Spinal meningioma epidemiology

Spinal meningioma epidemiology

Because spinal meningiomas are infrequently encountered in any one center, a large portion of the literature relating to spinal meningiomas consists of case reports or case series 1)


In The Surveillance, Epidemiology and End Results, the age-adjusted incidence rate was 0.37 cases per 1,000,000 person-years between 2004 and 2016. Spinal meningiomas represented 4.25% of all meningiomas. A total of 4204 patients with spinal meningiomas were included in the study. Most of the patients were white and diagnosed at 60-69 years of age, and the female:male ratio was 4:1. Most of the tumors were benign and less than 3 cm in size. The most common pathological type was psammomatous meningioma. Surgery was the first choice of treatment for patients with spinal meningiomas. Male and pediatric patients were more vulnerable to borderline or malignant spinal meningiomas. Survival analysis showed that married, female, and younger patients with benign meningiomas had better overall survival than their counterparts 2).


Approximately 1000 spinal meningiomas were diagnosed in the United States per year, and the incidence was relatively stable. Advanced age, female sex, Asian Pacific Islander and Caucasian race, and Hispanic ethnicity were all associated with an increased incidence of spinal meningioma. The study of represents the most comprehensive evaluation of population-based descriptive epidemiology of spinal meningiomas in the United States to date 3).


Spinal meningiomas represent a significant fraction of all primary intradural spinal tumors and of all meningiomas. The results of a study of Westwick and Shamji established the association of lesion incidence and survival with sex, with a less frequent incidence in but greater mortality among males 4).

Meningiomas arising from the coverings of the spinal cord are one of the two most common intradural extramedullary spinal tumors, representing 25-30% of all such tumor5)

Amongst the intraspinal location, meningiomas account for 25% to 46% of primary spinal neoplasms, while the incidence of spinal meningiomas is 7.5% to 12.7% of all meningiomas

They have a peak incidence in the fifth and sixth decades. Interestingly, and unlike intracranial meningiomas, in the adult population, females are approximately ten times more commonly affected than males. In children, there does not appear to be a sex predilection.

There is an increased incidence of spinal meningiomas in patients with neurofibromatosis type 2 (NF2), and in fact in the paediatric population, meningiomas uncommonly occur outside of the setting of NF2.


Except in cases of neurofibromatosis, it is very rare for tumors of different pathological types to exist concurrently at the same spinal level, with only 9 cases reported to date, in which spinal meningioma was found with spinal schwannoma in 7 cases and with spinal neurofibroma in 2 cases 6).


2)

Cao Y, Jiang Y, Liu C, Jin R, Jin Z, Hong X, Zhao L, Zhao G, Wang Y. Epidemiology and survival of patients with spinal meningiomas: A SEER analysis. Eur J Surg Oncol. 2021 Jan 22:S0748-7983(21)00039-1. doi: 10.1016/j.ejso.2021.01.012. Epub ahead of print. PMID: 33546961.
3)

Kshettry VR, Hsieh JK, Ostrom QT, Kruchko C, Benzel EC, Barnholtz-Sloan JS. Descriptive Epidemiology of Spinal Meningiomas in the United States. Spine (Phila Pa 1976). 2015 Aug 1;40(15):E886-9. doi: 10.1097/BRS.0000000000000974. PMID: 25996535.
4)

Westwick HJ, Shamji MF. Effects of sex on the incidence and prognosis of spinal meningiomas: a Surveillance, Epidemiology, and End Results study. J Neurosurg Spine. 2015 Sep;23(3):368-73. doi: 10.3171/2014.12.SPINE14974. Epub 2015 May 29. PMID: 26023898.
5)

Osborn AG. Diagnostic neuroradiology. Mosby Inc. (1994) ISBN:0801674867.
6)

Zhan Z, Yan X, Nie W, Ding Y, Xu W, Huang H. Neurofibroma and Meningioma within a Single Dumbbell-Shaped Tumor at the Same Cervical Level without Neurofibromatosis: a Case Report and Literature Review. World Neurosurg. 2019 Jun 26. pii: S1878-8750(19)31788-7. doi: 10.1016/j.wneu.2019.06.142. [Epub ahead of print] PubMed PMID: 31254713.

Everolimus for subependymal giant cell astrocytoma

Everolimus for subependymal giant cell astrocytoma

As a result of a trial, the US Food and Drug Administration (FDA) approved everolimus for patients with subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex who are not candidates for curative surgical resection.

Patients ≥ 3 years of age with increasing size of SEGA lesions have had a sustained reduction of SEGA volume on everolimus 1).

A retrospective study included TSC patients being treated with oral everolimus for subependymal giant cell astrocytomas (SEGAs) and angiomyolipomas (AMLs). We recorded the changes in facial angiofibroma. Changes in the Angiofibroma Grading Scale (AGS) indicators were recorded according to erythema, average lesion size, lesion density, and percent involvement on the forehead, nose, cheeks, and chin. The scores were recorded before and after the administration of oral everolimus.

Twenty-one patients being treated with oral everolimus were enrolled in this study. The mean age was 20.5 years (range 11-44 years, 4 males, and 17 females). The mean dose of oral everolimus was 3.6 mg/day. Clinically meaningful and statistically significant improvement was observed in erythema (p = 0.001), average lesion size (p < 0.001), lesion density (p < 0.001), and percent involvement (p < 0.001). Changes in the AGS findings were statistically significant on the forehead (p = 0.001), nose (p < 0.001) cheeks (p < 0.001), and chin (p = 0.004).

Everolimus shows evident improvement and is approved for TSC-associated SEGAs and AMLs. The current study demonstrated the efficacy of oral everolimus in reducing facial angiofibromas, showing the parallel benefits of the treatment protocol for TSC 2).

Case reports

A 21-year female patient with large bilateral angiomyolipoma (AML) in both kidneys with the longest diameter more than 12.3 cm and subependymal giant cell astrocytoma (SEGA). Treatment with everolimus (EVE) was initiated at a dose of 10.0 mg/day and continued during the following 3 years. Magnetic resonance imaging (MRI) was performed before treatment with everolimus was initiated, and consequently at 12 and 36 months for follow-up of the efficacy of the treatment. After 3 years, the total size of the largest AML decreased by ~24.0% in the longest diameter. A reduction in the total size of SEGA was also observed. The most common adverse effect of treatment was stomatitis grades 3 to 4 and one febrile episodes associated with a skin rash that required a reduced dose of EVE. In conclusion, the everolimus treatment improved even such a large renal AML and the effect persisted during the long-term administration with a small number of adverse effects. A positive effect was observed on the brain tumor as well 3).


A case of a woman with TSC and Multifocal micronodular pneumocyte hyperplasia (MMPH) who received everolimus, for the treatment of a subependymal giant cell astrocytoma (SEGA). After 3 months of therapy, a remarkable decrease in density of all pulmonary MMPH lesions was observed, without any change in size. This shows that everolimus is active on MMPH similarly to its effects on SEGA, renal angiomyolipomas, and pulmonary lymphangioleiomyomatosis in TSC, and suggests that the dysregulated activation of mTOR which characterizes TSC also plays a role in the pathogenesis of MMPH 4).


The aim of a study was to evaluate the efficacy of oral everolimus for TSC-associated angiofibromas.

This retrospective study included TSC patients being treated with oral everolimus for subependymal giant cell astrocytomas (SEGAs) and angiomyolipomas (AMLs). We recorded the changes in facial angiofibromas. Changes in the Angiofibroma Grading Scale (AGS) indicators were recorded according to erythema, average lesion size, lesion density, and percent involvement on the forehead, nose, cheeks, and chin. The scores were recorded before and after the administration of oral everolimus.

Twenty-one patients being treated with oral everolimus were enrolled in this study. The mean age was 20.5 years (range 11-44 years, 4 males, and 17 females). The mean dose of oral everolimus was 3.6 mg/day. Clinically meaningful and statistically significant improvement was observed in erythema (p = 0.001), average lesion size (p < 0.001), lesion density (p < 0.001), and percent involvement (p < 0.001). Changes in the AGS findings were statistically significant on the forehead (p = 0.001), nose (p < 0.001) cheeks (p < 0.001), and chin (p = 0.004).

Everolimus shows evident improvement and is approved for TSC-associated SEGAs and AMLs. The study demonstrated the efficacy of oral everolimus in reducing facial angiofibromas, showing the parallel benefits of the treatment protocol for TSC 5).


1)

Franz DN, Agricola K, Mays M, Tudor C, Care MM, Holland-Bouley K, Berkowitz N, Miao S, Peyrard S, Krueger DA. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol. 2015 Dec;78(6):929-38. doi: 10.1002/ana.24523. Epub 2015 Nov 9. PMID: 26381530; PMCID: PMC5063160.
2)

Wei CC, Hsiao YP, Gau SY, Wu YT, Wu CT, Wu MH, Tsai JD. The Efficacy of Everolimus for Facial Angiofibromas in Tuberous Sclerosis Complex Patients Treated for Renal Angiomyolipoma/Subependymal Giant Cell Astrocytoma. Dermatology. 2020 Oct 8:1-6. doi: 10.1159/000510222. Epub ahead of print. PMID: 33032292.
3)

Rambabova Bushljetik I, Lazareska M, Barbov I, Stankov O, Filipce V, Spasovski G. Bilateral Renal Angiomyolipomas and Subependymal Giant Cell Astrocytoma Associated with Tuberous Sclerosis Complex: a Case Report and Review of The Literature. Balkan J Med Genet. 2021 Mar 23;23(2):93-98. doi: 10.2478/bjmg-2020-0017. PMID: 33816078; PMCID: PMC8009567.
4)

Daccord C, Nicolas A, Demicheli R, Chehade H, Hottinger AF, Beigelman C, Lazor R. Effect of everolimus on multifocal micronodular pneumocyte hyperplasia in tuberous sclerosis complex. Respir Med Case Rep. 2020 Nov 25;31:101310. doi: 10.1016/j.rmcr.2020.101310. PMID: 33312857; PMCID: PMC7720070.
5)

Wei CC, Hsiao YP, Gau SY, Wu YT, Wu CT, Wu MH, Tsai JD. The Efficacy of Everolimus for Facial Angiofibromas in Tuberous Sclerosis Complex Patients Treated for Renal Angiomyolipoma/Subependymal Giant Cell Astrocytoma. Dermatology. 2020 Oct 8:1-6. doi: 10.1159/000510222. Epub ahead of print. PMID: 33032292.

Primary Central Nervous System Angiosarcoma

Primary Central Nervous System Angiosarcoma

Angiosarcoma is an infrequent tumor among sarcomas, especially presenting as a primary tumor within the central nervous system, which can lead to rapid neurological deterioration and death in few months.

Mena et al. reported in 1991 eight patients with primary angiosarcoma of the central nervous system these included five males and three females ranging in age from 2 weeks to 72 years (mean 38 years). Of the eight neoplasms, six were located in the cerebral hemispheres and one was in the meninges; the site was unknown in the other. All patients underwent surgical resection. Five of the eight patients died, four within 4 months after surgery and one after 30 months. Two of the remaining three patients were 17 and 27 years old at the time of diagnosis and were alive at follow-up review 39 and 102 months after surgery, respectively. One patient was lost to follow-up monitoring. Microscopically, all eight tumors demonstrated a well-differentiated pattern with irregular vascular channels and intraluminal papillae; in addition, four showed poorly differentiated solid areas. Immunohistochemical staining of neoplastic cells to factor VIII-related antigen and Ulex europaeus agglutinin I was performed in five tumors and was focally positive in four. No correlation could be shown between the histological features and the growth and biological behavior of the tumors 1)

Valera-Melé et al. presented a 41-year old man with a right frontal enhancing hemorrhagic lesion. Surgery was performed with histopathological findings suggesting a primary central nervous system angiosarcoma. He was discharged uneventfully and received adjuvant chemotherapy and radiotherapy. At 5 months, the follow-up MRI showed two lesions with an acute subdural hematoma, suggesting a relapse. Surgery was again conducted finding tumoral membranes attached to the internal layer of the dura mater around the right hemisphere. The patient died a few days later due to the recurrence of the subdural hematoma. This case report illustrates a rare and lethal complication of an unusual tumor. The literature reviewed shows that gross-total resection with adjuvant radiotherapy seems to be the best treatment of choice 2).


Gao M, Li P, Tan C, Liu J, Tie X, Pang C, Guo Z, Lin Y. Primary Central Nervous System Angiosarcoma. World Neurosurg. 2019 Dec;132:41-46. doi: 10.1016/j.wneu.2019.08.128. Epub 2019 Aug 27. PubMed PMID: 31470162 3).


report a case of intracranial angiosarcoma in a Caucasian male and present a review of the imaging features in the recent literature. The tumor mostly presents as a well-demarcated, heterogeneous, moderately to strongly enhancing lesion with signs of intratumoral bleeding and surrounding vasogenic edema. The differential imaging features of common hemorrhagic intracranial tumors are discussed 4).


Two cases of primary angiosarcoma of the brain are well characterized by imaging, histopathology, and immunohistochemistry. Case 1: The first patient was a 35-year-old woman who developed exophthalmos. Subtotal resection of a left extra-axial retro-orbital mass was performed.

Case 2: our second patient was a 47-year-old man who presented with acute visual loss, word-finding difficulty, and subtle memory loss. A heterogeneously-enhancing left sphenoid wing mass was removed. We also review the literature aiming at developing a rational approach to diagnosis and treatment, given the rarity of this entity.

Gross total resection is the standard of care for primary angiosarcoma of the brain. Adjuvant radiation and chemotherapy are playing increasingly recognized roles in the therapy of these rare tumors 5).


1)

Mena H, Ribas JL, Enzinger FM, Parisi JE. Primary angiosarcoma of the central nervous system. Study of eight cases and review of the literature. J Neurosurg. 1991 Jul;75(1):73-6. doi: 10.3171/jns.1991.75.1.0073. PMID: 2045922.
2)

Valera-Melé M, Darriba Allés JV, Ruiz Juretschke F, Sola Vendrell E, Hernández Poveda JM, Montalvo Afonso A, Casitas Hernando V, García Leal R. Primary central nervous system angiosarcoma with recurrent acute subdural hematoma. Neurocirugia (Astur). 2021 Mar 22:S1130-1473(21)00027-0. English, Spanish. doi: 10.1016/j.neucir.2021.02.002. Epub ahead of print. PMID: 33766476.
3)

Gao M, Li P, Tan C, Liu J, Tie X, Pang C, Guo Z, Lin Y. Primary Central Nervous System Angiosarcoma. World Neurosurg. 2019 Dec;132:41-46. doi: 10.1016/j.wneu.2019.08.128. Epub 2019 Aug 27. PubMed PMID: 31470162.
4)

Jerjir N, Lambert J, Vanwalleghem L, Casselman J. Primary Angiosarcoma of the Central Nervous System: Case Report and Review of the Imaging Features. J Belg Soc Radiol. 2016 Oct 10;100(1):82. doi: 10.5334/jbr-btr.1087. PMID: 30151480; PMCID: PMC6100495.
5)

Hackney JR, Palmer CA, Riley KO, Cure JK, Fathallah-Shaykh HM, Nabors LB. Primary central nervous system angiosarcoma: two case reports. J Med Case Rep. 2012 Aug 21;6:251. doi: 10.1186/1752-1947-6-251. PMID: 22909122; PMCID: PMC3459733.
WhatsApp WhatsApp us
%d bloggers like this: