 to 36.4 (46%, P < .001). UPDRS II scores improved from 18.9 to 10.5 (44%, P < .001) and UPDRS IV scores improved from 7.1 to 3.6 (49%, P < .001). There was a significant reduction in levodopa equivalent daily dose after surgery (mean: 35%, P < .001). PDQ-39 summary index improved by a mean of 7.1 points. There was no significant difference found in clinical outcomes between the frontal and parietal approaches.

“Asleep” robot-assisted DBS of the subthalamic nucleus demonstrates comparable outcomes with traditional techniques in the treatment of Parkinson’s disease. 2).


The objective of a study of Senemmar et al. was to investigate whether asleep deep brain stimulation surgery of the subthalamic nucleus (STN) improves therapeutic window (TW) for both directional (dDBS) and omnidirectional (oDBS) stimulation in a large single-center population.

A total of 104 consecutive patients with Parkinson’s disease (PD) undergoing STN-DBS surgery (80 asleep and 24 awake) were compared regarding TW, therapeutic thresholdside effect threshold, improvement of Unified PD Rating Scale motor score (UPDRS-III) and degree of levodopa equivalent daily dose (LEDD) reduction.

Asleep DBS surgery led to significantly wider TW compared to awake surgery for both dDBS and oDBS. However, dDBS further increased TW compared to oDBS in the asleep group only and not in the awake group. Clinical efficacy in terms of UPDRS-III improvement and LEDD reduction did not differ between groups.

The study provides first evidence for improvement of therapeutic window by asleep surgery compared to awake surgery, which can be strengthened further by dDBS. These results support the notion of preferring asleep over awake surgery but needs to be confirmed by prospective trial3).


Clinical outcome studies have shown that “asleep” DBS lead placement, performed using intraoperative imaging with stereotactic accuracy as the surgical endpoint, has motor outcomes comparable to traditional “awake” DBS using microelectrode recording (MER), but with shorter case times and improved speech fluency 4).


Ninety-six patients were retrospectively matched pairwise (48 asleep and 48 awake) and compared regarding improvement of Unified PD Rating Scale Motor Score (UPDRS-III), cognitive function, Levodopa-equivalent-daily-dose (LEDD), stimulation amplitudes, side effects, surgery duration, and complication rates. Routine testing took place at three months and one year postoperatively.

Results: Chronic DBS effects (UPDRS-III without medication and with stimulation on [OFF/ON]) significantly improved UPDRS-III only after awake surgery at three months and in both groups one year postoperatively. Acute effects (percentage UPDRS-III reduction after activation of stimulation) were also significantly better after awake surgery at three months but not at one year compared to asleep surgery. UPDRS-III subitems “freezing” and “speech” were significantly worse after asleep surgery at three months and one year, respectively. LEDD was significantly lower after awake surgery only one week postoperatively. The other measures did not differ between groups.

Overall motor function improved faster in the awake surgery group, but the difference ceased after one year. However, axial subitems were worse in the asleep surgery group suggesting that worsening of axial symptoms was risked improving overall motor function. Awake surgery still seems advantageous for STN-DBS in PD, although asleep surgery may be considered with lower threshold in patients not suitable for awake surgery 5).

References

1)

Liu Z, He S, Li L. General Anesthesia versus Local Anesthesia for Deep Brain Stimulation in Parkinson’s Disease: A Meta-Analysis. Stereotact Funct Neurosurg. 2019;97(5-6):381-390. doi:10.1159/000505079
2)

Moran CH, Pietrzyk M, Sarangmat N, Gerard CS, Barua N, Ashida R, Whone A, Szewczyk-Krolikowski K, Mooney L, Gill SS. Clinical Outcome of “Asleep” Deep Brain Stimulation for Parkinson Disease Using Robot-Assisted Delivery and Anatomic Targeting of the Subthalamic Nucleus: A Series of 152 Patients. Neurosurgery. 2020 Sep 28:nyaa367. doi: 10.1093/neuros/nyaa367. Epub ahead of print. PMID: 32985669.
3)

Senemmar F, Hartmann CJ, Slotty PJ, Vesper J, Schnitzler A, Groiss SJ. Asleep Surgery May Improve the Therapeutic Window for Deep Brain Stimulation of the Subthalamic Nucleus [published online ahead of print, 2020 Jul 13]. Neuromodulation. 2020;10.1111/ner.13237. doi:10.1111/ner.13237
4)

Mirzadeh Z, Chen T, Chapple KM, Lambert M, Karis JP, Dhall R, Ponce FA. Procedural Variables Influencing Stereotactic Accuracy and Efficiency in Deep Brain Stimulation Surgery. Oper Neurosurg (Hagerstown). 2018 Oct 18. doi: 10.1093/ons/opy291. [Epub ahead of print] PubMed PMID: 30339204.
5)

Blasberg F, Wojtecki L, Elben S, Slotty PJ, Vesper J, Schnitzler A, Groiss SJ. Comparison of Awake vs. Asleep Surgery for Subthalamic Deep Brain Stimulation in Parkinson’s Disease. Neuromodulation. 2018 Aug;21(6):541-547. doi: 10.1111/ner.12766. Epub 2018 Mar 13. PubMed PMID: 29532

Methotrexate for Primary central nervous system lymphoma

In neurooncology and onco-hematology, intraventricular injection of chemotherapeutic agents (most typically, methotrexate) is an inevitable part of many protocols for treating patients with malignant tumors of the CNS, neuroleukemia, CNS lymphomas and some other disorders.


High-dose MTX is associated with a high proportion of radiographic responses and a low proportion of grade III/IV toxicity in patients 70 or more years of age. High-dose MTX should be considered as a feasible treatment option in elderly patients with PCNSL 1).


MTX-monotherapy is tolerable in terms of adverse effects and still considered as a treatment option in patients with PCNSL. However, an additional therapeutic option should be prepared for non-CR responders to induction chemotherapy 2).


The addition of intraventricular MTX (rather than just intrathecal via LP) delivered through a Ommaya reservoir (6 doses of 12 mg twice a week, with IV leucovorin rescue) may result in even better survival 3)

In the event of an intrathecal MTX overdose (OD), interventions recommended 4) :

ODs of up to 85 mg can be well tolerated with little sequelae; immediate LP with drainage of CSF can remove a substantial portion of the drug (removing 15 ml of CSF can eliminate ≈ 20–30% of the MTX within 2 hrs of OD). This can be followed by ventriculolumbar perfusion over several hours using 240 ml of warmed isotonic preservative-free saline entering through the ventricular reservoir and exiting through a External lumbar cerebrospinal fluid drainage. For major OD of > 500 mg, add intrathecal administration of 2,000 U of carboxypeptidase G2 (an enzyme that inactivates MTX). In cases of MTX OD, systemic toxicity should be prevented by treating with IV dexamethasone and IV (not IT) leucovorin.


Therapeutic Outcomes and Toxicity of High-Dose Methotrexate-Based Chemotherapy for Elderly Patients with Primary Central Nervous System Lymphoma: A Report on Six Cases. 5).


A study provides Class III evidence that in immunocompetent patients with primary CNS lymphomas (PCNSLs), high-dose methotrexate (HD-MTX) plus rituximab compared with HD-MTX alone improves complete response (CR) and overall survival rates 6).

Case series

Yoon et al. presented the experiences with high-dose methotrexate (HD-MTX) monotherapy for immunocompetent patients with PCNSL at three institutions and investigate factors related to survival.

PCNSL patients, who were histologically confirmed with diffuse large B cells and treated with HD-MTX monotherapy from 2001 to 2016, were retrospectively reviewed. Patients underwent induction chemotherapy with 8 g/m2 of MTX every 10 days (maximum three cycles). Maintenance chemotherapy of 3.5 g/m2 of MTX (maximum six cycles) was selectively performed depending on the response to induction chemotherapy.

A total of 67 patients were included. Although seven patients discontinued induction chemotherapy because of MTX toxicity, 40 (59.7%) patients showed a complete response (CR) to induction chemotherapy. Twenty-six (38.8%) and three (4.5%) patients showed a CR and partial response, respectively, after maintenance chemotherapy. Forty-one patients with recurrence or progression following HD-MTX underwent second-line treatment. Progression-free survival rates were 43% and 24% at 1 and 2 years, respectively. The median overall survival was 40.3 months. In a multivariate analysis, a radiological CR to induction chemotherapy was a significant factor related to prolonged progression-free survival and overall survival (P < 0.05).

MTX-monotherapy is tolerable in terms of adverse effects and still considered as a treatment option in patients with PCNSL. However, an additional therapeutic option should be prepared for non-CR responders to induction chemotherapy 7).


A single-institution retrospective analysis was performed for 12 patients with newly diagnosed PCNSL treated with combined high-dose methotrexate (HD-MTX) and RTX. MTX was administered biweekly at 8 g/m2/dose until a complete response (CR) was achieved or for a maximum of eight doses. RTX was provided for a total of eight weekly doses at 375 mg/m2/dose. Following a median of 11 cycles of MTX, the radiographic overall response rate was 91% and the CR rate was 58%. A CR was achieved after a median 6 cycles of MTX. The median progression-free survival time was 22 months and the median overall survival time has not yet been attained. These results compare favorably to single-agent HD-MTX and suggest a role for immunochemotherapy in the treatment of PCNSL 8).


Zhu et al. studied the response and adverse effects of intravenous high-dose MTX in patients who were 70 or more years of age at the time of diagnosis. They identified 31 patients diagnosed with PCNSL at age > or =70 years (median, 74 years) who were treated with high-dose MTX (3.5-8 g/m(2)) as initial therapy from 1992 through 2006. The best response to MTX was determined by contrast-enhanced MRI. Toxicity was analyzed by chart review. These 31 patients received a total of 303 cycles of MTX (median, eight cycles per patient). Overall, 87.9% of the cycles required dose reduction because of impaired creatinine clearance. In 30 evaluable patients, the overall radiographic response rate was 96.7%, with 18 complete responses (60%) and 11 partial responses (36.7%). Progression-free survival and overall survivals were 7.1 months and 37 months, respectively. Grade I-IV toxicities were observed in 27 of 31 patients and included gastrointestinal disturbances in 58% (3.2% grade III), hematological complications in 80.6% (6.5% grade III), and renal toxicity in 29% (0% grade III/IV). High-dose MTX is associated with a high proportion of radiographic responses and a low proportion of grade III/IV toxicity in patients 70 or more years of age. High-dose MTX should be considered as a feasible treatment option in elderly patients with PCNSL 9).

References

1) , 9)

Zhu JJ, Gerstner ER, Engler DA, Mrugala MM, Nugent W, Nierenberg K, Hochberg FH, Betensky RA, Batchelor TT. High-dose methotrexate for elderly patients with primary CNS lymphoma. Neuro Oncol. 2009 Apr;11(2):211-5. doi: 10.1215/15228517-2008-067. Epub 2008 Aug 29. PMID: 18757775; PMCID: PMC2718993.
2) , 7)

Yoon WS, Park JS, Kim YI, Chung DS, Jeun SS, Hong YK, Yang SH. High-dose methotrexate monotherapy for newly diagnosed primary central nervous system lymphoma: 15-year multicenter experience. Asia Pac J Clin Oncol. 2020 Sep 25. doi: 10.1111/ajco.13427. Epub ahead of print. PMID: 32978898.
3)

DeAngelis LM, Yahalom J, Thaler HT, Kher U. Com- bined Modality Therapy for Primary CNS Lympho- mas.JClinOncol.1992;10:635–643
4)

O’Marcaigh AS, Johnson CM, Smithson WA, et al. Successful Treatment of Intrathecal Methotrexate Overdose by Using Ventriculolumbar Perfusion and Intrathecal Instillation of Carboxypeptidase G2. Mayo Clin Proc. 1996; 71:161–165
5)

Tempaku A, Takahashi Y, Kamada H. Therapeutic Outcomes and Toxicity of High-Dose Methotrexate-Based Chemotherapy for Elderly Patients with Primary Central Nervous System Lymphoma: A Report on Six Cases. Acta Haematol. 2019 May 21:1-2. doi: 10.1159/000499100. [Epub ahead of print] PubMed PMID: 31112947.
6)

Holdhoff M, Ambady P, Abdelaziz A, Sarai G, Bonekamp D, Blakeley J, Grossman SA, Ye X. High-dose methotrexate with or without Rituximab in newly diagnosed primary CNS lymphoma. Neurology. 2014 Jul 15;83(3):235-9. doi: 10.1212/WNL.0000000000000593. Epub 2014 Jun 13. PubMed PMID: 24928128; PubMed Central PMCID: PMC4117362.
8)

Ly KI, Crew LL, Graham CA, Mrugala MM. Primary central nervous system lymphoma treated with high-dose methotrexate and rituximab: A single-institution experience. Oncol Lett. 2016 May;11(5):3471-3476. doi: 10.3892/ol.2016.4393. Epub 2016 Mar 30. PMID: 27123138; PMCID: PMC4840907.
WhatsApp WhatsApp us
%d bloggers like this: