Endoscopic third ventriculostomy and choroid plexus cauterization

Endoscopic third ventriculostomy and choroid plexus cauterization

Endoscopic third ventriculostomy with choroid plexus cauterization (ETV/CPC) offers an alternative to shunt.


While ventriculoperitoneal shunt (VPS) insertion is the standard treatment for myelomeningocele-associated hydrocephalus (MAH), it can be complicated by shunt infection and shunt malfunction. As such, endoscopic third ventriculostomy (ETV), with or without choroid plexus coagulation (CPC), has been proposed as an alternative.

ETV+CPC was associated with a higher success rate than ETV alone for MAH in a meta-analysis of published studies. ETV, with or without CPC, was technically feasible and safe for this patient population 1).


In the twenty-first century, choroid plexus cauterization (CPC) in combination with endoscopic third ventriculostomy (ETV) has emerged as an effective treatment for some infants with hydrocephalus, leading to the favourable condition of ‘shunt independence‘.

Coulter et al. provide a narrative technical review considering the indications, procedural aspects, morbidity and its avoidance, postoperative care and follow-up. The CP has been the target of hydrocephalus treatment for more than a century. Early eminent neurosurgeons including Dandy, Putnam and Scarff performed CPC achieving generally poor results, and so the procedure fell out of favour. In recent years, the addition of CPC to ETV was one of the reasons greater ETV success rates were observed in Africa, compared to developed nations, and its popularity worldwide has since increased. Initial results indicate that when ETV/CPC is performed successfully, shunt independence is more likely than when ETV is undertaken alone. CPC is commonly performed using a flexible endoscope via septostomy and aims to maximally cauterize the CP. Success is more likely in infants aged >1 month, those with hydrocephalus secondary to myelomeningocele and aqueductal obstruction and those with >90% cauterized CP. Failure is more likely in those with post-haemorrhagic hydrocephalus of prematurity (PHHP), particularly those <1 month of corrected age and those with prepontine scarring. High-quality evidence comparing the efficacy of ETV/CPC with shunting is emerging, with data from ongoing and future trials offering additional promise to enhance our understanding of the true utility of ETV/CPC 2).


In the quest to identify the optimal means of cerebrospinal fluid diversion free of shunt dependency, endoscopic third ventriculostomy (ETV) with choroid plexus cauterization (CPC) has been proposed as a promising procedure in select children. Supplementing traditional ETV with obliteration of the choroid plexus has been shown to decrease the likelihood of ultimate shunt dependency by roughly 20%. Originally devised to treat hydrocephalus in infants in sub-Saharan Africa, ETV/CPC has gained eager attention and cautious support in the developed world 3).

Diagnosing treatment failure is dependent on infantile hydrocephalus metrics, including head circumference, fontanel quality, and ventricle size.

Systematic review was performed using four electronic databases and bibliographies of relevant articles, with no language or date restrictions. Cohort studies of participants undergoing ETV/CPC that reported outcome were included using MOOSE guidelines. The outcome was time to repeat CSF diversion or death. Forest plots were created for pooled mean and its 95 % CI of outcome and morbidity.

Of 78 citations, 11 retrospective reviews (with 524 total participants) were eligible. Efficacy was achieved in 63 % participants at follow-up periods between 6 months and 8 years. Adverse events and mortality was reported in 3.7 and 0.4 % of participants, respectively. Publication bias was detected with respect to efficacy and morbidity of the procedure. A large discrepancy in success was identified between ETV/CPC in six studies from sub-Saharan Africa (71 %), compared to three studies from North America (49 %).

The reported success of ETV/CPC for infantile hydrocephalus is higher in sub-Saharan Africa than developed nations. Large long-term prospective multi-center observational studies addressing patient-important outcomes are required to further evaluate the efficacy and safety of this re-emerging procedure 4).

2016

It is not clear to what degree these metrics should be expected to change after ETV/CPC. Using these clinical metrics, Dewan et al., present and analyze the decision making in cases of ETV/CPC failure.

Infantile hydrocephalus metrics, including bulging fontanel, head circumference z-score, and frontal and occipital horn ratio (FOHR), were compared between ETV/CPC failures and successes. Treatment outcome predictive values of metrics individually and in combination were calculated.

Forty-four patients (57% males, median age 1.2 months) underwent ETV/CPC for hydrocephalus; of these patients, 25 (57%) experienced failure at a median time of 51 days postoperatively. Patients experiencing failure were younger than those experiencing successful treatment (0.8 vs 3.9 months, p = 0.01). During outpatient follow-up, bulging anterior fontanel, progressive macrocephaly, and enlarging ventricles each demonstrated a positive predictive value (PPV) of no less than 71%, but a bulging anterior fontanel remained the most predictive indicator of ETV/CPC failure, with a PPV of 100%, negative predictive value of 73%, and sensitivity of 72%. The highest PPVs and specificities existed when the clinical metrics were present in combination, although sensitivities decreased expectedly. Only 48% of failures were diagnosed on the basis all 3 hydrocephalus metrics, while only 37% of successes were negative for all 3 metrics. In the remaining 57% of patients, a diagnosis of success or failure was made in the presence of discordant data.

Successful ETV/CPC for infantile hydrocephalus was evaluated in relation to fontanel status, head growth, and change in ventricular size. In most patients, a designation of failure or success was made in the setting of discordant data 5).

2014

A study retrospectively reviewed medical records of 27 premature infants with intraventricular hemorrhage (IVH) and hydrocephalus treated with ETV and CPC from 2008 to 2011. All patients were evaluated using MRI before the procedure to verify the anatomical feasibility of ETV/CPC. Endoscopic treatment included third ventriculostomy, septostomy, and bilateral CPC. After ETV/CPC, all patients underwent follow-up for a period of 6-40 months (mean 16.2 months). The procedure was considered a failure if the patient subsequently required a shunt. The following factors were analyzed to determine a relationship to patient outcomes: gestational age at birth, corrected age and weight at surgery, timing of surgery after birth, grade of IVH, the status of the prepontine cistern and cerebral aqueduct on MRI, need for a ventricular access device prior to the endoscopic procedure, and scarring of the prepontine cistern noted at surgery.

Seventeen (63%) of 27 patients required a shunt after ETV/CPC, and 10 patients did not require further CSF diversion. Several factors studied were associated with a higher rate of ETV/CPC failure: Grade IV hemorrhage, weight 3 kg or less and age younger than 3 months at the time of surgery, need for reservoir placement, and presence of a normal cerebral aqueduct. Two factors were found to be statistically significant: the patient’s corrected gestational age of less than 0 weeks at surgery and a narrow prepontine cistern on MRI. The majority (83%) of ETV/CPC failures occurred in the first 3 months after the procedure. None of the patients had a complication directly related to the procedure.

Endoscopic third ventriculostomy/CPC is a safe initial procedure for hydrocephalus in premature infants with IVH and hydrocephalus, obviating the need for a shunt in selected patients. Even though the success rate is low (37%), the lower rate of complications in comparison with shunt treatment may justify this procedure in the initial management of hydrocephalus. As several of the studied factors have shown influence on the outcome, patient selection based on these observations might increase the success rate 6).

2005

A total of 710 children underwent ventriculoscopy as candidates for ETV as the primary treatment for hydrocephalus. The ETV was accomplished in 550 children: 266 underwent a combined ETV-CPC procedure and 284 underwent ETV alone. The mean and median ages were 14 and 5 months, respectively, and 443 patients (81%) were younger than 1 year of age. The hydrocephalus was postinfectious (PIH) in 320 patients (58%), nonpostinfectious (NPIH) in 152 (28%), posthemorrhagic in five (1%), and associated with myelomeningocele in 73 (13%). The mean follow up was 19 months for ETV and 9.2 months for ETV-CPC. Overall, the success rate of ETV-CPC (66%) was superior to that of ETV alone (47%) among infants younger than 1 year of age (p < 0.0001). The ETV-CPC combined procedure was superior in patients with a myelomeningocele (76% compared with 35% success, p = 0.0045) and those with NPIH (70% compared with 38% success, p = 0.0025). Although the difference was not significant for PIH (62% compared with 52% success, p = 0.1607), a benefit was not ruled out (power = 0.3). For patients at least 1 year of age, there was no difference between the two procedures (80% success for each, p = 1.0000). The overall surgical mortality rate was 1.3%, and the infection rate was less than 1%.

The ETV-CPC was more successful than ETV alone in infants younger than 1 year of age. In developing countries in which a dependence on shunts is dangerous, ETV-CPC may be the best option for treating hydrocephalus in infants, particularly for those with NPIH and myelomeningocele 7).


1)

Omar AT, Espiritu AI, Spears J. Endoscopic third ventriculostomy with or without choroid plexus coagulation for myelomeningocele-associated hydrocephalus: systematic review and meta-analysis. J Neurosurg Pediatr. 2022 Jan 21:1-9. doi: 10.3171/2021.11.PEDS21505. Epub ahead of print. PMID: 35061994.
2)

Coulter IC, Dewan MC, Tailor J, Ibrahim GM, Kulkarni AV. Endoscopic third ventriculostomy and choroid plexus cauterization (ETV/CPC) for hydrocephalus of infancy: a technical review. Childs Nerv Syst. 2021 May 15. doi: 10.1007/s00381-021-05209-5. Epub ahead of print. PMID: 33991213.
3)

Dewan MC, Naftel RP. The Global Rise of Endoscopic Third Ventriculostomy with Choroid Plexus Cauterization in Pediatric Hydrocephalus. Pediatr Neurosurg. 2016 Dec 22. doi: 10.1159/000452809. [Epub ahead of print] PubMed PMID: 28002814.
4)

Weil AG, Westwick H, Wang S, Alotaibi NM, Elkaim L, Ibrahim GM, Wang AC, Ariani RT, Crevier L, Myers B, Fallah A. Efficacy and safety of endoscopic third ventriculostomy and choroid plexus cauterization for infantile hydrocephalus: a systematic review and meta-analysis. Childs Nerv Syst. 2016 Nov;32(11):2119-2131. PubMed PMID: 27613635.
5)

Dewan MC, Lim J, Morgan CD, Gannon SR, Shannon CN, Wellons JC 3rd, Naftel RP. Endoscopic third ventriculostomy with choroid plexus cauterization outcome: distinguishing success from failure. J Neurosurg Pediatr. 2016 Dec;25(6):655-662. PubMed PMID: 27564786.
6)

Chamiraju P, Bhatia S, Sandberg DI, Ragheb J. Endoscopic third ventriculostomy and choroid plexus cauterization in posthemorrhagic hydrocephalus of prematurity. J Neurosurg Pediatr. 2014 Apr;13(4):433-9. doi: 10.3171/2013.12.PEDS13219. PubMed PMID: 24527862.
7)

Warf BC. Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg. 2005 Dec;103(6 Suppl):475-81. PubMed PMID: 16383244.

Robotic pedicle screw placement

Robotic pedicle screw placement

Robotic spinal fixation is associated with increased screw placement accuracy and similar operative blood loss, length of stay, and operative duration. These findings support the safety and cost-effectiveness of robotic spinal surgery across the spectrum of robotic systems and screw types 1).


In addition to demonstrating excellent pedicle screw accuracy, early studies have explored the impact of robot-assisted spine surgery on reducing radiation time, length of hospital stay, operative time, and perioperative complications in comparison to conventional freehand technique. The Mazor X Stealth Edition was introduced in 2018. This robotic system integrates Medtronic’s Stealth navigation technology into the Mazor X platform, which was introduced in 2016. It is unclear what the impact of these advancements have made on clinical outcomes.


In a multicenter study, both robot systems achieved excellent screw accuracy and low robot time per screw. However, using Stealth led to significantly less fluoroscopic radiation time, lower robot abandonment rates, and reduced blood transfusion rates than Mazor X. Other factors including length of stay, and 90-day complications were similar 2)

Ha Y. Robot-Assisted Spine Surgery: A Solution for Aging Spine Surgeons. Neurospine. 2018 Sep;15(3):187-188. doi: 10.14245/ns.18edi.003. Epub 2018 Sep 11. PubMed PMID: 30196675.


In three cadavers 12 pedicle screws were implanted in thoraco-lumbar segments with the robotic surgery assistant. 3D-fluoroscopy was performed for preoperative referencing, planning and identification of postoperative screw position. The radiation exposure of fluoroscopy and a CT scanner was compared, measuring the Computed Tomography Dose Index (CTDIw ).

Pedicle screw positioning was graded according to the Gertzbein-Robbins classification: Eleven of 12 pedicle screws showed optimal transpedicular position (Grade 1), one was positioned less than 2 mm outside (Grade 2). No major deviations were observed. Referencing with 3D-fluoroscopy resulted in a CTDIw reduction of 84% in the cervical- and 33% in the lumbar spine.

Robot-guided PS placement, using 3D-fluoroscopy for referencing, is a reliable tool for minimally invasive PS implantation; radiation exposure can be reduced 3).


Menger et al., investigated the cost effectiveness of adding robotic technology in spine surgery to an active neurosurgical practice.

The time of operative procedures, infection rates, revision rates, length of stay, and possible conversion of open to minimally invasive spine surgery (MIS) secondary to robotic image guidance technology were calculated using a combination of institution-specific and national data points. This cost matrix was subsequently applied to 1 year of elective clinical case volume at an academic practice with regard to payor mix, procedural mix, and procedural revenue.

A total of 1,985 elective cases were analyzed over a 1-year period; of these, 557 thoracolumbar cases (28%) were analyzed. Fifty-eight (10.4%) were MIS fusions. Independent review determined an additional ~10% cases (50) to be candidates for MIS fusion. Furthermore, 41.4% patients had governmental insurance, while 58.6% had commercial insurance. The weighted average diagnosis-related group reimbursement for thoracolumbar procedures for the hospital system was calculated to be $25,057 for Medicare and $42,096 for commercial insurance. Time savings averaged 3.4 minutes per 1-level MIS procedure with robotic technology, resulting in annual savings of $5,713. Improved pedicle screw accuracy secondary to robotic technology would have resulted in 9.47 revisions being avoided, with cost savings of $314,661. Under appropriate payor mix components, robotic technology would have converted 31 Medicare and 18 commercial patients from open to MIS. This would have resulted in 140 fewer total hospital admission days ($251,860) and avoided 2.3 infections ($36,312). Robotic surgery resulted in immediate conservative savings estimate of $608,546 during a 1-year period at an academic center performing 557 elective thoracolumbar instrumentation cases.

Application of robotic spine surgery is cost-effective, resulting in lesser revision surgery, lower infection rates, reduced length of stay, and shorter operative time. Further research is warranted, evaluating the financial impact of robotic spine surgery 4).


Several randomized controlled trials (RCTs) and cohort studies involving robotic-assisted (RA) and free-hand with fluoroscopy-guided (FH) and published before January 2017 were searched for using the Cochrane LibraryOvidWeb of SciencePubMed, and EMBASE databases. A total of 55 papers were selected. After the full-text assessment, 45 clinical trials were excluded. The final meta-analysis included 10 articles.

The accuracy of pedicle screw placement within the RA group was significantly greater than the accuracy within the FH group (odds ratio 95%, “perfect accuracy” confidence interval: 1.38-2.07, P < .01; odds ratio 95% “clinically acceptable” Confidence Interval: 1.17-2.08, P < .01).

There are significant differences in accuracy between RA surgery and FH surgery. It was demonstrated that the RA technique is superior to the conventional method in terms of the accuracy of pedicle screw placement 5).


In 2013 a study evaluated the outcomes of robotic-assisted screw placement in a consecutive series of 102 patients.

Data were recorded from technical notes and operative records created immediately following each surgery case, in which the robotic system was used to guide pedicle screw placement. All cases were performed at the same hospital by a single surgeon. The majority of patients had spinal deformity and/or previous spine surgery. Each planned screw placement was classified as: (1) successful/accurately placed screw using robotic guidance; (2) screw malpositioned using robot; (3) use of robot aborted and screw placed manually; (4) planned screw not placed as screw deemed non essential for construct stability. Data from each case were reviewed by two independent researchers to indentify the diagnosis, number of attempted robotic guided screw placements and the outcome of the attempted placement as well as complications or reasons for non-placement.

Robotic-guided screw placement was successfully used in 95 out of 102 patients. In those 95 patients, 949 screws (87.5 % of 1,085 planned screws) were successfully implanted. Eleven screws (1.0 %) placed using the robotic system were misplaced (all presumably due to “skiving” of the drill bit or trocar off the side of the facet). Robotic guidance was aborted and 110 screws (10.1 %) were manually placed, generally due to poor registration and/or technical trajectory issues. Fifteen screws (1.4 %) were not placed after intraoperative determination that the screw was not essential for construct stability. The robot was not used as planned in seven patients, one due to severe deformity, one due to very high body mass index, one due to extremely poor bone quality, one due to registration difficulty caused by previously placed loosened hardware, one due to difficulty with platform mounting and two due to device technical issues.

Of the 960 screws that were implanted using the robot, 949 (98.9 %) were successfully and accurately implanted and 11 (1.1 %) were malpositioned, despite the fact that the majority of patients had significant spinal deformities and/or previous spine surgeries. “Tool skiving” was thought to be the inciting issue with the misplaced screws. Intraoperative anteroposterior and oblique fluoroscopic imaging for registration is critical and was the limiting issue in four of the seven aborted cases 6).

Robotic pedicle screw placement learning curve.


1)

Himstead AS, Shahrestani S, Brown NJ, Produturi G, Shlobin NA, Al Jammal O, Choi EH, Ransom SC, Daniel Diaz-Aguilar L, Sahyouni R, Abraham M, Pham MH. Bony fixation in the era of spinal robotics: A systematic review and meta-analysis. J Clin Neurosci. 2022 Jan 19;97:62-74. doi: 10.1016/j.jocn.2022.01.005. Epub ahead of print. PMID: 35065405.
2)

Lee NJ, Zuckerman SL, Buchanan IA, Boddapati V, Mathew J, Leung E, Park PJ, Pham MH, Buchholz AL, Khan A, Pollina J, Mullin JP, Jazini E, Haines C, Schuler TC, Good CR, Lombardi JM, Lehman RA. Is There a Difference Between Navigated and Non-Navigated Robot Cohorts in Robot-Assisted Spine Surgery? A Multicenter, Propensity-Matched Analysis of 2,800 Screws and 372 Patients. Spine J. 2021 May 19:S1529-9430(21)00253-9. doi: 10.1016/j.spinee.2021.05.015. Epub ahead of print. PMID: 34022461.
3)

Spyrantis A, Cattani A, Seifert V, Freiman TM, Setzer M. Minimally invasive percutaneous robotic thoracolumbar pedicle screw implantation combined with three-dimensional-fluoroscopy can reduce radiation: a cadaver and phantom study. Int J Med Robot. 2019 Jun 19:e2022. doi: 10.1002/rcs.2022. [Epub ahead of print] PubMed PMID: 31216120.
4)

Menger RP, Savardekar AR, Farokhi F, Sin A. A Cost-Effectiveness Analysis of the Integration of Robotic Spine Technology in Spine Surgery. Neurospine. 2018 Aug 29. doi: 10.14245/ns.1836082.041. [Epub ahead of print] PubMed PMID: 30157583.
5)

Fan Y, Du JP, Liu JJ, Zhang JN, Qiao HH, Liu SC, Hao DJ. Accuracy of pedicle screw placement comparing robot-assisted technology and the free-hand with fluoroscopy-guided method in spine surgery: An updated meta-analysis. Medicine (Baltimore). 2018 Jun;97(22):e10970. doi: 10.1097/MD.0000000000010970. Review. PubMed PMID: 29851848; PubMed Central PMCID: PMC6392558.
6)

Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2013 Mar;22(3):661-6. doi: 10.1007/s00586-012-2499-1. Epub 2012 Sep 14. PubMed PMID: 22975723; PubMed Central PMCID: PMC3585630.

Insular Cavernous Malformation

Insular Cavernous Malformation

Surgical management of cavernous malformation (CM) of the insula consists of total resection of the lesion and the surrounding gliosis to avoid or reduce seizures. When located in the dominant hemisphere, an awake craniotomy with intraoperative mapping reduces the risk of functional damage. The insula is covered by the operculum and has a relationship with the middle cerebral artery and its branches that run along its lateral cortical surface. Therefore high expertise is required to manage the exposure of the insula and its complex anatomy.

Insular Cavernous Malformation Classification.

https://www.neurosurgicalatlas.com/cases/insular-cavernous-malformation


A video of Burkhardt et al. demonstrated the microsurgical resection of a de novo CM adjacent to a previously treated high-grade AVM and clipping of a middle cerebral artery (MCA) aneurysm. A 70-yr-old male with history of radiosurgery for AVM presented with aphasia and confusion. Preoperative angiography showed complete occlusion of the AVM. MRI showed multiple cystic lesions suspicious for radiation-induced necrosis and CM. IRB approval and patient consent was obtained. A pterional craniotomy was performed with transsylvian exposure of the insula. The radiated feeding arteries were followed to the occluded AVM nidus. A CM was noted deep to this candelabra of the MCA vessels, which were mobilized to access and resect the CM. A small incision was made in this insular cortex underneath the malformation circumferentially freeing it of adhesions. The sclerotic AVM nidus was circumferentially dissected and removed en bloc. Thorough exploration of the resection cavity revealed no residual CM or AVM nidus. Attention was then turned to the M2-MCA bifurcation aneurysm, which was occluded with a straight clip. Postoperative imaging confirmed complete CM resection. The patient recovered from his aphasia. This case demonstrates the management of a radiation-induced de novo CM following treatment of a high-grade AVM. Radiographic follow-up for radiosurgically treated AVM is needed to rule out long-term complications. Bleeding from a de novo CM mimics bleeding from residual AVM nidus, requiring careful angiographic evaluation 1).


A video of Norat et al. illustrated the use of a trans-Sylvian, trans-sulcal approach to resect a deep insular/basal ganglia cavernous malformation in a young patient. The use of the neuronavigation is essential for success in these types of operation as this tool limits the surgeon’s footprint in eloquent brain. Unlike superficial lesions where the removal of hemosiderin stained brain is possible and often safe, resection of deep-seated lesions requires the surgeon to distinguish between hemosiderin-stained brain and residual cavernous malformation. This task is not simple, and residual cavernous malformation is the most common reason for re-bleed in patients who have undergone surgery. Resection of symptomatic cavernous malformations in deep locations can be performed safely, but outcomes are heavily influenced by proper patient selection and surgeon experience. In patients with multiple cerebral cavernous malformations, such as the one in this case, genetic testing should be performed 2).


A video of Vigo et al. demonstrated the surgical management of a large left insular CM. A 29-year-old female with multiple CM and 7 years of partial seizures and recent onset of short memory loss. Neuroimaging showed a large left insular and planum polare CM with important mass effect and hemorrhage signs. The patient consented to surgery, and an awake pretemporal craniotomy was carried out with continuous motor evoked potential monitoring. No language function was localized in the superior temporal gyrus; therefore corticectomy of the middle portion was performed to expand the operative corridor. The vessel manipulation during wide opening of the sylvian fissure increased the risk of postoperative vasospasm and blood drain into the surgical field. The CM was exposed and completely removed without functional damage. The patient recovered from surgery without complications, and no seizures occurred at 2 months’ follow-up. Postoperative imaging showed complete removal of the CM 3).

A study included patients affected by iCMs and referred to the Senior Author (FA). All cases were divided in 2 groups, according to a mainly pial growth pattern (exophytic group) or a subcortical one (endophytic group). Endophytic iCM was further subdivided in 3 subgroups, based on the insular gyri involved. According to this classification, each patient underwent a specific additional neuroimaging investigation and surgical evaluation.

Results: A total of 24 patients were included. In the surgical group, trans-sylvian (TS) approach was used in 6 patients with exophytic or Zone I endophytic iCMs. The transcortical (TC) approach with awake monitoring was used in 6 cases of Zone II endophytic vascular lesions. Both TS and trans-intraparietal sulcal (TIS) approach were used for 3 cases of Zone III endophytic iCM. At follow-up, 3 patients were fully recovered from a transient speech impairment while a permanent morbidity was observed in one case.

Conclusions: ICMs represent a single entity with peculiar clinical and surgical aspects. The proposed iCM classification focuses on anatomical and functional concerns, aiming to suggest the best pre-operative work-up and the surgical evaluation 4).

A 25-yr-old female presented with an acute-onset right homonymous hemianopsia. Neuroimaging revealed a large left insular CM, adjacent to the posterior limb of IC. After obtaining IRB approval and patient consent, a left pterional craniotomy with a wide distal Sylvian fissure split was completed. Using neuronavigation, an insular entry point was chosen for corticectomy. The CM was opened with subsequent hematoma evacuation and intracapsular resection technique. Inspection of the cavity revealed remnants anteromedially near the IC, which were removed meticulously, mobilizing the CM away from the IC. Postoperative MRI demonstrated gross total resection of the CM. The patient was discharged home on postoperative day 5 with persistent homonymous hemianopia.This case describes the use of a transsylvian-transinsular approach to access deep lesions with the shortest surgical distance and minimal cortical transgression. A wide Sylvian fissure split exposes the M2 MCA and accesses a safe insular zone, keeping the most eloquent structures deep to the lesion in the surgical corridor. This approach can safely expose vascular pathologies in the insular region without the risk of injury to overlying eloquent frontal and temporal lobes, even in the dominant hemisphere 5).


1)

Burkhardt JK, Gandhi S, Tabani H, Benet A, Lawton MT. Left Transsylvian-Transinsular Approach for Radiation-Induced Cavernous Malformation: 3-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2019 Aug 1;17(2):E62-E63. doi: 10.1093/ons/opy357. PubMed PMID: 30418603.
2)

Norat P, Yagmurlu K, Park MS, Kalani MYS. Keyhole, Trans-Sylvian, Trans-Sulcal Resection of an Insular Cerebral Cavernous Malformation: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2019 Jul 1;17(1):E18. doi: 10.1093/ons/opy326. PubMed PMID: 30496497.
3)

Vigo V, Zanabria Ortiz R, Paganelli SL, da Costa MDS, Campos Filho JM, Chaddad-Neto F. Awake Craniotomy for Removal of Left Insular Cavernous Malformation. World Neurosurg. 2019 Feb;122:209. doi: 10.1016/j.wneu.2018.10.220. Epub 2018 Nov 9. PubMed PMID: 30415050.
4)

Fioravanti A, Elia A, Morandini A, Valtulina C, Bertuccio A. Anatomo-functional evaluation for management and surgical treatment of insular cavernous malformation: a case series. Acta Neurochir (Wien). 2022 Jan 23. doi: 10.1007/s00701-021-05089-3. Epub ahead of print. PMID: 35066681.
5)

Mascitelli J, Gandhi S, Wright E, Lawton MT. Transsylvian-Transinsular Approach for an Insular Cavernous Malformation Resection: 3-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2019 Feb 1;16(2):50. doi: 10.1093/ons/opy155. PubMed PMID: 29905877.
WhatsApp WhatsApp us
%d bloggers like this: