Cranioplasty materials

Cranioplasty materials

Available evidence on the safety of cranioplasty materials is limited due to a large diversity in study conduct, patients included and outcomes reported. Autologous bone grafts appear to carry a higher failure risk than allografts. Future publications concerning cranioplasties will benefit by a standardized reporting of surgical procedures, outcomes and graft materials used 1).

A literature review in 2016 emphasizes the benefits and weaknesses of each considered material commonly used for cranioplasty, especially in terms of infectious complications, fractures, and morphological outcomes.As regards the latter, this appears to be very similar among the different materials when custom three-dimensional modeling is used for implant development, suggesting that this criterion is strongly influenced by implant design. However, the overall infection rate can vary from 0% to 30%, apparently dependent on the type of material used, likely in virtue of the wide variation in their chemico-physical composition. Among the different materials used for cranioplasty implants, synthetics such as polyetheretherketonepolymethylmethacrylate, and titanium show a higher primary tear resistance, whereas hydroxyapatite and autologous bone display good biomimetic properties, although the latter has been ascribed a variable reabsorption rate of between 3% and 50%. In short, all cranioplasty procedures and materials have their advantages and disadvantages, and none of the currently available materials meet the criteria required for an ideal implant. Hence, the choice of cranioplasty materials is still essentially reliant on the surgeon’s preference 2).


In 19th century, the use of bone from different donor sites, such as ribs or tibia, gained wide population.

Many different types of materials were used throughout the history of cranioplasty. With the evolving biomedical technology, new materials are available to be used by the surgeons. Although many different materials and techniques had been described, there is still no consensus about the best material, and ongoing researches on both biologic and nonbiologic substitutions continue aiming to develop the ideal reconstruction materials.

Cranioplasty can be performed either with gold-standard, autologous bone flaps and osteotomies or alloplastic materials in skeletally mature patients. Recently, custom computer-generated implants (CCGIs) have gained popularity with surgeons because of potential advantages, which include preoperatively planned contour, obviated donor-site morbidity, and operative time savings. A remaining concern is the cost of CCGI production.

see Autologous bone flap cranioplasty

Synthetic implants

Several materials are available. Each has its advantages and disadvantages. Search is on for an ideal material.

Polymethylmethacrylate cranioplasty and polyetheretherketone (PEEK) are the most commonly applied today.

Celluloid cranioplasty

PEEK cranioplasty

Fiberglass cranioplasty

Polypropylene polyester knitwear

Tantalum cranioplasty

Titanium cranioplasty

Acrylic bone cement


An experimental model was developed in an indoor gun range. CAD cranioplasties with a material thickness of 2-6 mm, made of titanium or PEEK-OPTIMA(®) were fixed in a watermelon and shot at with a .222 Remington rifle at a distance of 30 m distance, a .30-06 Springfield rifle at a distance of 30 m, a Luger 9 mm pistol at a distance of 8 m, or a .375 Magnum revolver at a distance of 8 m. The CAD cranioplasties were subsequently inspected for ballistic effects by a neurosurgeon.

Titanium CAD cranioplasty implants resisted shots from the 9 mm Luger pistol and were penetrated by both the .222 Remington and the .30-06 Springfield rifle. Shooting with the .357 Magnum revolver resulted in the titanium implant bursting. PEEK-OPTIMA(®) implants did not resist bullets shot from any weapon. The implants burst on shooting with the 9 mm Luger pistol, the .222 Remington, the .30-06 Springfield rifle, and the .357 Magnum revolver.

Titanium CAD cranioplasty implants may offer protection from ballistic injuries caused by small caliber weapons fired at short distances. This could provide a life-saving advantage in civilian as well as military combat situations 3).


Methylmethacrylate and porous polyethylene (PP) were resistant to fracture and disruption. MMA provided the greatest neuroprotection, followed by PP. Autologous bone provided the least protection with cranioplasty disruption and severe brain injury occurring in every patient. Brain injury patterns correlated with the degree of cranioplasty disruption regardless of the cranioplasty material. Regardless of the energy of impact, lack of dislodgement generally resulted in no obvious brain injury 4).

Sonolucent cranioplasty

References

1)

van de Vijfeijken SECM, Münker TJAG, Spijker R, Karssemakers LHE, Vandertop WP, Becking AG, Ubbink DT; CranioSafe Group. Autologous bone is inferior to alloplastic cranioplasties Safety of autograft and allograft materials for cranioplasties, a systematic review. World Neurosurg. 2018 Jun 4. pii: S1878-8750(18)31147-1. doi: 10.1016/j.wneu.2018.05.193. [Epub ahead of print] Review. PubMed PMID: 29879511.
2)

Zanotti B, Zingaretti N, Verlicchi A, Robiony M, Alfieri A, Parodi PC. Cranioplasty: Review of Materials. J Craniofac Surg. 2016 Aug 19. [Epub ahead of print] PubMed PMID: 27548829.
3)

Lemcke J, Löser R, Telm A, Meier U. Ballistics for neurosurgeons: Effects of firearms of customized cranioplasty implants. Surg Neurol Int. 2013 Apr 3;4:46. doi: 10.4103/2152-7806.110027. Print 2013. PubMed PMID: 23607068; PubMed Central PMCID: PMC3622352.
4)

Wallace RD, Salt C, Konofaos P. Comparison of Autogenous and Alloplastic Cranioplasty Materials Following Impact Testing. J Craniofac Surg. 2015 Jul;26(5):1551-7. doi: 10.1097/SCS.0000000000001882. PubMed PMID: 26114508.

Extreme lateral supracerebellar infratentorial approach

Extreme lateral supracerebellar infratentorial approach

Since the first report of application of the extreme lateral supracerebellar infratentorial (ELSI) approach in resecting the posterolateral pontomesencephalic junction (PMJ) region lesions in 2000, few articles concerning the ELSI approach have been published. A review of Chen et al., provided an intimate introduction of the ELSI approach, and evaluated it in facets of patient position, skin incision, craniectomy, draining veins, retraction against the cerebellum, exposure limits, patient healing, as well as advantages and limitations compared with other approaches. The ELSI approach is proposed to be a very young and promising approach to access the lesions of posterolateral PMJ region and the posterolateral tentorial gap. Besides, it has several advantages such as having a shorter surgical pathway, causing less surgical complications, labor-saving, etc. 1).

The extreme lateral supracerebellar infratentorial approach differs from the midline and paramedian supracerebellar infratentorial variants in the area of exposure, patient positioning, and location of the craniotomy. The technique is effective for approaching the posterolateral mesencephalon2).

The extreme-lateral corridor widens the exposure of the paramedian approach to include the anterolateral brainstem surface, offering a complete view of the cisternal space surrounding the middle incisural space 3). It provided visualization of the ambient and tentorial segments of the trochlear nerve 4).

It was initially proposed to treat lesions of the posterolateral surface of the pons principally cavernomas. The versatility of the approach allowed its use for other pathologies like gliomas, aneurysms, epidermoids, and meningiomas 5).

All the extreme-lateral supracerebellar infratentorial (SCIT) approaches warrant a safe route to the quadrigeminal plate. Among the different variants, the median approach had the smallest median surgical area exposure but presented superior results to access the intercollicular safe entry zone 6).

Lesions located at the lateral midbrain surface are better approached through the lateral mesencephalic sulcus (LMS). The goal of a study was to compare the surgical exposure to the LMS provided by the subtemporal approach and the paramedian and extreme-lateral variants of the supracerebellar infratentorial approach.

These 3 approaches were used in 10 cadaveric heads.

Cavalcanti et al., performed measurements of predetermined points by using a neuronavigation system. Areas of microsurgical exposure and angles of the approaches were determined. Statistical analysis was performed to identify significant differences in the respective exposures.

The surgical exposure was similar for the different approaches-369.8 ± 70.1 mm2 for the ST; 341.2 ± 71.2 mm2 for the SCIT paramedian variant; and 312.0 ± 79.3 mm2 for the SCIT extreme-lateral variant (p = 0.13). However, the vertical angular exposure was 16.3° ± 3.6° for the ST, 19.4° ± 3.4° for the SCIT paramedian variant, and 25.1° ± 3.3° for the SCIT extreme-lateral variant craniotomy (p < 0.001). The horizontal angular exposure was 45.2° ± 6.3° for the ST, 35.6° ± 2.9° for the SCIT paramedian variant, and 45.5° ± 6.6° for the SCIT extreme-lateral variant opening, presenting no difference between the ST and extreme-lateral variant (p = 0.92), but both were superior to the paramedian variant (p < 0.001). Data are expressed as the mean ± SD.

The extreme-lateral SCIT approach had the smaller area of surgical exposure; however, these differences were not statistically significant. The extreme-lateral SCIT approach presented a wider vertical and horizontal angle to the LMS compared to the other craniotomies. Also, it provides a 90° trajectory to the sulcus that facilitates the intraoperative microsurgical technique 7).


Five cavernous malformations, two juvenile pilocytic astrocytomas, and one peripheral superior cerebellar artery aneurysm located in this region were approached in eight patients. In this extreme lateral approach, the sigmoid sinus is unroofed more superiorly and the bone flap includes not only a posterior fossa craniotomy but also a portion that extends just above the transverse sinus. The dural opening is based along the transverse and sigmoid sinuses. After the cerebrospinal fluid has been drained, the lateral aspect of the brainstem is approached via the cerebellar surface. A proximal tentorial incision offers additional rostral exposure where needed.

Seven patients in this series underwent successful resection of their lesion. The remaining patient’s aneurysm was clipped successfully with no major complications.

The extreme lateral supracerebellar infratentorial approach differs from the midline and paramedian supracerebellar infratentorial variants in the area of exposure, patient positioning, and location of the craniotomy. The technique is effective for approaching the posterolateral mesencephalon8).


The extreme lateral infratentorial supracerebellar approach to treat pathologies located in the ambient cistern and posterior incisural space is a technically feasible route in selected cases. In this cadaveric study, we demonstrate the benefits of endoscope-assisted microsurgical maneuvers using the extreme lateral supracerebellar infratentorial approach.

An endoscope-assisted infratentorial supracerebellar approach was performed in six formalin-fixed cadaveric heads using standard microneurosurgical methods. Dissections were performed in a stepwise fashion, comparing the exposure afforded by the microsurgical route alone to the endoscope-assisted route, using 0- and 30-degree angled lenses. Relationships among the target and the surroundings neurovascular structures were described.

Endoscope-assisted maneuvers for the extreme lateral supracerebellar approach provide an improved operative view and have the potential to reduce parenchymal trauma and neurovascular injuries. The endoscopic techniques bring the surgeon to the anatomy, enhancing illumination and surgical visualization.

Direct visualization of the posterior and posterolateral incisural space avoids retraction of the occipital lobe and damage to the deep venous complex. The extreme lateral infratentorial supracerebellar corridor is effective for approaching the posterolateral mesencephalic junction and the posterior incisural space in selected cases. Endoscope-assisted microsurgery can improve visualization and minimize parenchymal retraction, which should enhance surgical control 9).


For endoscopic-controlled approaches, the extreme lateral approach provides the largest surgical freedom when accessing the ipsilateral superior colliculus (P < 0.0001), the lateral approach provides the largest surgical freedom to the pineal gland (P < 0.0001), and the paramedian craniotomy provides the largest surgical freedom when accessing the splenium (P < 0.0001). The extreme lateral approach to the pineal gland provided the largest horizontal angle of attack (P < 0.0001), and the extreme lateral approach to the ipsilateral superior colliculus provided the largest vertical angle of attack (P < 0.001). The microscope provides marginally increased surgical freedom and a better angle of attack to specific anatomical targets in the paramedian and extreme lateral approach compared with those provided by the endoscope, but these differences are negligible during intraoperative application.

Presurgical planning and a detailed understanding of the important neurovascular structures in the pineal region are paramount to safe and successful surgical execution. Our current cadaveric study indicates that the medial-to-lateral location of craniotomy can maximize access to pineal region targets. Furthermore, the endoscope is a viable alternative to the microscope for identifying pathology of the posterior incisura. These differences in surgical freedom and angle of attack to the pineal region may be useful to consider when planning minimal-access approaches 10).

Videos

A video illustrates the case of a 52-year-old man with a history of multiple bleeds from a lateral midbrain cerebral cavernous malformation, who presented with sudden-onset headache, gait instability, and left-sided motor and sensory disturbances. This lesion was eccentric to the right side and was located in the dorsolateral brainstem. Therefore, the lesion was approached via a right-sided extreme lateral supracerebellar infratentorial (exSCIT) craniotomy with monitoring of the cranial nerves. This video demonstrates the utility of the exSCIT for resection of dorsolateral brainstem lesions and how this approach gives the surgeon ready access to the supracerebellar space, and cerebellopontine angle cistern. The lateral mesencephalic safe entry zone can be accessed from this approach; it is identified by the intersection of branches of the superior cerebellar artery and the fourth cranial nerve with the vein of the lateral mesencephalic sulcus. The technique of piecemeal resection of the lesion from the brainstem is presented. Careful patient selection and respect for normal anatomy are of paramount importance in obtaining excellent outcomes in operations within or adjacent to the brainstem. The link to the video can be found at: https://youtu.be/aIw-O2Ryleg 11).

Case series

Five cavernous malformations, two juvenile pilocytic astrocytomas, and one peripheral superior cerebellar artery aneurysm located in this region were approached in eight patients. In this extreme lateral approach, the sigmoid sinus is unroofed more superiorly and the bone flap includes not only a posterior fossa craniotomy but also a portion that extends just above the transverse sinus. The dural opening is based along the transverse and sigmoid sinuses. After the cerebrospinal fluid has been drained, the lateral aspect of the brainstem is approached via the cerebellar surface. A proximal tentorial incision offers additional rostral exposure where needed.

Seven patients in this series underwent successful resection of their lesion. The remaining patient’s aneurysm was clipped successfully with no major complications 12).

References

1)

Chen X, Feng YG, Tang WZ, Li HT, Li ZJ. A young and booming approach: the extreme lateral supracerebellar infratentorial approach. Neurosci Bull. 2010 Dec;26(6):479-85. doi: 10.1007/s12264-010-1036-7. Review. PubMed PMID: 21113199; PubMed Central PMCID: PMC5560335.
2) , 8)

Vishteh AG, David CA, Marciano FF, Coscarella E, Spetzler RF. Extreme lateral supracerebellar infratentorial approach to the posterolateral mesencephalon: technique and clinical experience. Neurosurgery. 2000 Feb;46(2):384-8; discussion 388-9. PubMed PMID: 10690727.
3)

Ammirati M, Bernardo A, Musumeci A, Bricolo A. Comparison of different infratentorial-supracerebellar approaches to the posterior and middle incisural space: a cadaveric study. J Neurosurg. 2002 Oct;97(4):922-8. PubMed PMID: 12405382.
4)

Ammirati M, Musumeci A, Bernardo A, Bricolo A. The microsurgical anatomy of the cisternal segment of the trochlear nerve, as seen through different neurosurgical operative windows. Acta Neurochir (Wien). 2002 Dec;144(12):1323-7. PubMed PMID: 12478346.
5)

Giammattei L, Borsotti F, Daniel RT. Extreme lateral supracerebellar infratentorial approach: how I do it. Acta Neurochir (Wien). 2019 Apr 1. doi: 10.1007/s00701-019-03886-5. [Epub ahead of print] PubMed PMID: 30937609.
6)

Cavalcanti DD, Morais BA, Figueiredo EG, Spetzler RF, Preul MC. Supracerebellar Infratentorial Variant Approaches to the Intercollicular Safe Entry Zone. World Neurosurg. 2019 Feb;122:e1285-e1290. doi: 10.1016/j.wneu.2018.11.033. Epub 2018 Nov 14. PubMed PMID: 30447444.
7)

Cavalcanti DD, Morais BA, Figueiredo EG, Spetzler RF, Preul MC. Surgical approaches for the lateral mesencephalic sulcus. J Neurosurg. 2019 Apr 12:1-6. doi: 10.3171/2019.1.JNS182036. [Epub ahead of print] PubMed PMID: 30978690.
9)

Rehder R, Luiz da Costa MP, Al-Mefty O, Cohen AR. Endoscope-Assisted Microsurgical Approach to the Posterior and Posterolateral Incisural Space. World Neurosurg. 2016 Jul;91:210-7. doi: 10.1016/j.wneu.2016.04.017. Epub 2016 Apr 16. PubMed PMID: 27090972.
10)

Zaidi HA, Elhadi AM, Lei T, Preul MC, Little AS, Nakaji P. Minimally Invasive Endoscopic Supracerebellar-Infratentorial Surgery of the Pineal Region: Anatomical Comparison of Four Variant Approaches. World Neurosurg. 2015 Aug;84(2):257-66. doi: 10.1016/j.wneu.2015.03.009. Epub 2015 Mar 28. PubMed PMID: 25827042.
11)

Kalani MYS, Couldwell WT. Extreme Lateral Supracerebellar Infratentorial Approach to the Lateral Midbrain. J Neurol Surg B Skull Base. 2018 Dec;79(Suppl 5):S415-S417. doi: 10.1055/s-0038-1669981. Epub 2018 Sep 25. PubMed PMID: 30456047; PubMed Central PMCID: PMC6240419.
12)

Vishteh AG, David CA, Marciano FF, Coscarella E, Spetzler RF. Extreme lateral supracerebellar infratentorial approach to the posterolateral mesencephalon: technique and clinical experience. Neurosurgery. 2000 Feb;46(2):384-8; discussion 388-9. PubMed PMID: 10690727.

Intrathecal Drug Delivery Device Infection

Intrathecal Drug Delivery Device Infection

A major complication of Intrathecal Drug Delivery Device (IDDD) implantationis infection.

Morgalla et al., assessed IDD-related complications in 51 patients who had IDD systems implanted for the treatment of chronic pain or spasticity.

Twelve patients (23.5%) presented a total of 22 complications. The main type of complication was catheter-related (50%), followed by pump failure, infection, and inappropriate refilling 1).


Device-related and surgical wound infection occurred in 12 patients (3%), and nine were regarded as severe in the series of Taira et al., 2).

Risk Factors

Patients with extremely low muscle bulk, visceral pumps may be impractical or impossible, with increased risks of dehiscence and infection 3).


Periodic refills of intrathecal implanted pumps do not seem to be a risk factor for infection if standard sterile refill procedures are performed. In a study, it was clear that comorbid infections from other parts of the body do not present as a risk for device contamination 4).

Prevention

Follett et al., concluded from the available data that the most effective antiinfection measures consist of adherence to published guidelines and recommendations that apply to surgical site infections (SSIs) in general 5).


The use of vancomycin powder in patients with implants in the series of is series of Ghobrial et al., did not reduce infection rates compared to published historical controls, and was elevated compared to institutional controls 6).


The combination of local neomycin/polymyxin with systemic antibiotic therapy can lead to a significantly lower rate of postoperative infection than when systemic antibiotics are used alone 7).


The subfascial implantation technique was associated with a reduced rate of local wound and pump infections and provided optimal cosmetic results as compared with that observed in retrospective cases 8).

Treatment

The current standard of care in the treatment of IDDD infection necessitates that the pump be explanted and the infection treated prior to implantation of a new IDDD. This process leads to long hospital stays, interruptions in optimal medical management, and a high risk for dangerous drug withdrawals.


Infections can be treated with repetitive local application of gentamicin-impregnated collagen fleece 9).


Leibold et al., describe a technique that allows for the explantation of the infected pump and implantation of a new pump concurrently, which they have named the “Turner Switch” technique in honor of its inventor.

The authors conducted a retrospective analysis of cases of infected IDDDs in which patients underwent simultaneous explantation of the infected pump and implantation of a new pump. Demographics and clinical data were collected.

Data from a total of 17 patients (11 male, 6 female) who underwent simultaneous IDDD explantation and implantation to treat infections were analyzed from a 3-year period. No patients experienced infection of the newly implanted pump or catheter. Of the 17 patients, 14 (82.4%) had baclofen pumps to treat spasticity and 3 (17.6%) had fentanyl pumps to treat chronic pain. The median hospital stay was 7 days, with 16 of 17 (94.1%) patients able to be discharged home or to a facility with a level of care similar to their preoperative care. All patients ultimately experienced complete resolution of their initial infections. Five patients (29.4%) required a return to the operating room within the next 5 months (for repair of a CSF leak in 2 cases, for treatment of infection at the old pump site in 2 cases, and for treatment of a CSF leak compounded with infection in 1 case). No patient experienced infection of the newly implanted pump or catheter.

IDDD infections represent a large portion of morbidity associated with these devices. The current standard of care for deep pump infections requires pump explantation and a course of antibiotics prior to reimplantation of the IDDD. The authors demonstrate the effectiveness of a procedure involving simultaneous explantation of an infected pump and implantation of a new pump on the contralateral side in the treatment of IDDD infections 10).


Ingale et al., suggested that consideration should be given to selective dorsal rhizotomy (SDR) as an alternative in patients previously implanted with Intrathecal Drug Delivery systems complicated by infection or nearing end of battery life 11).

Case reports

A patient with pump-site infection and Escherichia coli meningitis secondary to transcolonic perforation of an intrathecal baclofen pump catheter. While this is rare, we review the intraoperative precautions and best practices that should be taken to prevent and manage this unusual complication 12).


Intrathecal drug delivery device infection with Mycobacterium fortuitum was not been reported previously. Aliabadi et al., reported a case of an implanted baclofen pump infection and associated mycobacterium meningitis due to Mycobacterium fortuitum. The entire pump system was removed and the patient was treated successfully with a prolonged regimen of antibiotics 13).


In a case neurological complaints were pain and dysaesthesiae in the lower back and thigh, as well as paresis of the ileopsoas muscle. MRI of the lumbar spine showed an intradural-extramedullary mass at the level of L1 homogeneously enhancing with gadolinium. This mass was situated at the tip of an intrathecal catheter implanted 11 years before for a morphine trial infusion as therapy for phantom pain after amputation of the right arm. Now, removal of the catheter was performed. Cultures of lumbar CSF and the catheter tip demonstrated coagulase negative staphylococcus. Antibiotic medication with cephalosporines was given for 6 weeks. After removal of the catheter, the patient was free of pain and he progressively regained full neurological function. Although most catheter-associated granulomas reported so far were sterile in nature, bacterial infection should still be considered even years after catheter placement 14).


A patient who experienced a prolonged course of intrathecal baclofen withdrawal syndrome after removal of an implantable baclofen pump for treatment of pump infection and meningitis. The current literature outlines management options for the acute management of this syndrome. In this report the authors discuss the long-term presentation of this syndrome and suggest a treatment strategy for management of the syndrome. A 37-year-old man who presented with a baclofen pump infection and meningitis experienced acute onset of intrathecal baclofen withdrawal syndrome 12 hours after the pump had been surgically removed. The patient’s symptoms evolved into a severe, treatment-refractory withdrawal syndrome lasting longer than 1 month. Oral baclofen replacement with adjunctive administration of parenteral gamma-aminobutyric acid agonists only served to stabilize the patient’s critical condition throughout his hospital course. Replacement of the baclofen pump and restoration of intrathecal delivery of the medication was necessary to trigger the patient’s dramatic recovery and complete reversal of the withdrawal syndrome within approximately 48 hours. These findings indicate that a more direct method of treating infected baclofen pumps than immediate surgical removal is necessary to prevent the onset of intrathecal baclofen withdrawal syndrome. Various options for preventing the onset of the syndrome while simultaneously treating the infection are discussed 15).

References

1)

Morgalla M, Fortunato M, Azam A, Tatagiba M, Lepski G. High-Resolution Three-Dimensional Computed Tomography for Assessing Complications Related to Intrathecal Drug Delivery. Pain Physician. 2016 Jul;19(5):E775-80. PubMed PMID: 27389121.
2)

Taira T, Ueta T, Katayama Y, Kimizuka M, Nemoto A, Mizusawa H, Liu M, Koito M, Hiro Y, Tanabe H. Rate of complications among the recipients of intrathecal baclofen pump in Japan: a multicenter study. Neuromodulation. 2013 May-Jun;16(3):266-72; discussion 272. doi: 10.1111/ner.12010. Epub 2012 Dec 14. PubMed PMID: 23240625.
3)

Waqar M, Ellenbogen JR, Kumar R, Sneade C, Zebian B, Williams D, Pettorini BL. Indwelling intrathecal catheter with subcutaneous abdominal reservoir: a viable baclofen delivery system in severely cachectic patients. J Neurosurg Pediatr. 2014 Oct;14(4):409-13. doi: 10.3171/2014.6.PEDS13686. Epub 2014 Aug 1. PubMed PMID: 25084089.
4)

Dario A, Scamoni C, Picano M, Fortini G, Cuffari S, Tomei G. The infection risk of intrathecal drug infusion pumps after multiple refill procedures. Neuromodulation. 2005 Jan;8(1):36-9. doi: 10.1111/j.1094-7159.2005.05218.x. PubMed PMID: 22151381.
5)

Follett KA, Boortz-Marx RL, Drake JM, DuPen S, Schneider SJ, Turner MS, Coffey RJ. Prevention and management of intrathecal drug delivery and spinal cord stimulation system infections. Anesthesiology. 2004 Jun;100(6):1582-94. Review. PubMed PMID: 15166581.
6)

Ghobrial GM, Thakkar V, Singhal S, Oppenlander ME, Maulucci CM, Harrop JS, Jallo J, Prasad S, Saulino M, Sharan AD. Efficacy of intraoperative vancomycin powder use in intrathecal baclofen pump implantation procedures: single institutional series in a high risk population. J Clin Neurosci. 2014 Oct;21(10):1786-9. doi: 10.1016/j.jocn.2014.04.007. Epub 2014 Jun 14. PubMed PMID: 24938386.
7)

Miller JP, Acar F, Burchiel KJ. Significant reduction in stereotactic and functional neurosurgical hardware infection after local neomycin/polymyxin application. J Neurosurg. 2009 Feb;110(2):247-50. PubMed PMID: 19263587.
8)

Kopell BH, Sala D, Doyle WK, Feldman DS, Wisoff JH, Weiner HL. Subfascial implantation of intrathecal baclofen pumps in children: technical note. Neurosurgery. 2001 Sep;49(3):753-6; discussion 756-7. PubMed PMID: 11523691.
9)

Peerdeman SM, de Groot V, Feller RE. In situ treatment of an infected intrathecal baclofen pump implant with gentamicin-impregnated collagen fleece. J Neurosurg. 2010 Jun;112(6):1308-10. doi: 10.3171/2009.8.JNS081692. PubMed PMID: 19731988.
10)

Leibold AT, Weyhenmeyer J, Lee A. Simultaneous explantation and implantation of intrathecal pumps: a case series. J Neurosurg. 2019 Apr 12:1-7. doi: 10.3171/2019.1.JNS18919. [Epub ahead of print] PubMed PMID: 30978693.
11)

Ingale H, Ughratdar I, Muquit S, Moussa AA, Vloeberghs MH. Selective dorsal rhizotomy as an alternative to intrathecal baclofen pump replacement in GMFCS grades 4 and 5 children. Childs Nerv Syst. 2016 Feb;32(2):321-5. doi: 10.1007/s00381-015-2950-9. Epub 2015 Nov 9. PubMed PMID: 26552383.
12)

Devine OP, Harborne AC, Lo WB, Price R. Colonic perforation by an intrathecal baclofen pump catheter causing delayed Escherichia coli meningitis. BMJ Case Rep. 2017 Dec 20;2017. pii: bcr-2017-222539. doi: 10.1136/bcr-2017-222539. PubMed PMID: 29269368.
13)

Aliabadi H, Osenbach RK. Intrathecal Drug Delivery Device Infection and Meningitis due to Mycobacterium Fortuitum: A Case Report. Neuromodulation. 2008 Oct;11(4):311-4. do 10: i: 10.1111/j.1525-1403.2008.00181.x. PubMed PMID: 22151146.
14)

Lehmberg J, Scheiwe C, Spreer J, van Velthoven V. Late bacterial granuloma at an intrathecal drug delivery catheter. Acta Neurochir (Wien). 2006 Aug;148(8):899-901; discussion 901. Epub 2006 Jun 23. PubMed PMID: 16791432.
15)

Douglas AF, Weiner HL, Schwartz DR. Prolonged intrathecal baclofen withdrawal syndrome. Case report and discussion of current therapeutic management. J Neurosurg. 2005 Jun;102(6):1133-6. Review. PubMed PMID: 16028775.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: