Intrathecal Drug Delivery Device Infection

Intrathecal Drug Delivery Device Infection

A major complication of Intrathecal Drug Delivery Device (IDDD) implantationis infection.

Morgalla et al., assessed IDD-related complications in 51 patients who had IDD systems implanted for the treatment of chronic pain or spasticity.

Twelve patients (23.5%) presented a total of 22 complications. The main type of complication was catheter-related (50%), followed by pump failure, infection, and inappropriate refilling 1).


Device-related and surgical wound infection occurred in 12 patients (3%), and nine were regarded as severe in the series of Taira et al., 2).

Risk Factors

Patients with extremely low muscle bulk, visceral pumps may be impractical or impossible, with increased risks of dehiscence and infection 3).


Periodic refills of intrathecal implanted pumps do not seem to be a risk factor for infection if standard sterile refill procedures are performed. In a study, it was clear that comorbid infections from other parts of the body do not present as a risk for device contamination 4).

Prevention

Follett et al., concluded from the available data that the most effective antiinfection measures consist of adherence to published guidelines and recommendations that apply to surgical site infections (SSIs) in general 5).


The use of vancomycin powder in patients with implants in the series of is series of Ghobrial et al., did not reduce infection rates compared to published historical controls, and was elevated compared to institutional controls 6).


The combination of local neomycin/polymyxin with systemic antibiotic therapy can lead to a significantly lower rate of postoperative infection than when systemic antibiotics are used alone 7).


The subfascial implantation technique was associated with a reduced rate of local wound and pump infections and provided optimal cosmetic results as compared with that observed in retrospective cases 8).

Treatment

The current standard of care in the treatment of IDDD infection necessitates that the pump be explanted and the infection treated prior to implantation of a new IDDD. This process leads to long hospital stays, interruptions in optimal medical management, and a high risk for dangerous drug withdrawals.


Infections can be treated with repetitive local application of gentamicin-impregnated collagen fleece 9).


Leibold et al., describe a technique that allows for the explantation of the infected pump and implantation of a new pump concurrently, which they have named the “Turner Switch” technique in honor of its inventor.

The authors conducted a retrospective analysis of cases of infected IDDDs in which patients underwent simultaneous explantation of the infected pump and implantation of a new pump. Demographics and clinical data were collected.

Data from a total of 17 patients (11 male, 6 female) who underwent simultaneous IDDD explantation and implantation to treat infections were analyzed from a 3-year period. No patients experienced infection of the newly implanted pump or catheter. Of the 17 patients, 14 (82.4%) had baclofen pumps to treat spasticity and 3 (17.6%) had fentanyl pumps to treat chronic pain. The median hospital stay was 7 days, with 16 of 17 (94.1%) patients able to be discharged home or to a facility with a level of care similar to their preoperative care. All patients ultimately experienced complete resolution of their initial infections. Five patients (29.4%) required a return to the operating room within the next 5 months (for repair of a CSF leak in 2 cases, for treatment of infection at the old pump site in 2 cases, and for treatment of a CSF leak compounded with infection in 1 case). No patient experienced infection of the newly implanted pump or catheter.

IDDD infections represent a large portion of morbidity associated with these devices. The current standard of care for deep pump infections requires pump explantation and a course of antibiotics prior to reimplantation of the IDDD. The authors demonstrate the effectiveness of a procedure involving simultaneous explantation of an infected pump and implantation of a new pump on the contralateral side in the treatment of IDDD infections 10).


Ingale et al., suggested that consideration should be given to selective dorsal rhizotomy (SDR) as an alternative in patients previously implanted with Intrathecal Drug Delivery systems complicated by infection or nearing end of battery life 11).

Case reports

A patient with pump-site infection and Escherichia coli meningitis secondary to transcolonic perforation of an intrathecal baclofen pump catheter. While this is rare, we review the intraoperative precautions and best practices that should be taken to prevent and manage this unusual complication 12).


Intrathecal drug delivery device infection with Mycobacterium fortuitum was not been reported previously. Aliabadi et al., reported a case of an implanted baclofen pump infection and associated mycobacterium meningitis due to Mycobacterium fortuitum. The entire pump system was removed and the patient was treated successfully with a prolonged regimen of antibiotics 13).


In a case neurological complaints were pain and dysaesthesiae in the lower back and thigh, as well as paresis of the ileopsoas muscle. MRI of the lumbar spine showed an intradural-extramedullary mass at the level of L1 homogeneously enhancing with gadolinium. This mass was situated at the tip of an intrathecal catheter implanted 11 years before for a morphine trial infusion as therapy for phantom pain after amputation of the right arm. Now, removal of the catheter was performed. Cultures of lumbar CSF and the catheter tip demonstrated coagulase negative staphylococcus. Antibiotic medication with cephalosporines was given for 6 weeks. After removal of the catheter, the patient was free of pain and he progressively regained full neurological function. Although most catheter-associated granulomas reported so far were sterile in nature, bacterial infection should still be considered even years after catheter placement 14).


A patient who experienced a prolonged course of intrathecal baclofen withdrawal syndrome after removal of an implantable baclofen pump for treatment of pump infection and meningitis. The current literature outlines management options for the acute management of this syndrome. In this report the authors discuss the long-term presentation of this syndrome and suggest a treatment strategy for management of the syndrome. A 37-year-old man who presented with a baclofen pump infection and meningitis experienced acute onset of intrathecal baclofen withdrawal syndrome 12 hours after the pump had been surgically removed. The patient’s symptoms evolved into a severe, treatment-refractory withdrawal syndrome lasting longer than 1 month. Oral baclofen replacement with adjunctive administration of parenteral gamma-aminobutyric acid agonists only served to stabilize the patient’s critical condition throughout his hospital course. Replacement of the baclofen pump and restoration of intrathecal delivery of the medication was necessary to trigger the patient’s dramatic recovery and complete reversal of the withdrawal syndrome within approximately 48 hours. These findings indicate that a more direct method of treating infected baclofen pumps than immediate surgical removal is necessary to prevent the onset of intrathecal baclofen withdrawal syndrome. Various options for preventing the onset of the syndrome while simultaneously treating the infection are discussed 15).

References

1)

Morgalla M, Fortunato M, Azam A, Tatagiba M, Lepski G. High-Resolution Three-Dimensional Computed Tomography for Assessing Complications Related to Intrathecal Drug Delivery. Pain Physician. 2016 Jul;19(5):E775-80. PubMed PMID: 27389121.
2)

Taira T, Ueta T, Katayama Y, Kimizuka M, Nemoto A, Mizusawa H, Liu M, Koito M, Hiro Y, Tanabe H. Rate of complications among the recipients of intrathecal baclofen pump in Japan: a multicenter study. Neuromodulation. 2013 May-Jun;16(3):266-72; discussion 272. doi: 10.1111/ner.12010. Epub 2012 Dec 14. PubMed PMID: 23240625.
3)

Waqar M, Ellenbogen JR, Kumar R, Sneade C, Zebian B, Williams D, Pettorini BL. Indwelling intrathecal catheter with subcutaneous abdominal reservoir: a viable baclofen delivery system in severely cachectic patients. J Neurosurg Pediatr. 2014 Oct;14(4):409-13. doi: 10.3171/2014.6.PEDS13686. Epub 2014 Aug 1. PubMed PMID: 25084089.
4)

Dario A, Scamoni C, Picano M, Fortini G, Cuffari S, Tomei G. The infection risk of intrathecal drug infusion pumps after multiple refill procedures. Neuromodulation. 2005 Jan;8(1):36-9. doi: 10.1111/j.1094-7159.2005.05218.x. PubMed PMID: 22151381.
5)

Follett KA, Boortz-Marx RL, Drake JM, DuPen S, Schneider SJ, Turner MS, Coffey RJ. Prevention and management of intrathecal drug delivery and spinal cord stimulation system infections. Anesthesiology. 2004 Jun;100(6):1582-94. Review. PubMed PMID: 15166581.
6)

Ghobrial GM, Thakkar V, Singhal S, Oppenlander ME, Maulucci CM, Harrop JS, Jallo J, Prasad S, Saulino M, Sharan AD. Efficacy of intraoperative vancomycin powder use in intrathecal baclofen pump implantation procedures: single institutional series in a high risk population. J Clin Neurosci. 2014 Oct;21(10):1786-9. doi: 10.1016/j.jocn.2014.04.007. Epub 2014 Jun 14. PubMed PMID: 24938386.
7)

Miller JP, Acar F, Burchiel KJ. Significant reduction in stereotactic and functional neurosurgical hardware infection after local neomycin/polymyxin application. J Neurosurg. 2009 Feb;110(2):247-50. PubMed PMID: 19263587.
8)

Kopell BH, Sala D, Doyle WK, Feldman DS, Wisoff JH, Weiner HL. Subfascial implantation of intrathecal baclofen pumps in children: technical note. Neurosurgery. 2001 Sep;49(3):753-6; discussion 756-7. PubMed PMID: 11523691.
9)

Peerdeman SM, de Groot V, Feller RE. In situ treatment of an infected intrathecal baclofen pump implant with gentamicin-impregnated collagen fleece. J Neurosurg. 2010 Jun;112(6):1308-10. doi: 10.3171/2009.8.JNS081692. PubMed PMID: 19731988.
10)

Leibold AT, Weyhenmeyer J, Lee A. Simultaneous explantation and implantation of intrathecal pumps: a case series. J Neurosurg. 2019 Apr 12:1-7. doi: 10.3171/2019.1.JNS18919. [Epub ahead of print] PubMed PMID: 30978693.
11)

Ingale H, Ughratdar I, Muquit S, Moussa AA, Vloeberghs MH. Selective dorsal rhizotomy as an alternative to intrathecal baclofen pump replacement in GMFCS grades 4 and 5 children. Childs Nerv Syst. 2016 Feb;32(2):321-5. doi: 10.1007/s00381-015-2950-9. Epub 2015 Nov 9. PubMed PMID: 26552383.
12)

Devine OP, Harborne AC, Lo WB, Price R. Colonic perforation by an intrathecal baclofen pump catheter causing delayed Escherichia coli meningitis. BMJ Case Rep. 2017 Dec 20;2017. pii: bcr-2017-222539. doi: 10.1136/bcr-2017-222539. PubMed PMID: 29269368.
13)

Aliabadi H, Osenbach RK. Intrathecal Drug Delivery Device Infection and Meningitis due to Mycobacterium Fortuitum: A Case Report. Neuromodulation. 2008 Oct;11(4):311-4. do 10: i: 10.1111/j.1525-1403.2008.00181.x. PubMed PMID: 22151146.
14)

Lehmberg J, Scheiwe C, Spreer J, van Velthoven V. Late bacterial granuloma at an intrathecal drug delivery catheter. Acta Neurochir (Wien). 2006 Aug;148(8):899-901; discussion 901. Epub 2006 Jun 23. PubMed PMID: 16791432.
15)

Douglas AF, Weiner HL, Schwartz DR. Prolonged intrathecal baclofen withdrawal syndrome. Case report and discussion of current therapeutic management. J Neurosurg. 2005 Jun;102(6):1133-6. Review. PubMed PMID: 16028775.

Trigeminal neuralgia pathogenesis

Trigeminal neuralgia pathogenesis

Neurovascular contact in trigeminal neuralgia

see Neurovascular contact in trigeminal neuralgia.

see Tumor associated trigeminal neuralgia.

Other anatomical abnormalities have been considered, including differences of trigeminal nerve (TN) volume.

No correlation between volumetry and clinical data was detected 1).

see Multiple sclerosis related trigeminal neuralgia.

The incidence rates of posterior fossa tumor-induced TN range from 2.1–11.6% percent; in the literature; these cases mainly comprise meningiomas (14–54% percnt;), epidermoid tumors (8–64% percent;), and vestibular schwannomas (7–31% percnt;) 2) 3) 4) 5).


It appears that aggressive bony edges may contribute-at least indirectly-to the neuralgia. This should be considered for surgical indication and conduct of surgery when patients undergo MVD 6).

Posterior fossa volume

Abarca et al. data support the theory that a small volume of the posterior fossa cisterns containing the trigeminal nerve may increase the incidence of ITN 7).

Horínek et al. did not find any association between the clinical neurovascular conflict (NVC) and the size of the posterior fossa and its substructures. MRI volumetry may show the atrophy of the affected trigeminal nerve in clinical neuromuscular conflict 8).

Park et al. did not find any volumetric differences (including the cisternal and parenchymal volumes) 9).

Chiari’s malformation and hydrocephalus are rare associates of TN. The pathophysiology of TN in these cases may be due to neurovascular conflict, related to raised intracranial pressure from the hydrocephalus and/or the small posterior fossa volume in these patients. Drainage of associated hydrocephalus may be an effective surgical treatment 10).

Pontomesencephalic cistern

High-resolution magnetic resonance imaging scans are able to demonstrate significant volumetric differences of the pontomesencephalic cistern in patients with unilateral TN. A smaller cistern may be correlated with the occurrence of a neurovascular compression, and these findings support the neurovascular compression theory in idiopathic TN 11).

Park et al. confirmed that small pontomesencephalic cistern volumes were more frequent in patients with TN 12).

Uric acid in trigeminal neuralgia

References

1)

Urgosik D, Keller J, Svehlik V, Pingle M, Horinek D. Trigeminal nerve asymmetry in classic trigeminal neuralgia – pretreatment volumetry and clinical evaluation in patients irradiated by Leksell Gamma Knife. Neuro Endocrinol Lett. 2014 Jul 20;35(4). [Epub ahead of print] PubMed PMID: 25038607.
2)

Barker FG, 2nd, Jannetta PJ, Babu RP, Pomonis S, Bissonette DJ, Jho HD. Long-term outcome after operation for trigeminal neuralgia in patients with posterior fossa tumors. J Neurosurg. 1996;84:818–825.
3)

Jamjoom AB, Jamjoom ZA, al-Fehaily M, el-Watidy S, al-Moallem M, Nain Ur R. Trigeminal neuralgia related to cerebellopontine angle tumors. Neurosurg Rev. 1996;19:237–241.
4)

Nomura T, Ikezaki K, Matsushima T, Fukui M. Trigeminal neuralgia: differentiation between intracranial mass lesions and ordinary vascular compression as causative lesions. Neurosurg Rev. 1994;17:51–57.
5)

Shulev Y, Trashin A, Gordienko K. Secondary trigeminal neuralgia in cerebellopontine angle tumors. Skull Base. 2011;21:287–294
6)

Brinzeu A, Dumot C, Sindou M. Role of the petrous ridge and angulation of the trigeminal nerve in the pathogenesis of trigeminal neuralgia, with implications for microvascular decompression. Acta Neurochir (Wien). 2018 Jan 20. doi: 10.1007/s00701-018-3468-1. [Epub ahead of print] PubMed PMID: 29353407.
7)

Abarca-Olivas J, Feliu-Rey E, Sempere AP, Sanchez-Payá J, Baño-Ruiz E, Caminero-Canas MA, Nieto-Navarro J, Botella-Asunción C. [Volumetric measurement of the posterior fossa and its components using magnetic resonance imaging in idiopathic trigeminal neuralgia]. Rev Neurol. 2010 Nov 1;51(9):520-4. Spanish. PubMed PMID: 20979031.
8)

Horínek D, Brezová V, Nimsky C, Belsan T, Martinkovic L, Masopust V, Vrána J, Kozler P, Plas J, Krýsl D, Varjassyová A, Ghaly Y, Benes V. The MRI volumetry of the posterior fossa and its substructures in trigeminal neuralgia: a validated study. Acta Neurochir (Wien). 2009 Jun;151(6):669-75. doi: 10.1007/s00701-009-0283-8. Epub 2009 Apr 7. PubMed PMID: 19350204.
9) , 12)

Park YS, Ha SM. Does a small posterior fossa increase nerve vascular conflict in trigeminal neuralgia? Acta Radiol. 2014 Dec 8. pii: 0284185114561914. [Epub ahead of print] PubMed PMID: 25487716.
10)

Gnanalingham K, Joshi SM, Lopez B, Ellamushi H, Hamlyn P. Trigeminal neuralgia secondary to Chiari’s malformation–treatment with ventriculoperitoneal shunt. Surg Neurol. 2005 Jun;63(6):586-8; discussion 588-9. Review. PubMed PMID:
11)

Rasche D, Kress B, Stippich C, Nennig E, Sartor K, Tronnier VM. Volumetric measurement of the pontomesencephalic cistern in patients with trigeminal neuralgia and healthy controls. Neurosurgery. 2006 Sep;59(3):614-20; discussion 614-20. PubMed PMID: 16955043.

Tumor associated trigeminal neuralgia

Tumor associated trigeminal neuralgia

Trigeminal neuralgia pathogenesis is uncertain. What is nominated as typically TN is idiopathic, but may be due to a structural lesion:

Posterior fossa tumor1) 2) 3) 4) 5), contralateral posterior fossa tumors, 6) 7)ipsilateral and contralateral supratentorial tumor8) 9) 10) 11) 12).

Trigeminal neuralgia in vestibular schwannoma 13).

Trigeminal neuralgia as the initial manifestation of temporal glioma 14).

A supratentorial tumor can initiate TN even without a direct involvement of the trigeminal ganglion or nerve. Such tumors may lead to increased intracranial pressure and brain shift generating a pressure cone that distorts the brain stemand displaces an adjacent vessel, compressing the trigeminal nerve root.

Another explanatory mechanism in a patient with supratentorial tumor and hydrocephalus can be that pressure over the trigeminal sensory root rather than stretching of the nerve fiber leads to TN 15).

References

1) , 6)

Deshmukh VR, Hott JS, Tabrizi P, Nakaji P, Feiz-Erfan I, Spetzler RF. Cavernous malformation of the trigeminal nerve manifesting with trigeminal neuralgia: Case report. Neurosurgery. 2005;56:E623.
2) , 9)

Deshpande S, Kaptain GJ, Pobereskin LH. Temporal glioblastoma causing trigeminal neuralgia. J Neurosurg. 1999;91:515.
3)

Gnanalingham K, Joshi SM, Lopez B, Ellamushi H, Hamlyn P. Trigeminal neuralgia secondary to Chiari’s malformation–treatment with ventriculoperitoneal shunt. Surg Neurol. 2005;63:586–8. discussion 588-9.
4) , 7) , 10)

Goel A, Sham A. Trigeminal neuralgia in the presence of ectatic basilar artery and basilar invagination: Treatment by foramen magnum decompression: Case report. J Neurosurg. 2009;111:1220–2.
5)

Peñarrocha-Diago M, Mora-Escribano E, Bagán JV, Peñarrocha-Diago M. Neoplastic trigeminal neuropathy: Presentation of 7 cases. Med Oral Patol Oral Cir Bucal. 2006;11:E106–11.
8)

Cirak B, Kimaz N, Arslanoglu A. Trigeminal neuralgia caused by intracranial epidermoid tumor: Report of a case and review of different therapeutic modalities. Pain Physician. 2004;7:129–32.
11)

Guttal KS, Naikmasur VG, Joshi SK, Bathi RJ. Trigeminal neuralgia secondary to epidermoid cyst at the cerebellopontine angle: Case report and brief review. Odontology. 2009;97:54–6.
12)

Love S, Coakham HB. Trigeminal neuralgia: Pathology and pathogenesis. Brain. 2001;124:2347–60.
13)

Apostolakis S, Karagianni A, Mitropoulos A, Filias P, Vlachos K. Trigeminal neuralgia in vestibular schwannoma: Atypical presentation and neuroanatomical correlations. Neurochirurgie. 2019 Mar 21. pii: S0028-3770(19)30024-4. doi: 10.1016/j.neuchi.2019.01.001. [Epub ahead of print] PubMed PMID: 30905383.
14)

Khalatbari M, Amirjamshidi A. Trigeminal neuralgia as the initial manifestation of temporal glioma: Report of three cases and a review of the literature. Surg Neurol Int. 2011;2:114. doi: 10.4103/2152-7806.83734. Epub 2011 Aug 13. PubMed PMID: 21886887; PubMed Central PMCID: PMC3162802.
15)

Cirak B, Kimaz N, Arslanoglu A. Trigeminal neuralgia caused by intracranial epidermoid tumor: Report of a case and review of different therapeutic modalities. Pain Physician. 2004;7:129–32.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: