Pediatric Endoscopic Endonasal Skull Base Surgery

Pediatric Endoscopic Endonasal Skull Base Surgery

pediatric_endoscopic_endonasal_skull_base_surgery.jpg

List Price: $129.99

Buy

The definitive state-of-the-art resource on pediatric endoscopic endonasal approaches

Today, expanded endonasal approaches (EEA) have revolutionized the surgical treatment paradigm for pediatric central skull base lesions. Specially adapted micro-instruments have been developed to permit passage through the narrow sinonasal pathways in children, enabling access to the entire midline skull base, from the crista galli to the cervico-medullary junction.

Pediatric Endoscopic Endonasal Skull Base Surgery by Harminder Singh, Jeffrey Greenfield, Vijay Anand, and Theodore Schwartz is the first textbook focused solely on endoscopic endonasal management of cranial base pathologies in children. The book reflects in-depth expertise from an extraordinary group of international contributors from five continents, who share extensive knowledge on this emerging field. Thirty chapters are presented in three comprehensive sections.

Key Features

Core topics including anatomy, rhinological and anesthetic considerations, patient positioning and OR set-up, instrumentation, and endonasal corridors and approaches

Fifteen chapters detail endoscopic treatment of a full spectrum of pediatric pathologies, such as craniopharyngioma, meningoencephalocele, basilar invagination, and benign and malignant tumors, among others

Discussion of multiple skull-base closure techniques, managing complications, and neurosurgical and otolaryngological postoperative care

Visually rich, the succinct text is enhanced with 500 high-quality surgical illustrations and intraoperative photographs, as well as procedural videos

This unique reference is essential reading for neurosurgical and otolaryngology residents and fellows, as well as veteran surgeons, nurse-practitioners, and physician-assistants who treat and care for pediatric patients with skull-base conditions.

This book includes complimentary access to a digital copy on https://medone.thieme.com.

3rd International Workshop of Ultrasound in Pediatric Neurosurgery

The 3rd International Workshop of Ultrasound in Pediatric Neurosurgery, Tübingen, Germany, 26/10/2019-27/10/2019 has been accredited by the European Accreditation Council for Continuing Medical Education (EACCME®) with 10 European CME credits (ECMEC®s). Each medical specialist should claim only those hours of credit that he/she actually spent in the educational activity.

Through an agreement between the Union Européenne des Médecins Spécialistes and the American Medical Association, physicians may convert EACCME® credits to an equivalent number of AMA PRA Category 1 CreditsTM. Information on the process to convert EACCME® credit to AMA credit can be found at www.ama-assn.org/education/earn-credit-participation-international-activities.
Live educational activities, occurring outside of Canada, recognised by the UEMS-EACCME® for ECMEC®s are deemed to be Accredited Group Learning Activities (Section 1) as defined by the Maintenance of Certification Program of the Royal College of Physicians and Surgeons of Canada.

Craniosynostosis diagnosis

Craniosynostosis diagnosis

Commonly, craniosynostosis is present at birth, but it is not always diagnosed when mild. Usually it is diagnosed as a cranial deformity in the first few months of life. The diagnosis relies on physical examination and radiographic studies, including plain radiography and computed tomography (CT). Clinical history should include complications of pregnancy, duration of gestation, and birth weight 1).

Premature fusion of the cranial sutures restricts cranial growth perpendicular to the affected suture with compensatory overgrowth along the other patent sutures. This results in the characteristic skull shape deformities noted in craniosynostosis. Diagnostic imaging is necessary to confirm the fused suture and to assess the accompanying skull deformities, intracranial pathology and other complications. A prematurely fused suture shows perisutural sclerosis, linearity, reduced serration, bony bridging or the absence of the suture on a plain skull radiography or CT image. Secondary signs of increased ICP, such as a “copper-beaten” appearance, are also observed in severe cases 2).

Soboleski et al. 3) reported the ultrasonographic findings of craniosynostosis as follows : 1) the loss of the hypoechoic fibrous gap between hyperechoic body plates; 2) an irregular, thickened inner sutural margin; 3) the loss of a beveled edge; and 4) asymmetric fontanels. On “Black Bone” MRI, the affected fused sutures are demonstrated as absence of suture 4).


A normal patent suture is demonstrated as a radiolucency, serrated and nonlinear line on plain skull radiography and 3D-CT images 5) 6) 7) 8).

Ultrasonography shows a normal patent suture as an uninterrupted hypoechoic fibrous gap between hyperechoic cranial bones with an end-to-end appearance on a transverse scan of the sagittal sinus and a beveled appearance on a transverse scan of the coronal and lambdoid suture9) 10) 11)


Conventional MRI has typically been unreliable in identifying sutures individually. However, Eley et al. described a novel gradient echo MRI sequence (“Black Bone”) that minimizes soft tissue contrast to enhance the bone-soft tissue boundaries and can demonstrate normal patent cranial sutures as hyperintensity distinguished from the signal void of the cranial bones 12).


Proisy et al. from Rennes first described a high-resolution sonography technique and its limitations. They then analyzed the reliabilityeffectiveness and role of ultrasonography in routine practice using a PubMed literature review.

Ten studies reported excellent correlations between ultrasonography and 3D-CT. Cranial US for the diagnosis of a closed suture had 100% sensitivity in 8 studies and 86-100% specificity before the age of 12 months. Negative findings mean imaging investigation can be stopped. If ultrasonography confirms diagnosis, neurosurgical consultation is required. Thus, 3D-CT can be postponed until appropriate before surgery.

Cranial suture ultrasound is an effective and reliable technique for the diagnosis of craniosynostosis. It has many advantages: it is fast and non-irradiating, and no sedation is required. It should be used as first-line imaging in infants below the age of 8-12 months when craniosynostosis is clinically suspected. 13).

References

1)

Panchal J, Uttchin V. Management of craniosynostosis. Plast Reconstr Surg. 2003;111:2032–48.
2)

Kim HJ, Roh HG, Lee IW. Craniosynostosis : Updates in Radiologic Diagnosis. J Korean Neurosurg Soc. 2016 May;59(3):219-26. doi: 10.3340/jkns.2016.59.3.219. Epub 2016 May 10. Review. PubMed PMID: 27226852; PubMed Central PMCID: PMC4877543.
3) , 11)

Soboleski D, Mussari B, McCloskey D, Sauerbrei E, Espinosa F, Fletcher A. High-resolution sonography of the abnormal cranial suture. Pediatr Radiol. 1998;28:79–82.
4) , 12)

Eley KA, Watt-Smith SR, Sheerin F, Golding SJ. “Black Bone” MRI : a potential alternative to CT with three-dimensional reconstruction of the craniofacial skeleton in the diagnosis of craniosynostosis. Eur Radiol. 2014;24:2417–2426.
5)

Badve CA, K MM, Iyer RS, Ishak GE, Khanna PC. Craniosynostosis : imaging review and primer on computed tomography. Pediatr Radiol. 2013;43:728–742. quiz 725-727.
6)

Branson HM, Shroff MM. Craniosynostosis and 3-dimensional computed tomography. Semin Ultrasound CT MR. 2011;32:569–577.
7)

Kirmi O, Lo SJ, Johnson D, Anslow P. Craniosynostosis : a radiological and surgical perspective. Semin Ultrasound CT MR. 2009;30:492–512.
8)

Nagaraja S, Anslow P, Winter B. Craniosynostosis. Clin Radiol. 2013;68:284–292.
9)

Regelsberger J, Delling G, Helmke K, Tsokos M, Kammler G, Kränzlein H, et al. Ultrasound in the diagnosis of craniosynostosis. J Craniofac Surg. 2006;17:623–625. discussion 626-628.
10)

Soboleski D, McCloskey D, Mussari B, Sauerbrei E, Clarke M, Fletcher A. Sonography of normal cranial sutures. AJR Am J Roentgenol. 1997;168:819–821.
13)

Proisy M, Bruneau B, Riffaud L. How ultrasonography can contribute diagnosis of craniosynostosis. Neurochirurgie. 2019 Oct 2. pii: S0028-3770(19)30231-0. doi: 10.1016/j.neuchi.2019.09.019. [Epub ahead of print] PubMed PMID: 31586456.
WhatsApp WhatsApp us
%d bloggers like this: