Covid-19 and pituitary apoplexy

Covid-19 and pituitary apoplexy

Kamel et al. reported a case of pituitary apoplexy associated with COVID-19 infection. Based on a patient’s clinical findings, review of the other reported cases, as well as the available literature, they put forth a multitude of pathophysiological mechanisms induced by COVID-19 that can possibly lead to the development of pituitary apoplexy. In their opinion, the association between both conditions is not just a mere coincidence. Although the histopathological features of pituitary apoplexy associated with COVID-19 are similar to pituitary apoplexy induced by other etiologies, future research may disclose unique pathological fingerprints of COVID-19 virus that explains its capability of inducing pituitary apoplexy 1).


A 75-year-old man who presented with a headache and was later diagnosed with hypopituitarism secondary to pituitary apoplexy. This occurred 1 month following a mild-to-moderate COVID-19 infection with no other risk factors commonly associated with pituitary apoplexy. This case, therefore, supplements an emerging evidence base supporting a link between COVID-19 and pituitary apoplexy 2).


Martinez-Perez et al. identified 3 consecutive cases of PA and concomitant COVID-19 infection. The most common symptoms at presentation were headache and vision changes. The included patients were successfully treated with surgical decompression and medical management of the associated endocrinopathy, ultimately experiencing improvement in their visual symptoms at the latest follow-up examination. COVID-19 infection in the perioperative period was corroborated by polymerase chain reaction test results in all the patients.

With the addition of our series to the literature, 10 cases of PA in the setting of COVID-19 infection have been confirmed. The present series was limited in its ability to draw conclusions about the relationship between these 2 entities. However, COVID-19 infection might represent a risk factor for the development of PA. Further studies are required. 3).


A review underlines that there could be a specific involvement of the pituitary gland which fits into a progressively shaping endocrine phenotype of COVID-19. Moreover, the care for pituitary diseases need to continue despite the restrictions due to the emergency. Several pituitary diseases, such as hypopituitarism and Cushing disease, or due to frequent comorbidities such as diabetes may be a risk factor for severe COVID-19 in affected patients. There is the urgent need to collect in international multicentric efforts data on all these aspects of the pituitary involvement in the pandemic in order to issue evidence driven recommendations for the management of pituitary patients in the persistent COVID-19 emergency. 4).


Pituitary apoplexy attributed solely to COVID-19 in the absence of other identifiable causes. While much remains to be discovered and understood regarding COVID-19, they discuss the potential pathophysiology of COVID-19-associated pituitary apoplexy and raise awareness of this clinical complication 5)


A neuro-ophthalmic presentation of pituitary apoplexy under the setting of COVID-19 infection in a middle-aged man who presented to ophthalmic emergency with sudden bilateral loss of vision along with a history of fever past 10 days. There was sluggishly reacting pupils and RT-PCR for COVID was positive. Imaging pointed the diagnosis as pituitary macroadenoma with apopexy. In view of pandemic situation, patient was given symptomatic treatment as per the protocols and stabilized. Vision also showed improvement to some extent and the patient is awaiting neurosurgery 6).


A case of a previously healthy woman with severe acute respiratory syndrome coronavirus 2 infection associated with pituitary apoplexy. The plausible pathophysiological mechanisms of pituitary apoplexy in infectious coronavirus disease 2019 are discussed. 7).


A 27-year-old male patient case with progressive decrease in visual acuity, associated with respiratory symptoms and intense headache. Multilobar infiltrate with a reticulonodular pattern is evident on chest CT scan. Brain CT scan with pituitary macroadenoma apoplexy was shown. SARS-Cov2 was confirmed, and respiratory support initiated. However, the patient died shortly afterward, secondary to pulmonary complications.

The angiotensin-converting enzyme (ACE) II receptor is expressed in circumventricular organs and in cerebrovascular endothelial cells, which play a role in vascular autoregulation and cerebral blood flow. For this reason, is rational the hypothesize that brain ACE II could be involved in COVID-19 infection. Underlying mechanisms require further elucidation in the future 8).


A 28-year-old G5P1 38w1d female presented with 4 days of blurry vision, left dilated pupil, and headache. She tested positive for SARS-CoV-2 on routine nasal swab testing but denied cough or fever. Endocrine testing demonstrated an elevated serum prolactin level, and central hypothyroidism. MRI showed a cystic-solid lesion with a fluid level in the pituitary fossa and expansion of the sella consistent with pituitary apoplexy. Her visual symptoms improved with corticosteroid administration and surgery was delayed to two weeks after her initial COVID-19 infection and to allow for safe delivery of the child. A vaginal delivery under epidural anesthetic occurred at 39 weeks. Two days later, transsphenoidal resection of the mass was performed under strict COVID-19 precautions including use of Powered Air Purifying Respirators (PAPRs) and limited OR personnel given high risk of infection during endonasal procedures. Pathology demonstrated a liquefied hemorrhagic mass suggestive of pituitary apoplexy. She made a full recovery and was discharged home two days after surgery.

They demonstrate the first known case of successful elective induction of vaginal delivery and transsphenoidal intervention in a near full term gravid patient presenting with pituitary apoplexy and acute SARS-CoV-2 infection. Further reports may help determine if there is a causal relationship or if these events are unrelated. Close adherence to guidelines for caregivers can greatly reduce risk of infection. 9).


A 25 year old male presented with dyspnoea, cough and high fevers for 4 days. He was commenced on broad-spectrum antimicrobials and oxygen therapy. His respiratory function deteriorated in spite of these measures and he required mechanical ventilation. CT showed left upper lobe consolidation as well as multifocal ground-glass opacification. Case 2: A 43 year-old male presented with headache and was found incidentally to have pneumonia. He was recently diagnosed with pituitary apoplexy secondary to an adenoma with resultant pituitary insufficiency but MRI brain was stable. His respiratory function deteriorated in spite of antibiotics and he required mechanical ventilation. CT showed likely atypical infection with resultant ARDS. Outcome Both underwent nasopharyngeal RT-PCR testing for SARS-CoV-2. Patient 2 was positive. Patient 1 was extubated and made a good recovery. Patient 2 was transferred to another centre for ECMO therapy. He died 27 days after transfer. Conclusion Given the atypical presentations in generally otherwise young and healthy individuals, the decision was made outside of national guidance to perform testing for SARS-CoV-2. This diagnosis had far-reaching implications for the SARS-CoV-2 pandemic within Ireland 10).


1)

Kamel WA, Najibullah M, Saleh MS, Azab WA. Coronavirus disease 2019 infection and pituitary apoplexy: A causal relation or just a coincidence? A case report and review of the literature. Surg Neurol Int. 2021 Jun 28;12:317. doi: 10.25259/SNI_401_2021. PMID: 34345458; PMCID: PMC8326077.
2)

Liew SY, Seese R, Shames A, Majumdar K. Apoplexy in a previously undiagnosed pituitary macroadenoma in the setting of recent COVID-19 infection. BMJ Case Rep. 2021 Jul 28;14(7):e243607. doi: 10.1136/bcr-2021-243607. PMID: 34321266; PMCID: PMC8319972.
3)

Martinez-Perez R, Kortz MW, Carroll BW, Duran D, Neill JS, Luzardo GD, Zachariah MA. Coronavirus Disease 2019 and Pituitary Apoplexy: A Single-Center Case Series and Review of the Literature. World Neurosurg. 2021 Aug;152:e678-e687. doi: 10.1016/j.wneu.2021.06.004. Epub 2021 Jun 12. PMID: 34129968; PMCID: PMC8196470.
4)

Frara S, Allora A, Castellino L, di Filippo L, Loli P, Giustina A. COVID-19 and the pituitary. Pituitary. 2021 Jun;24(3):465-481. doi: 10.1007/s11102-021-01148-1. Epub 2021 May 3. PMID: 33939057; PMCID: PMC8089131.
5)

Bordes SJ, Phang-Lyn S, Najera E, Borghei-Razavi H, Adada B. Pituitary Apoplexy Attributed to COVID-19 Infection in the Absence of an Underlying Macroadenoma or Other Identifiable Cause. Cureus. 2021 Feb 12;13(2):e13315. doi: 10.7759/cureus.13315. PMID: 33732566; PMCID: PMC7956048.
6)

Katti V, Ramamurthy LB, Kanakpur S, Shet SD, Dhoot M. Neuro-ophthalmic presentation of COVID-19 disease: A case report. Indian J Ophthalmol. 2021 Apr;69(4):992-994. doi: 10.4103/ijo.IJO_3321_20. PMID: 33727476; PMCID: PMC8012961.
7)

Ghosh R, Roy D, Roy D, Mandal A, Dutta A, Naga D, Benito-León J. A Rare Case of SARS-CoV-2 Infection Associated With Pituitary Apoplexy Without Comorbidities. J Endocr Soc. 2021 Jan 2;5(3):bvaa203. doi: 10.1210/jendso/bvaa203. PMID: 33501401; PMCID: PMC7798947.
8)

Solorio-Pineda S, Almendárez-Sánchez CA, Tafur-Grandett AA, Ramos-Martínez GA, Huato-Reyes R, Ruiz-Flores MI, Sosa-Najera A. Pituitary macroadenoma apoplexy in a severe acute respiratory syndrome-coronavirus-2-positive testing: Causal or casual? Surg Neurol Int. 2020 Sep 25;11:304. doi: 10.25259/SNI_305_2020. PMID: 33093981; PMCID: PMC7568102.
9)

Chan JL, Gregory KD, Smithson SS, Naqvi M, Mamelak AN. Pituitary apoplexy associated with acute COVID-19 infection and pregnancy. Pituitary. 2020 Dec;23(6):716-720. doi: 10.1007/s11102-020-01080-w. Epub 2020 Sep 11. PMID: 32915365; PMCID: PMC7484495.
10)

Faller E, Lapthorne S, Barry R, Shamile F, Salleh F, Doyle D, O’Halloran D, Prentice M, Sadlier C. The Presentation and Diagnosis of the First Known Community-Transmitted Case of SARS-CoV-2 in the Republic of Ireland. Ir Med J. 2020 May 7;113(5):78. PMID: 32603572.

Lactotroph adenoma treatment

Lactotroph adenoma treatment

Dopamine agonists such as bromocriptine and cabergoline have been found to be an effective treatment for hyperprolactinemia, not only inducing adenoma shrinkage but also lowering serum prolactin levels. Among known dopamine agonists, cabergoline is the drug of choice due to its enhanced tolerability compared with bromocriptine 1).


Surgical intervention may resurface as an alternative first-line treatment. When used in combination with cabergoline, surgery offers a higher disease remission rate than either drug or operation alone 2)


Lactotroph Adenoma Surgery is safe and efficient. It is particularly suitable for enclosed prolactinomas. The patient should be well informed of the pros and cons of the treatment options, which include dopamine agonist (DA) and transsphenoidal microsurgery, and the patient’s preference should be taken into account during decision-making 3).

In the absence of visual deficits, pituitary apoplexy in lactotroph adenomas is the only type of pituitary tumor for which medical therapy (Dopamine agonists) may be the primary treatment.


Issues and questions to be addressed in this approach to long-term management of prolactinomas include the frequency of radiographic monitoring, effect of pregnancy and menopause, safety of estrogen in women taking oral contraceptives, and the potential for discontinuation of dopamine agonist therapy 4).

see Dopamine agonist for Lactotroph adenoma.

see Lactotroph Adenoma Surgery

Although transsphenoidal surgery (TSS) is an option for prolactinoma treatment, it is less effective than medical management, carries considerably more risk, and is more expensive. The benefit/risk ratio for DA therapy compared to TSS actually becomes increasingly more favorable as tumor size increases. Therefore DA should remain the clear treatment of choice for essentially all patients with prolactinomas, reserving TSS as a second-line option for the very small number of patients that do not tolerate or are completely resistant to DA therapy 5).

Lactotroph adenoma radiosurgery.

The underlying decision to perform serial imaging in prolactinoma patients should be individualized on a case-by-case basis. Future studies should focus on alternative imaging methods and/or contrast agents 6).


1)

Krysiak R, Okopien B. Different Effects of Cabergoline and Bromocriptine on Metabolic and Cardiovascular Risk Factors in Patients with Elevated Prolactin Levels. Basic Clin Pharmacol Toxicol. 2014 Aug 13. doi: 10.1111/bcpt.12307. [Epub ahead of print] PubMed PMID: 25123447.
2)

Chen TY, Lee CH, Yang MY, Shen CC, Yang YP, Chien Y, Huang YF, Lai CM, Cheng WY. Treatment of Hyperprolactinemia: A Single-Institute Experience. J Chin Med Assoc. 2021 Jul 13. doi: 10.1097/JCMA.0000000000000584. Epub ahead of print. PMID: 34261980.
3)

Giese S, Nasi-Kordhishti I, Honegger J. Outcomes of Transsphenoidal Microsurgery for Prolactinomas – A Contemporary Series of 162 Cases. Exp Clin Endocrinol Diabetes. 2021 Jan 18. doi: 10.1055/a-1247-4908. Epub ahead of print. PMID: 33461233.
4)

Schlechte JA. Long-term management of prolactinomas. J Clin Endocrinol Metab. 2007 Aug;92(8):2861-5. Review. PubMed PMID: 17682084.
5)

Bloomgarden E, Molitch ME. Surgical treatment of prolactinomas: cons. Endocrine. 2014 Aug 12. [Epub ahead of print] PubMed PMID: 25112227.
6)

Varlamov EV, Hinojosa-Amaya JM, Fleseriu M. Magnetic resonance imaging in the management of prolactinomas; a review of the evidence. Pituitary. 2019 Oct 28. doi: 10.1007/s11102-019-01001-6. [Epub ahead of print] Review. PubMed PMID: 31659622.

Vestibular Schwannoma Gamma Knife radiosurgery complications

Vestibular Schwannoma Gamma Knife radiosurgery complications

Patients treated with Stereotactic radiosurgery for vestibular schwannoma can have a similar complication profile to those treated with intracranial surgery. Vestibular Schwannoma Meta-analysis from early experience showed that 44% with serviceable hearing prior to treatment retained their ability after SRS, a statistically equivalent rate to the surgical data. This evidence also suggest that 37.9% of patients have other complications 1).


In the mid-1970s, early facial weakness occurred in 38% and facial numbness in 33%. This has gradually decreased to less than 2% in the 1990s. Preservation of hearing (unchanged or almost unchanged) is currently achieved in 65 to 70%. Tinnitus is rarely changed by the treatment. The risks of intracranial bleeding, infection, and CSF leak are avoided because of the non-invasive nature of the treatment. Hydrocephalus directly induced by the tumor occurred in 9.2% of patients. On the other hand, a treatment%related peritumoral reaction sufficient to block the CSF circulation and require shunt insertion was seen in only 1.4%. Based on experiences worldwide, the incidence of secondary neoplasia seems to be 0.1%. The effectiveness of GKR together with its low complication rate makes it a suitable treatment for anyone, regardless of age and general health 2).


Malignant transformation is possible 3). , and long-term post-SRS surveillance MRI is important 4).

Patients receiving > 13 Gy were significantly more likely to develop trigeminal neuropathy than those receiving < 13 Gy (p < 0.001) 5).

Pollack et al. described an acute facial and acoustic neuropathy following gamma knife surgery (GKS) for vestibular schwannoma (VS). This 39-year-old woman presenting with tinnitus underwent GKS for a small right-sided intracanalicular VS, receiving a maximal dose of 26 Gy and a tumor margin dose of 13 Gy to the 50% isodose line. Thirty-six hours following treatment she presented with nausea, vomiting, vertigo, diminished hearing, and a House-Brackmann Grade III facial palsy. She was started on intravenous glucocorticosteroid agents, and over the course of 2 weeks her facial function returned to House-Brackmann Grade I. Unfortunately, her hearing loss persisted. A magnetic resonance (MR) image obtained at the time of initial deterioration demonstrated a significant decrease in tumor enhancement but no change in tumor size or peritumoral edema. Subsequently, the patient experienced severe hemifacial spasms, which persisted for a period of 3 weeks and then progressed to a House-Brackmann Grade V facial palsy. During the next 3 months, the patient was treated with steroids and in time her facial function and hearing returned to baseline levels. Results of MR imaging revealed transient enlargement (3 mm) of the tumor, which subsequently returned to its baseline size. This change corresponded to the tumor volume increase from 270 to 336 mm3. The patient remains radiologically and neurologically stable at 10 months posttreatment. This is the first detailed report of acute facial and vestibulocochlear neurotoxicity following GKS for VS that improved with time. In addition, MR imaging findings were indicative of early neurotoxic changes. A review of possible risk factors and explanations of causative mechanisms is provided 6).

see Vestibular Schwannoma pseudoprogression.


1)

Kaylie DM, Horgan MJ, Delashaw JB, McMenomey SO. A meta-analysis comparing outcomes of microsurgery and gamma knife radiosurgery. Laryngoscope. 2000 Nov;110(11):1850-6. doi: 10.1097/00005537-200011000-00016. PMID: 11081598.
2)

Norén G. Long-term complications following gamma knife radiosurgery of vestibular schwannomas. Stereotact Funct Neurosurg. 1998 Oct;70 Suppl 1:65-73. doi: 10.1159/000056408. PMID: 9782237.
3)

Yanamadala V, Williamson RW, Fusco DJ, Eschbacher J, Weisskopf P, Porter RW. Malignant transformation of a vestibular schwannoma after gamma knife radiosurgery. World Neurosurg. 2013 Mar-Apr;79(3-4):593.e1-8. doi: 10.1016/j.wneu.2012.03.016. Epub 2012 Apr 2. PubMed PMID: 22480982.
4)

Kawashima M, Hasegawa H, Shin M, Shinya Y, Katano A, Saito N. Outcomes of stereotactic radiosurgery in young adults with vestibular schwannomas. J Neurooncol. 2021 Jul 9. doi: 10.1007/s11060-021-03803-w. Epub ahead of print. PMID: 34241770.
5)

Sughrue ME, Yang I, Han SJ, Aranda D, Kane AJ, Amoils M, Smith ZA, Parsa AT. Non-audiofacial morbidity after Gamma Knife surgery for vestibular schwannoma. J Neurosurg. 2013 Dec;119 Suppl:E4. Review. PubMed PMID: 25077327.
6)

Pollack AG, Marymont MH, Kalapurakal JA, Kepka A, Sathiaseelan V, Chandler JP. Acute neurological complications following gamma knife surgery for vestibular schwannoma. Case report. J Neurosurg. 2005 Sep;103(3):546-51. doi: 10.3171/jns.2005.103.3.0546. PMID: 16235688.
WhatsApp WhatsApp us
%d bloggers like this: