Lactotroph adenoma treatment

Lactotroph adenoma treatment

Dopamine agonists such as bromocriptine and cabergoline have been found to be an effective treatment for hyperprolactinemia, not only inducing adenoma shrinkage but also lowering serum prolactin levels. Among known dopamine agonists, cabergoline is the drug of choice due to its enhanced tolerability compared with bromocriptine 1).


Surgical intervention may resurface as an alternative first-line treatment. When used in combination with cabergoline, surgery offers a higher disease remission rate than either drug or operation alone 2)


Lactotroph Adenoma Surgery is safe and efficient. It is particularly suitable for enclosed prolactinomas. The patient should be well informed of the pros and cons of the treatment options, which include dopamine agonist (DA) and transsphenoidal microsurgery, and the patient’s preference should be taken into account during decision-making 3).

In the absence of visual deficits, pituitary apoplexy in lactotroph adenomas is the only type of pituitary tumor for which medical therapy (Dopamine agonists) may be the primary treatment.


Issues and questions to be addressed in this approach to long-term management of prolactinomas include the frequency of radiographic monitoring, effect of pregnancy and menopause, safety of estrogen in women taking oral contraceptives, and the potential for discontinuation of dopamine agonist therapy 4).

see Dopamine agonist for Lactotroph adenoma.

see Lactotroph Adenoma Surgery

Although transsphenoidal surgery (TSS) is an option for prolactinoma treatment, it is less effective than medical management, carries considerably more risk, and is more expensive. The benefit/risk ratio for DA therapy compared to TSS actually becomes increasingly more favorable as tumor size increases. Therefore DA should remain the clear treatment of choice for essentially all patients with prolactinomas, reserving TSS as a second-line option for the very small number of patients that do not tolerate or are completely resistant to DA therapy 5).

Lactotroph adenoma radiosurgery.

The underlying decision to perform serial imaging in prolactinoma patients should be individualized on a case-by-case basis. Future studies should focus on alternative imaging methods and/or contrast agents 6).


1)

Krysiak R, Okopien B. Different Effects of Cabergoline and Bromocriptine on Metabolic and Cardiovascular Risk Factors in Patients with Elevated Prolactin Levels. Basic Clin Pharmacol Toxicol. 2014 Aug 13. doi: 10.1111/bcpt.12307. [Epub ahead of print] PubMed PMID: 25123447.
2)

Chen TY, Lee CH, Yang MY, Shen CC, Yang YP, Chien Y, Huang YF, Lai CM, Cheng WY. Treatment of Hyperprolactinemia: A Single-Institute Experience. J Chin Med Assoc. 2021 Jul 13. doi: 10.1097/JCMA.0000000000000584. Epub ahead of print. PMID: 34261980.
3)

Giese S, Nasi-Kordhishti I, Honegger J. Outcomes of Transsphenoidal Microsurgery for Prolactinomas – A Contemporary Series of 162 Cases. Exp Clin Endocrinol Diabetes. 2021 Jan 18. doi: 10.1055/a-1247-4908. Epub ahead of print. PMID: 33461233.
4)

Schlechte JA. Long-term management of prolactinomas. J Clin Endocrinol Metab. 2007 Aug;92(8):2861-5. Review. PubMed PMID: 17682084.
5)

Bloomgarden E, Molitch ME. Surgical treatment of prolactinomas: cons. Endocrine. 2014 Aug 12. [Epub ahead of print] PubMed PMID: 25112227.
6)

Varlamov EV, Hinojosa-Amaya JM, Fleseriu M. Magnetic resonance imaging in the management of prolactinomas; a review of the evidence. Pituitary. 2019 Oct 28. doi: 10.1007/s11102-019-01001-6. [Epub ahead of print] Review. PubMed PMID: 31659622.

Microvascular decompression for hemifacial spasm outcome

Microvascular decompression for hemifacial spasm outcome

Microvascular decompression is an effective treatment option in elderly patients with hemifacial spasm as well as in younger patients. Age itself seems to be no relevant contraindication or, alternatively, risk factor regarding MVD 1)

Given that postoperative delayed cure was unavoidable, even with accurate identification of the offending vessel and sufficient decompression of the root exit zone, the delayed cure should be considered in patients undergoing reoperation due to lack of remission or relapse after the operation. Additionally, the timing of efficacy assessments should be delayed 2).

The definitive treatment for hemifacial spasm is microvascular decompression (MVD), which cures the disease in 85% to 95% of patients according to reported series. In expert hands, the MVD procedure can be done with relatively low morbidity.

Post-operatively, there may be episodes of mild HFS, however they usually begin to diminish 2–3 days following MVD. Severe spasm that does not abate suggests failure to achieve adequate decompression, and reoperation should be considered.

Surgical results of MVD depends on the duration of symptoms (shorter duration has better prognosis) as well as on the age of the patient (elderly patients do less well). Complete resolution of HFS occurred in 44 (81%) of 54 patients undergoing MVD, however, 6 of these patients had relapse 3). 5 patients (9%) had partial improvement, and 5 (9%) had no relief.


Complete resolution of spasm occurs in ≈ 85–93% 4) 5) 6) 7) 8). Spasm is diminished in 9%, and unchanged in 6% 9). Of 29 patients with complete relief, 25 (86%) had immediate post-op resolution, and the remaining 4 patients took from 3 mos to 3 yrs to attain quiescence.

Recurrent hemifacial spasm after microvascular decompression.


1)

Zhao H, Zhu J, Tang YD, Shen L, Li ST. Hemifacial Spasm: Comparison of Results between Patients Older and Younger than 70 Years Operated on with Microvascular Decompression. J Neurol Surg A Cent Eur Neurosurg. 2021 Jul 8. doi: 10.1055/s-0040-1721018. Epub ahead of print. PMID: 34237777.
2)

Li MW, Jiang XF, Wu M, He F, Niu C. Clinical Research on Delayed Cure after Microvascular Decompression for Hemifacial Spasm. J Neurol Surg A Cent Eur Neurosurg. 2019 Oct 10. doi: 10.1055/s-0039-1698461. [Epub ahead of print] PubMed PMID: 31600810.
3)

Auger RG, Peipgras DG, Laws ER. Hemifacial Spasm: Results of Microvascular Decompression of the Facial Nerve in 54 Patients. Mayo Clin Proc. 1986; 61:640–644
4)

Rhoton AL. Comment on Payner T D and Tew J M: Recurren ce of Hemifacial Spasm After Microvascular Decompression. Neurosurgery. 1996; 38
5)

Jannetta PJ. Neurovascular Compression in Cranial Nerve and Systemic Disease. Ann Surg. 1980; 192:518–525
6)

Loeser JD, Chen J. Hemifacial Spasm: Treatment by Microsurgical Facial Nerve Decompression. Neurosurgery. 1983; 13:141–146
7)

Huang CI, Chen IH, Lee LS. Microvascular Decompression for Hemifacial Spasm: Analyses of Operative Findings and Results in 310 Patients. Neurosurgery. 1992; 30:53–57
8) , 9)

Payner TD, Tew JM. Recurrence of Hemifacial Spasm After Microvascular Decompression. Neurosurgery. 1996; 38:686–691

Relative value units

Relative value units

Relative value units (RVUs) were designed to provide relative economic values for medical care based on the cost of providing services categorized as a physician work, practice expense, and professional liability. … RVUs were designed to provide a rational approach to assessing the relative value of medical services.


The debate surrounding the integration of value in healthcare delivery and reimbursement reform has centered around integrating quality metrics into the current fee-for-service relative value units (RVU) payment model. Although a great amount of literature has been published on the creation and utilization of the RVU, there remains a dearth of information on how clinicians from various specialties view RVU and the quality-of-care metric in the compensation formula. The aim of a review was to analyze and consolidate existing theories on the RVU payment model in neurosurgery. Google and PubMed were searched for English-language literature describing opinions on the RVU in neurosurgery. The commentary was noted to be primary opinions if it was mentioned at least twice in the eight articles included in this review. Overall, seven primary opinions on the RVU were identified across the analyzed articles. Integration of quality into the RVU is viewed favorably by neurosurgeons with a few caveats and opportunities for further improvement 1).


The work relative value unit (wRVU) is a commonly cited surrogate for surgical complexity; however, it is highly susceptible to subjective interpretation and external forces.


The objective of Kim et al. was to evaluate whether wRVU is associated with perioperative outcomes, including complications, after brain tumor surgery. The 2006-2014 American College of Surgeons National Surgical Quality Improvement Program database was queried to identify patients ≥ 18 years who underwent brain tumor resection. Patients were categorized into approximate quintiles based on total wRVU. The relationship between wRVU and several perioperative outcomes was assessed with univariate and multivariate analyses. Subgroup analyses were performed using a Current Procedural Terminology code common to all wRVU groups. The 16,884 patients were categorized into wRVU ranges 0-30.83 (4664 patients), 30.84-34.58 (2548 patients), 34.59-38.04 (3147 patients), 38.05-45.38 (3173 patients), and ≥ 45.39 (3352 patients). In multivariate logistic regression analysis, increasing wRVU did not predict more 30-day postoperative complications, except respiratory complications and need for blood transfusion. Linear regression analysis showed that wRVU was poorly correlated with operative duration and length of stay. On multivariate analysis of the craniectomy subgroup, wRVU was not associated with overall or respiratory complications. The highest wRVU group was still associated with greater risk of requiring blood transfusion (OR 3.01, p < 0.001). Increasing wRVU generally did not correlate with 30 days postoperative complications in patients undergoing any surgery for brain tumor resection; however, the highest wRVU groups may be associated with greater risk of respiratory complications and need for transfusion. These finding suggests that wRVU may be a poor surrogate for case complexity 2).


In a cross-sectional review of registry data using the ACS NSQIP 2016 Participant User File and the Centers for Medicare & Medicaid Services physician procedure time file for 2018. Uppal et al. analyzed total RVUs for surgeries by operative time to calculate RVU per hour and stratified by specialty. Multivariate regression analysis adjusted for patient comorbidities, age, length of stay, and ACS NSQIP mortality and morbidity probabilities. The surgeon self-reported operative times from the Centers for Medicare & Medicaid Services physician were compared with operative times recorded in the ACS NSQIP, with excess time from RUC estimates termed “overreported time.”

Analysis of 901,917 surgeries revealed a wide variation in median RVU per hour between specialties. Orthopedics (14.3), neurosurgery (12.9), and general surgery (12.1) had the highest RVU per hour, whereas gynecology (10.2), plastic surgery (9.5), and otolaryngology (9) had the lowest (P<.001 for all comparisons). These results remained unchanged on multivariate regression analysis. General surgery had the highest median overreported operative time (+26 minutes) followed by neurosurgery (+23.5 minutes) and urology (+20 minutes). Overreporting of the operative time strongly correlated to higher RVU per hour (r=0.87, P=.002).

Despite reliable electronic records, the AMARUC continues to use inaccurate self-reported RUC surveys for operative times. This results in discrepancies in RVU per hour (and subsequent reimbursement) across specialties and a persistent disparity for women-specific procedures in gynecology. Relative value units levels should be based on the available objective data to eliminate these disparities 3).


1)

Satarasinghe P, Shah D, Koltz MT. The Perception and Impact of Relative Value Units (RVUs) and Quality-of-Care Compensation in Neurosurgery: A Literature Review. Healthcare (Basel). 2020 Dec 1;8(4):526. doi: 10.3390/healthcare8040526. PMID: 33271871; PMCID: PMC7711854.
2)

Kim RB, Scoville JP, Karsy M, Lim S, Jensen RL, Menacho ST. Work relative value units and perioperative outcomes in patients undergoing brain tumor surgery. Neurosurg Rev. 2021 Jul 8. doi: 10.1007/s10143-021-01601-6. Epub ahead of print. PMID: 34236568.
3)

Uppal S, Rice LW, Spencer RJ. Discrepancies Created by Surgeon Self-Reported Operative Time and the Effects on Procedural Relative Value Units and Reimbursement. Obstet Gynecol. 2021 Jul 8. doi: 10.1097/AOG.0000000000004467. Epub ahead of print. PMID: 34237766.
WhatsApp WhatsApp us
%d bloggers like this: