Middle meningeal artery embolization for chronic subdural hematoma

Middle meningeal artery embolization for chronic subdural hematoma

middlemeningealartery.jpg

Chronic subdural hematoma is fundamentally a disorder of the meningeal blood vessels.

Embolization of the middle meningeal artery (MMA) has recently been proposed as a curative treatment for chronic subdural hematoma (cSDH), but evidence for the indication and timing is not definitive.

Fiorella and Arthur reviewed the potential role for the endovascular management of cSDH within the context of a discussion of the epidemiology, pathophysiology, and conventional management of this disease 1).

Trials

Systematic Reviews

The goal of a study was to review the evidence on MMAE in cSDH to assess its safety, feasibility, indications and efficacy. We performed a systematic review of the literature according to PRISMA guidelines using multiple electronic databases. Our search yielded a total of 18 original articles from which data were extracted. A total of 190 patients underwent MMAE from which 81.3% were symptomatic cSDH. Over half (52.3%) of the described population were undergoing antithrombotic therapy. Most (83%) procedures used polyvinyl alcohol (PVA) particles and no complications were reported regarding the embolization procedures. Although the definition of resolution varied among authors, cSDH resolution was reported in 96.8% of cases. MMAE is a feasible technique for cSDH, but the current body of evidence does not yet support its use as a standard treatment. Further studies with a higher level of evidence are necessary before MMAE can be formally recommended 2).


Three double-arm studies comparing embolization and conventional surgery groups and 6 single-arm case series were identified and analyzed. Hematoma recurrence rate was significantly lower in the embolization group compared with conventional treatment group (2.1% vs. 27.7%; odds ratio = 0.087; 95% confidence interval, 0.026-0.292; P < 0.001; I2 = 0%); surgical complication rates were similar between groups (2.1% vs. 4.4%; odds ratio = 0.563; 95% confidence interval, 0.107-2.96; P = 0.497; I2 = 27.5%). Number of patients with modified Rankin Scale score >2 in the embolization (12.5%) versus conventional treatment (9.1%) group showed no statistical difference (P = 0.689). A composite hematoma recurrence rate of 3.6% was found after summing the 6 case series. Composite recurrence and complication rates in the embolization cohorts of the double-arm studies and the case series were lower than literature values for conventional surgical treatments.

MMA embolization is a promising treatment for chronic subdural hematoma. Future randomized clinical trials are needed 3).

Case series

A review was registered with the International prospective register of systematic reviews (PROSPERO). Public/Publisher Medline (PubMed), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Excerpta Medica dataBASE (EMBASE) and the Cochrane Library were searched using Medical Subject Headings (MeSH) terms for MMA embolization and CSDH from January 2000 through November 2018. All articles in the English language literature describing MMA embolization for CSDH were included, irrespective of study design. Consecutive patients who underwent MMA embolization at our hospital from January 2017 through June 2018 comprised our clinical experience.

Fifteen studies with 193 procedures were included in the review. Ninety-five (49.2%) cases involved primary MMA embolization; 88(45.6%) embolization for recurrent CSDH, and 10(5.2%) were performed for prophylaxis after surgical evacuation. Recurrence after MMA embolization requiring further treatment occurred in 7(3.6%) cases. All other patients had symptomatic relief with no further recurrence. No procedure-related complications were reported. Polyvinyl alcohol was the most commonly used material. Our series included 8 patients treated with Onyx (Medtronic). All had symptom relief and significant reduction in hematoma size; no recurrences or procedure-related complications were observed 4).


Nakagawa et al., retrospectively assessed data from 381 consecutive patients who underwent burr hole irrigation for CSDH between 2009 and 2017. Recurrent symptomatic ipsilateral CSDH in 71 (18%) patients was treated by a second burr-hole irrigation and 20 of them had a further symptomatic CSDH recurrence thereafter. Those with persistent ipsilateral CSDH recurrence were treated by MMA embolization. Before the MMA embolization procedures, the amount of hematoma membrane enhancement determined using superselective MMA angiography-DynaCT imaging was classified into three stages.

Embolization of the MMA proceeded without perioperative complications or further CSDH recurrence. The interval between recurrence and the amount of hematoma membrane enhancement significantly correlated (first to second and second to third treatments: p = 0.012 and p = 0.017, respectively). The frequency of bilateral CSDH was significantly higher and the recurrence interval between the first and second treatments was significantly shorter in repeated recurrences group compared with recurrence group (p = 0.023 and p = 0.006, respectively).

Repeatedly recurrent CSDH can be safely treated and cured by MMA embolization. Hematoma membrane enhancement pattern using DynaCT images can predict repeated recurrences CSDH. 5)


Five patients with symptomatic chronic SDHs underwent MMA embolization using PVA microparticles. Size of SDH was recorded in maximum diameter and total volume.

Four patients underwent unilateral and 1 underwent bilateral MMA embolization successfully. All cases had significant reduction in total volume of SDH at longest follow-up scan: 81.4 to 13.8 cc (7 wk), 48.5 to 8.7 cc (3 wk), 31.7 and 88 to 0 and 17 cc (14 wk, bilateral), 79.3 to 24.2 cc (8 wk), and 53.5 to 0 cc (6 wk). All patients had symptomatic relief with no complications. Histologic analysis of the chronic SDH membrane in a separate patient that required surgery revealed rich neovascularization with many capillaries and few small arterioles.

MMA embolization could present a minimally invasive and low-risk initial treatment alternative to surgery for symptomatic chronic SDH when clinically appropriate 6).


MMA embolization was performed using angiography, selective microcatheterization of the MMA, and infusion of polyvinyl alcohol particles. Outcomes were assessed clinically and with interval imaging studies at 1 d, 2 wk, and 6 wk postprocedure, and additional intervals as indicated.

MMA embolization was performed successfully on 60 total SDHs in 49 patients. This includes upfront treatment for new (not previously treated) SDH in 42, for recurrence in 8, and prophylaxis (soon after surgical evacuation) in 10. There were 3 mortalities (unrelated to the procedure), and no procedural complications. Of the 50 nonprophylactic cases, there were 4 (8.9%) cases of recurrence requiring surgical evacuation, and 31 (68.9%) that had resolution or reduction in size >50% of SDH at longest follow-up. Overall, 41 (91.1%) were stable or decreased in size and able to avoid surgery.

MMA embolization may represent a minimally-invasive alternative to surgery for new or recurrent chronic SDH, or as prophylaxis to reduce the risk of recurrence after surgery. Given our encouraging results with a 91% long-term success rate, a large scale clinical trial is warranted 7).


Link TW, Schwarz JT, Paine SM, Kamel H, Knopman J. Middle Meningeal Artery Embolization for Recurrent Chronic Subdural Hematoma: A Case Series. World Neurosurg. 2018 Oct;118:e570-e574. doi: 10.1016/j.wneu.2018.06.241. Epub 2018 Jul 6. PubMed PMID: 30257310.


Five patients with symptomatic chronic SDHs underwent MMA embolization using PVA microparticles at our institution. Size of SDH was recorded in maximum diameter and total volume.

Four patients underwent unilateral and 1 underwent bilateral MMA embolization successfully. All cases had significant reduction in total volume of SDH at longest follow-up scan: 81.4 to 13.8 cc (7 wk), 48.5 to 8.7 cc (3 wk), 31.7 and 88 to 0 and 17 cc (14 wk, bilateral), 79.3 to 24.2 cc (8 wk), and 53.5 to 0 cc (6 wk). All patients had symptomatic relief with no complications. Histologic analysis of the chronic SDH membrane in a separate patient that required surgery revealed rich neovascularization with many capillaries and few small arterioles.

MMA embolization could present a minimally invasive and low-risk initial treatment alternative to surgery for symptomatic chronic SDH when clinically appropriate 8).


Seventy-two prospectively enrolled patients with CSDH underwent MMA embolization (embolization group; as the sole treatment in 27 [37.5%] asymptomatic patients and with additional hematoma removal for symptom relief in 45 [62.5%] symptomatic patients). For comparison, 469 patients who underwent conventional treatment were included as a historical control group (conventional treatment group; close, nonsurgical follow-up in 67 [14.3%] and hematoma removal in 402 [85.7%] patients). Primary outcome was treatment failure defined as a composite of incomplete hematoma resolution (remaining or reaccumulated hematoma with thickness > 10 mm) or surgical rescue (hematoma removal for relief of symptoms that developed with continuous growth of initial or reaccumulated hematoma). Secondary outcomes included surgical rescue as a component of the primary outcome and treatment-related complication for safety measure. Six-month outcomes were compared between the study groups with logistic regression analysis. Results Spontaneous hematoma resolution was achieved in all of 27 asymptomatic patients undergoing embolization without direct hematoma removal. Hematoma reaccumulation occurred in one (2.2%) of 45 symptomatic patients receiving embolization with additional hematoma removal. Treatment failure rate in the embolization group was lower than in the conventional treatment group (one of 72 patients [1.4%] vs 129 of 469 patients [27.5%], respectively; adjusted odds ratio [OR], 0.056; 95% confidence interval [CI]: 0.011, 0.286; P = .001). Surgical rescue was less frequent in the embolization group (one of 72 patients [1.4%] vs 88 of 469 patients [18.8%]; adjusted OR, 0.094; 95% CI: 0.018, 0.488; P = .005). Treatment-related complication rate was not different between the two groups (0 of 72 patients vs 20 of 469 patients [4.3%]; adjusted OR, 0.145; 95% CI: 0.009, 2.469; P = .182). Conclusion MMA embolization has a positive therapeutic effect on CSDH and is more effective than conventional treatment 9).


Gobran Taha Alfotih reported 14 cases http://www.roneurosurgery.eu/atdoc/AlfotihGobran_Embolization.pdf

Case reports

A case of a 74-year-old male on aspirin with a history of recurrent symptomatic chronic right-sided subdural hematoma treated successfully with a SEPS and right middle meningeal artery embolization with poly vinyl alcohol (PVA) microparticles. The patient initially presented to the emergency department with headaches, difficulty walking, and left sided hemiparesis. CT Head showed a large chronic right-sided subdural hematoma measuring 2.7 cm thick with 1 cm of leftward shift. Patient underwent placement of a right-sided SEPS and the subdural hematoma decreased in size to 1.0 cm with 2 mm of leftward shift. The patient had resolution of headaches and neurological symptoms and was discharged home. Three months later, the patient returned to the emergency department with headache and left hand numbness. CT Head showed an acute on chronic right-sided subdural hematoma measuring 1.4 cm with 3 mm of leftward shift. Patient underwent right-sided SEPS placement. Repeat CT Head showed reduction in the subdural hematoma to 1.2 cm. The SEPS was removed and the patient had resolution of neurological symptoms. The patient then had a diagnostic cerebral angiogram with PVA microparticle embolization of the right middle meningeal artery. A SEPS was placed at the time of the angiogram to further reduce the size of the subdural hematoma.

Repeat CT Head after SEPS and middle meningeal artery embolization showed decrease in size of the subdural hematoma. Follow-up CT Head showed stability of the subdural hematoma and patient had no further neurological symptoms. Patient was discharged home.

Middle meningeal artery embolization is a useful endovascular technique for reducing the arterial supply to the membranes in chronic subdural hematomas. Middle meningeal artery embolization can reduce the recurrence rate of subdural hematomas 10).

References

1)

Fiorella D, Arthur AS. Middle meningeal artery embolization for the management of chronic subdural hematoma. J Neurointerv Surg. 2019 Feb 23. pii: neurintsurg-2019-014730. doi: 10.1136/neurintsurg-2019-014730. [Epub ahead of print] Review. PubMed PMID: 30798265.
2)

Court J, Touchette CJ, Iorio-Morin C, Westwick HJ, Belzile F, Effendi K. Embolization of the Middle meningeal artery in chronic subdural hematoma – A systematic review. Clin Neurol Neurosurg. 2019 Aug 10;186:105464. doi: 10.1016/j.clineuro.2019.105464. [Epub ahead of print] Review. PubMed PMID: 31600604.
3)

Srivatsan A, Mohanty A, Nascimento FA, Hafeez MU, Srinivasan VM, Thomas A, Chen SR, Johnson JN, Kan P. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma: Meta-Analysis and Systematic Review. World Neurosurg. 2019 Feb;122:613-619. doi: 10.1016/j.wneu.2018.11.167. Epub 2018 Nov 24. PubMed PMID: 30481628.
4)

Waqas M, Vakharia K, Weimer PV, Hashmi E, Davies JM, Siddiqui AH. Safety and Effectiveness of Embolization for Chronic Subdural Hematoma: Systematic Review and Case Series. World Neurosurg. 2019 Mar 13. pii: S1878-8750(19)30678-3. doi: 10.1016/j.wneu.2019.02.208. [Epub ahead of print] Review. PubMed PMID: 30878752.
5)

Nakagawa I, Park HS, Kotsugi M, Wada T, Takeshima Y, Matsuda R, Nishimura F, Yamada S, Motoyama Y, Park YS, Kichikawa K, Nakase H. Enhanced hematoma membrane on DynaCT images during middle meningeal artery embolization for persistently recurrent chronic subdural hematoma. World Neurosurg. 2019 Feb 27. pii: S1878-8750(19)30485-1. doi: 10.1016/j.wneu.2019.02.074. [Epub ahead of print] PubMed PMID: 30825631.
6) , 8)

Link TW, Boddu S, Marcus J, Rapoport BI, Lavi E, Knopman J. Middle Meningeal Artery Embolization as Treatment for Chronic Subdural Hematoma: A Case Series. Oper Neurosurg (Hagerstown). 2018 May 1;14(5):556-562. doi: 10.1093/ons/opx154. PubMed PMID: 28973653.
7)

Link TW, Boddu S, Paine SM, Kamel H, Knopman J. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma: A Series of 60 Cases. Neurosurgery. 2018 Nov 9. doi: 10.1093/neuros/nyy521. [Epub ahead of print] PubMed PMID: 30418606.
9)

Ban SP, Hwang G, Byoun HS, Kim T, Lee SU, Bang JS, Han JH, Kim CY, Kwon OK, Oh CW. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma. Radiology. 2018 Mar;286(3):992-999. doi: 10.1148/radiol.2017170053. Epub 2017 Oct 10. PubMed PMID: 29019449.

Subdural hygroma

Subdural hygroma

Subdural hygroma is a subdural fluid collection

see Traumatic subdural hygroma.

see Spinal subdural hygroma.

Kim et al. suggested that increased cerebrospinal space and cerebrospinal fluid pressure may result in compensatory enlargement of head circumference only in the infant period, and the subdural hygroma thickness decreases with age during the infant and toddler phases 1).

1)

Kim MJ, Choi DH, Yoo CJ, Lim YC, Yoon SH. Relationships between Head Circumference Percentile, Lumbar Puncture Pressure, and Cerebrospinal Fluid Space in Young Children: Increased Cerebrospinal Space and Pressure May Result in Compensatory Enlargement of Head Circumference Only in the Infant Period. Pediatr Neurosurg. 2019 Oct 10:1-8. doi: 10.1159/000503113. [Epub ahead of print] PubMed PMID: 31600754.

Severe traumatic brain injury outcome

Severe traumatic brain injury outcome

There has been a secular trend towards reduced incidence of severe traumatic brain injury in the first world, driven by public health interventions such as seatbelt legislation, helmet use, and workplace health and safety regulations. This has paralleled improved outcomes following TBI delivered in a large part by the widespread establishment of specialised neurointensive care 1).

Effect of trauma center designation in severe traumatic brain injury outcome

see Effect of trauma center designation in severe traumatic brain injury outcome


Mortality or severe disability affects the majority of patients after severe traumatic brain injury (TBI). Adherence to the brain trauma foundation severe traumatic brain injury guidelines has overall improved outcomes; however, traditional as well as novel interventions towards intracranial hypertension and secondary brain injury have come under scrutiny after series of negative randomized controlled trials. In fact, it would not be unfair to say there has been no single major breakthrough in the management of severe TBI in the last two decades. One plausible hypothesis for the aforementioned failures is that by the time treatment is initiated for neuroprotection, or physiologic optimization, irreversible brain injury has already set in. Lazaridis et al., and others, have developed predictive models based on machine learning from continuous time series of intracranial pressure and partial pressure of brain tissue oxygen. These models provide accurate predictions of physiologic crises events in a timely fashion, offering the opportunity for an earlier application of targeted interventions. In a article, Lazaridis et al., review the rationale for prediction, discuss available predictive models with examples, and offer suggestions for their future prospective testing in conjunction with preventive clinical algorithms 2).


Determining the prognostic significance of clinical factors for patients with severe head injury can lead to an improved understanding of the pathophysiology of head injury and to improvement in therapy. A technique known as the sequential Bayes method has been used previously for the purpose of prognosis. The application of this method assumes that prognostic factors are statistically independent. It is now known that they are not. Violation of the assumption of independence may produce errors in determining prognosis. As an alternative technique for predicting the outcome of patients with severe head injury, a logistic regression model is proposed. A preliminary evaluation of the method using data from 115 patients with head injury shows the feasibility of using early data to predict outcome accurately and of being able to rank input variables in order of their prognostc significance. 3).


A prospective and consecutive series of 225 patients with severe head injuries who were managed in a uniform way was analyzed to relate outcome to several clinical variables. Good recovery or moderate disability were achieved by 56% of the patients, 10% remained severely disabled or vegetative, and 34% died. Factors important in predicting a poor outcome included the presence of intracranial hematoma, increasing age, motor impairment, impaired or absent eye movements or pupillary light reflexes, early hypotension, hypoxemia or hypercarbia, and raised intracranial pressure over 20 mm Hg despite artificial ventilation. Most of these predictive factors were assessed on admission, but a subset of 158 patients was identified in whom coma was present on admission and was known to have persisted at least until the following day. Although the mortality in this subset (40%) was higher than in the total series, it was lower than in several comparable reported series of patients with severe head injury. Predictive correlations were equally strong in the entire series and in the subset of 158 patients with coma. A plea is made for inclusion in the definition of “severe head injury” of all patients who do not obey commands or utter recognizable words on admission to the hospital after early resuscitation 4).


Survival rate of isolated severe TBI patients who required an emergent neurosurgical intervention could be time dependent. These patients might benefit from expedited process (computed tomographic scan, neurosurgical consultation, etc.) to shorten the time to surgical intervention 5).

The impact of a moderate to severe brain injury can include:

Cognitive deficits including difficulties with:

Attention Concentration Distractibility Memory Speed of Processing Confusion Perseveration Impulsiveness Language Processing “Executive functions” Speech and Language

not understanding the spoken word (receptive aphasia) difficulty speaking and being understood (expressive aphasia) slurred speech speaking very fast or very slow problems reading problems writing Sensory

difficulties with interpretation of touch, temperature, movement, limb position and fine discrimination Perceptual

the integration or patterning of sensory impressions into psychologically meaningful data Vision

partial or total loss of vision weakness of eye muscles and double vision (diplopia) blurred vision problems judging distance involuntary eye movements (nystagmus) intolerance of light (photophobia) Hearing

decrease or loss of hearing ringing in the ears (tinnitus) increased sensitivity to sounds Smell

loss or diminished sense of smell (anosmia) Taste

loss or diminished sense of taste Seizures

the convulsions associated with epilepsy that can be several types and can involve disruption in consciousness, sensory perception, or motor movements Physical Changes

Physical paralysis/spasticity Chronic pain Control of bowel and bladder Sleep disorders Loss of stamina Appetite changes Regulation of body temperature Menstrual difficulties Social-Emotional

Dependent behaviors Emotional ability Lack of motivation Irritability Aggression Depression Disinhibition Denial/lack of awareness


Both single predictors from early clinical examination and multiple hospitalization variables/parameters can be used to determine the long-term prognosis of TBI. Predictive models like the IMPACT or CRASH prognosis calculator (based on large sample sizes) can predict mortality and unfavorable outcomes. Moreover, imaging techniques like MRI (Magnetic Resonance Imaging) can also predict consciousness recovery and mental recovery in severe TBI, while biomarkers associated with stress correlate with, and hence can be used to predict, severity and mortality. All predictors have limitations in clinical application. Further studies comparing different predictors and models are required to resolve limitations of current predictors 6).

References

1)

Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury. J Neurol. 2019 Sep 28. doi: 10.1007/s00415-019-09541-4. [Epub ahead of print] PubMed PMID: 31563989.
2)

Lazaridis C, Rusin CG, Robertson CS. Secondary Brain Injury: Predicting and Preventing Insults. Neuropharmacology. 2018 Jun 6. pii: S0028-3908(18)30279-X. doi: 10.1016/j.neuropharm.2018.06.005. [Epub ahead of print] Review. PubMed PMID: 29885419.
3)

Stablein DM, Miller JD, Choi SC, Becker DP. Statistical methods for determining prognosis in severe head injury. Neurosurgery. 1980 Mar;6(3):243-8. PubMed PMID: 6770283.
4)

Miller JD, Butterworth JF, Gudeman SK, Faulkner JE, Choi SC, Selhorst JB, Harbison JW, Lutz HA, Young HF, Becker DP. Further experience in the management of severe head injury. J Neurosurg. 1981 Mar;54(3):289-99. PubMed PMID: 7463128.
5)

Matsushima K, Inaba K, Siboni S, Skiada D, Strumwasser AM, Magee GA, Sung GY, Benjaminm ER, Lam L, Demetriades D. Emergent operation for isolated severe traumatic brain injury: Does time matter? J Trauma Acute Care Surg. 2015 Aug 28. [Epub ahead of print] PubMed PMID: 26317818.
6)

Gao L, Wu X. Prediction of clinical outcome in severe traumatic brain injury. Front Biosci (Landmark Ed). 2015 Jan 1;20:763-771. PubMed PMID: 25553477.
WhatsApp WhatsApp us
%d bloggers like this: