Ossified chronic subdural hematoma

Ossified chronic subdural hematoma

Calcified chronic subdural hematoma or ossified chronic subdural hematoma (CSDH), characterized by slowly progressing neurological symptoms, is a rarely seen entity that may remain asymptomatic for many years.

Incidence of calcified or ossified CSDH is high in certain countries, including the USAJapan and Turkey, with a steady increase in recent years 1).

They should be considered in the differential diagnosis at the time when we encounter because of its infrequency and variable clinical manifestation, following shunting in children or head trauma in adults 2).

Differential diagnosis

Calcified epidural hematoma, calcified empyema, meningioma, calcified arachnoid cyst, and calcified convexity of the dura mater with acute epidural hematoma should be considered for the differential diagnosis 3).

Treatment

Management of CSDH has improved dramatically in recent years thanks to advances in diagnostic tools, but there is still some controversy regarding the optimal treatment strategy.

Systematic reviews

In a systematic review, PRISMA guidelines were followed to query existing online databases between January 1930 and December 2018. We found a total of 88 articles containing 114 cases of calcified or ossified CSDH, 83 patients operated and 31 ones not operated.

There were 78 males and 29 females (7 with unreported gender) from 25 countries, ages ranging from 4 months to 86 years (mean 33.7 years), with etiologies of head trauma in 33.3%, shunting for hydrocephalus in 27.2%, or following cranial surgery in 4.4%. The duration of symptoms ranged from acute onset to 20 years, with a mean of 24.1 months. Imaging techniques such as X-ray, computed tomography, and magnetic resonance imaging were used with pathological confirmation of CSDH and complete recovery in 56.4% of patients.

Incidence of calcified or ossified CSDH is high in certain countries, including the USAJapan and Turkey, with a steady increase in recent years. Therapy of choice is surgery in these patients and it should be considered in the differential diagnosis at the time when we encounter because of its infrequency and variable clinical manifestation, following shunting in children or head trauma in adults 4).


Yang X, Qian Z, Qiu Y, Li X. Diagnosis and Management of Ossified Chronic Subdural Hematoma. J Craniofac Surg. 2015 Sep;26(6):e550-1. doi: 10.1097/SCS.0000000000002025. PubMed PMID: 26352368.

Case reports

A 59-year-old man presented with epileptic seizures interpreted as episodic syncope in the past 3 years and the patient had a history of head trauma about 4 years ago. Computed tomography revealed an ossified chronic subdural hematoma involving the right frontotemporoparietal region, which was totally resected using microsurgical technique. Postoperatively, weakness developed in the right arm and magnetic resonance imaging revealed a bilateral tension pneumocephalus, which was immediately treated by a left frontal burr hole trepanation, and the patient was discharged uneventfully 5).


A 46-year-old man with a history of alcohol abuse and a right frontotemporoparietal and left frontal ossified CSH that was diagnosed 2 years previously presented with headache and memory loss over 6 days. The patient was being followed with serial imaging, which showed the static state of the mass and no other lesions 7 months before admission. He underwent right frontotemporoparietal craniectomy to remove the ossified CSH and tumor. When the bone was lifted and the thin dura was opened, a hard, thick, ossified capsule was observed. No apparent tumor invasion was noted in the skull or epidural space. Despite refusing further chemotherapy and radiation therapy, the patient has been disease-free and working for 5 years.

Based on reported cases and relevant literature, large B-cell lymphoma may be associated with ossified CSH 6).


A 81-year-old woman with calcified chronic subdural hematoma. The patient underwent an osteoplastic left craniotomy, evacuation of chronic subdural mass with careful dissection and successful removal of the inner and outer membrane. Postoperative CT scan showed removal of subdural hematoma, a decrease of the left shift of median line and good brain re-expansion. The postoperative period was without any serious complications.

The subdural hematoma was successfully removed, resulting in a good recovery with complete resolution of patient’s symptoms. They highly recommend surgical treatment in cases of chronic symptomatic calcified subdural hematomas 7).


A Giant Ossified Chronic Subdural Hematoma 8).


Fang et al. reported a case of ossified chronic subdural hematoma in a 7-year-old female child, with a literature review 9).


Siddiqui et al. reported one case with diabetes insipidus 10).


A young girl affected by a syndromal hydrocephalus who developed a bilateral ossified chronic subdural hematoma with the typical radiological appearance of “the armored brain”. Bilateral calcified chronic subdural hematoma is a rare complication of ventriculoperitoneal shunt. There is controversy in the treatment, but most published literature discourages a surgical intervention to remove the calcifications 11).


Turgut et al. published one Ossified chronic subdural hematoma 12).


A 22-year-old male who had presented with severe headache consequent to brain compression caused by bifronto-parieto-temporal ossified subdural hematoma. We evaluated our method and surgical intervention in the light of the literature. The question whether the ossified membrane should be excised or not excised in these cases is a matter of controversy. They think that an ossified membrane causing an armored brain appearance should be excised in symptomatic, young patients with prominent cerebral compression. During this dissection, the relatively thickened arachnoid mater provides a safe border 13).


A 67-year-old man presented with headache, dysphasia, and left-sided hemiparesis. Routine skull x-ray showed a huge calcification extending from the frontal to the parietal regions in the right side. CT and MRI scan revealed a huge ossified SDH covering the right hemisphere. Right frontoparietal craniotomy was performed and the ossified SDH was completely removed. Severe adhesion was noticed between the pia mater and the inner surface of the ossified mass. The subdural mass had ossified hard outer and inner rims and a soft central part. The postoperative course was uneventful and 3 months after the operation, the patient was neurologically intact. The authors report the successful treatment of a patient with a huge ossified SDH covering the right hemisphere. Careful dissection and total removal are needed in such symptomatic cases to avoid cortical injury and to improve results 14).


A 24-year-old man with a history of tonic-clonic convulsions since 7 months of age was admitted because of increasing frequency and duration of seizures. Computed tomography and magnetic resonance imaging demonstrated a fusiform extra-axial lesion just above the tentorium and adjacent to the cerebral falx. A calcified and ossified chronic subdural hematoma was noted and was almost completely removed by craniotomy. Better seizure control was achieved by the removal of the calcified chronic subdural hematoma. Calcified subdural hematoma, calcified epidural hematoma, calcified empyema, meningioma, calcified arachnoid cyst, and calcified convexity of the dura mater with acute epidural hematoma should be considered for the differential diagnosis of an extra-axial calcified lesion 15).


Turgut et al. reported the successful removal of an ossified crust-like chronic subdural hematoma (SDH) covering the hemisphere in a 16-year-old boy. In this article, the importance of the surgical approach is stressed, and the rarity of this condition in the neurosurgical literature is also outlined 16).


A case of ossified chronic subdural hematoma is presented in a 13-year-old male in whom the mass was surgically removed. His neurological deficits continued afterward but were less severe 17).

References

1) , 2) , 4)

Turgut M, Akhaddar A, Turgut AT. Calcified or Ossified Chronic Subdural Hematoma: A Systematic Review of 114 Cases Reported during Last Century with a Demonstrative Case Report. World Neurosurg. 2019 Nov 1. pii: S1878-8750(19)32791-3. doi: 10.1016/j.wneu.2019.10.153. [Epub ahead of print] Review. PubMed PMID: 31682989.
3) , 15)

Yan HJ, Lin KE, Lee ST, Tzaan WC. Calcified chronic subdural hematoma: case report. Changgeng Yi Xue Za Zhi. 1998 Dec;21(4):521-5. PubMed PMID: 10074745.
5)

Turgut M, Yay MÖ. A Rare Case of Ossified Chronic Subdural Hematoma Complicated with Tension Pneumocephalus. J Neurol Surg Rep. 2019 Oct;80(4):e44-e45. doi: 10.1055/s-0039-1694738. Epub 2019 Dec 31. PubMed PMID: 31908905; PubMed Central PMCID: PMC6938459.
6)

Liu X, Zhou J, Shen B, Sun D, Zhang Z, Li H, Zhang J. Ossified Chronic Subdural Hematoma and Subsequent Epstein-Barr Virus-Positive Large B-Cell Lymphoma: Case Report and Literature Review. World Neurosurg. 2019 Oct;130:165-169. doi: 10.1016/j.wneu.2019.07.011. Epub 2019 Jul 9. PubMed PMID: 31299306.
7)

Snopko P, Kolarovszki B, Opsenak R, Hanko M, Benco M. Chronic calcified subdural hematoma – case report of a rare diagnosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019 Sep 26. doi: 10.5507/bp.2019.041. [Epub ahead of print] PubMed PMID: 31558846.
8)

Tian W, Meng X, Zou J. A Giant Ossified Chronic Subdural Hematoma. J Coll Physicians Surg Pak. 2019 Sep;29(9):905. doi: 10.29271/jcpsp.2019.09.905. PubMed PMID: 31455496.
9)

Fang J, Liu Y, Jiang X. Ossified Chronic Subdural Hematoma in Children: Case Report and Review of Literature. World Neurosurg. 2019 Jun;126:613-615. doi: 10.1016/j.wneu.2019.03.144. Epub 2019 Mar 27. PubMed PMID: 30926556.
10)

Siddiqui SA, Singh PK, Sawarkar D, Singh M, Sharma BS. Bilateral Ossified Chronic Subdural Hematoma Presenting as Diabetes Insipidus-Case Report and Literature Review. World Neurosurg. 2017 Feb;98:520-524. doi: 10.1016/j.wneu.2016.11.031. Epub 2016 Nov 17. Review. PubMed PMID: 27867130.
11)

Viozzi I, van Baarsen K, Grotenhuis A. Armored brain in a young girl with a syndromal hydrocephalus. Acta Neurochir (Wien). 2017 Jan;159(1):81-83. doi: 10.1007/s00701-016-2991-1. Epub 2016 Oct 25. PubMed PMID: 27778104; PubMed Central PMCID: PMC5177664.
12)

Turgut M, Samancoğlu H, Ozsunar Y, Erkuş M. Ossified chronic subdural hematoma. Cent Eur Neurosurg. 2010 Aug;71(3):146-8. doi: 10.1055/s-0030-1253346. Epub 2010 May 3. PubMed PMID: 20440672.
13)

Kaplan M, Akgün B, Seçer HI. Ossified chronic subdural hematoma with armored brain. Turk Neurosurg. 2008 Oct;18(4):420-4. PubMed PMID: 19107693.
14)

Moon HG, Shin HS, Kim TH, Hwang YS, Park SK. Ossified chronic subdural hematoma. Yonsei Med J. 2003 Oct 30;44(5):915-8. PubMed PMID: 14584111.
16)

Turgut M, Palaoğlu S, Sağlam S. Huge ossified crust-like subdural hematoma covering the hemisphere and causing acute signs of increased intracranial pressure. Childs Nerv Syst. 1997 Jul;13(7):415-7. PubMed PMID: 9298279.
17)

Iplikçioğlu AC, Akkaş O, Sungur R. Ossified chronic subdural hematoma: case report. J Trauma. 1991 Feb;31(2):272-5. PubMed PMID: 1994092.

Middle meningeal artery embolization for chronic subdural hematoma systematic reviews

Middle meningeal artery embolization for chronic subdural hematoma systematic reviews

Jumah et al. conducted a systematic review and meta-analysis (MA) in compliance with the PRISMA guidelines to evaluate the efficacy and safety of Middle meningeal artery embolization (MMAE) compared with conventional treatments for refractory or chronic subdural hematoma (cSDH). Databases were searched up to March 2019. Using a random-effects model, meta-analyses of proportions and risk differences were conducted recurrence, need for surgical rescue, and complications.

Eleven studies (177 patients) were included. The majority (116, 69%) were males with a weighted mean age of 71 + -19.5 years. A meta-analysis of proportions showed treatment failure to be 2.8%, the need for surgical rescue 2.7%, and embolization-related complications 1.2%. A meta-analysis of risk-difference between embolized and non-embolized patients showed a 26% (p < 0.001, 95% CI 21%-31%, I2 = 0) lower risk of hematoma recurrence in MMAE. Similarly, in the embolized group, the need for surgical rescue was 20% less (p < 0.001, 95% CI = 12%-27%, I2 = 12.4), and complications were 3.6% less (p = 0.008, 95% CI 1%-6%, I2 = 0) compared to conventional groups.

Although MMAE appears to be a promising treatment for refractory or cSDH, drawing definitive conclusions remains limited by the paucity of data and small sample sizes. Multicenter, randomized, prospective trials are needed to compare embolization to conventional treatments like watchful waiting, medical management, or surgical evacuation. More extensive research on MMAE could begin a new era in the minimally invasive management of cSDH 1).


The goal of a study was to review the evidence on MMAE in cSDH to assess its safety, feasibility, indications and efficacy. Court et al. performed a systematic review of the literature according to PRISMA guidelines using multiple electronic databases. This search yielded a total of 18 original articles from which data were extracted. A total of 190 patients underwent MMAE from which 81.3% were symptomatic cSDH. Over half (52.3%) of the described population were undergoing antithrombotic therapy. Most (83%) procedures used polyvinyl alcohol (PVA) particles and no complications were reported regarding the embolization procedures. Although the definition of resolution varied among authors, cSDH resolution was reported in 96.8% of cases. MMAE is a feasible technique for cSDH, but the current body of evidence does not yet support its use as a standard treatment. Further studies with a higher level of evidence are necessary before MMAE can be formally recommended 2).


Three double-arm studies comparing embolization and conventional surgery groups and 6 single-arm case series were identified and analyzed. Hematoma recurrence rate was significantly lower in the embolization group compared with conventional treatment group (2.1% vs. 27.7%; odds ratio = 0.087; 95% confidence interval, 0.026-0.292; P < 0.001; I2 = 0%); surgical complication rates were similar between groups (2.1% vs. 4.4%; odds ratio = 0.563; 95% confidence interval, 0.107-2.96; P = 0.497; I2 = 27.5%). Number of patients with modified Rankin Scale score >2 in the embolization (12.5%) versus conventional treatment (9.1%) group showed no statistical difference (P = 0.689). A composite hematoma recurrence rate of 3.6% was found after summing the 6 case series. Composite recurrence and complication rates in the embolization cohorts of the double-arm studies and the case series were lower than literature values for conventional surgical treatments.

MMA embolization is a promising treatment for chronic subdural hematoma. Future randomized clinical trials are needed 3).

References

1)

Jumah F, Osama M, Islim AI, Jumah A, Patra DP, Kosty J, Narayan V, Nanda A, Gupta G, Dossani RH. Efficacy and safety of middle meningeal artery embolization in the management of refractory or chronic subdural hematomas: a systematic review and meta-analysis. Acta Neurochir (Wien). 2020 Jan 4. doi: 10.1007/s00701-019-04161-3. [Epub ahead of print] Review. PubMed PMID: 31900658.
2)

Court J, Touchette CJ, Iorio-Morin C, Westwick HJ, Belzile F, Effendi K. Embolization of the Middle meningeal artery in chronic subdural hematoma – A systematic review. Clin Neurol Neurosurg. 2019 Aug 10;186:105464. doi: 10.1016/j.clineuro.2019.105464. [Epub ahead of print] Review. PubMed PMID: 31600604.
3)

Srivatsan A, Mohanty A, Nascimento FA, Hafeez MU, Srinivasan VM, Thomas A, Chen SR, Johnson JN, Kan P. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma: Meta-Analysis and Systematic Review. World Neurosurg. 2019 Feb;122:613-619. doi: 10.1016/j.wneu.2018.11.167. Epub 2018 Nov 24. PubMed PMID: 30481628.

Autologous bone flap cranioplasty

Autologous bone flap cranioplasty

The bone that is removed at the time of craniectomy has been preserved for future implantation. This is generally not employed in contaminated cases (penetrating trauma, infection…).

Available evidence on the safety of cranioplasty materials is limited due to a large diversity in study conduct, patients included and outcomes reported. Autologous bone grafts appear to carry a higher failure risk than allografts. Future publications concerning cranioplasties will benefit by a standardized reporting of surgical procedures, outcomes and graft materials used 1).

During the cranioplasty procedureautologous bone flaps are preferably used due to their advantages in storage, viability, costprevention of disease transmission.

Storage options

a) in a“pocket” created in the patient’s subcutaneous abdominal fat

b) in preservative(e.g.RPMI and stored in ultra low temperature freezer


It is a simple and cheep alternative to other techniques and is available to any institution that provides autoclaving sterilisation services. 2).

Inherent difficulties of bone storage and cranioplasty are neglected in the literature.

The timing of cranioplasty and method of bone flap storage are known risk factors of non-union and resorption of bone flaps

Silay et al. present a simple method of bone storage and autologous cranioplasty in a small child with severe head injury. The child underwent surgical treatment with decompressive craniectomy. A bone flap was transversally divided into two pieces and stored under the galea. Bone storage and reconstruction of the cranial vault with this surgical technique is a safe, easy and cost-effective choice excluding the surgical trauma to obtain a new subcutanous pocket for bone storage in pediatric decompressive craniectomy patients 3).

Timing

Although generally accepted concept about timing of cranioplasty using autologous bone is that early cranioplasty has more risk of infection and delayed cranioplasty has risk of non-union or resorption of bone flap.

Shin et al. observed new bone formation on all the frozen autologous bone flaps that was stored within 8 weeks. The timing of cranioplasty may showed no difference of degree of new bone formation. Not only the healing period after cranioplasty but the time interval from craniectomy to cranioplasty could affect the new bone formation 4).

Complications

Case series

Autologous bone flap cranioplasty unclassified

References

1)

van de Vijfeijken SECM, Münker TJAG, Spijker R, Karssemakers LHE, Vandertop WP, Becking AG, Ubbink DT; CranioSafe Group. Autologous bone is inferior to alloplastic cranioplasties Safety of autograft and allograft materials for cranioplasties, a systematic review. World Neurosurg. 2018 Jun 4. pii: S1878-8750(18)31147-1. doi: 10.1016/j.wneu.2018.05.193. [Epub ahead of print] Review. PubMed PMID: 29879511.
2)

Mracek J, Hommerova J, Mork J, Richtr P, Priban V. Complications of cranioplasty using a bone flap sterilised by autoclaving following decompressive craniectomy. Acta Neurochir (Wien). 2015 Jan 15. [Epub ahead of print] PubMed PMID: 25588749.
3)

Silav G, Bölükbaşı FH, Özek E, Tönge M, Önöz M, Elmacı İ. A Simple Technique for Bone Storage after Decompressive Craniectomy in Children. Pediatr Neurosurg. 2015 May 14. [Epub ahead of print] PubMed PMID: 25998533.
4)

Shin HS, Lee DW, Lee SH, Koh JS. Analyses Using Micro-CT Scans and Tissue Staining on New Bone Formation and Bone Fusion According to the Timing of Cranioplasty via Frozen Autologous Bone Flaps in Rabbits : A Preliminary Report. J Korean Neurosurg Soc. 2015 Apr;57(4):242-9. doi: 10.3340/jkns.2015.57.4.242. Epub 2015 Apr 24. PubMed PMID: 25932290; PubMed Central PMCID: PMC4414767.
WhatsApp WhatsApp us
%d bloggers like this: