Microvascular Decompression Complications

Microvascular Decompression Complications

Latest Pubmed Related Articles



Microvascular decompression (MVD) has a satisfactory safety, and it is the only surgical treatment for neurovascular compression diseases, such as hemifacial spasmtrigeminal neuralgia, and glossopharyngeal neuralgia, from the perspective of etiology.


Microvascular decompression (MVD) is a surgical procedure used to relieve pressure on a nerve root in the brainstem. While the procedure has a high success rate, like all surgeries, it does carry some risks and potential complications.

Some possible complications of microvascular decompression include:

Bleeding: Bleeding can occur during or after the surgery, which may require additional medical intervention.

Infection: Infection can occur at the site of the surgery or in the brain, which can lead to serious complications.

Nerve damage: Nerve damage can occur during the surgery, which may lead to a range of symptoms, including weakness, numbness, and paralysis.

Hearing loss: MVD can lead to hearing loss in some cases, particularly if the acoustic nerve is damaged during the procedure.

Balance problems: MVD can cause balance problems or vertigo, which may persist for several weeks or months after the surgery.

Cerebrospinal fluid leak: In rare cases, MVD can cause a cerebrospinal fluid leak, which may require further medical intervention.

It’s important to note that while these complications are possible, they are relatively rare.


Bilateral dilated and fixed pupils have long been regarded as a sign of life threatening, which is common in patients with brain herniation due to intracranial hypertension. However, transient dilated pupils after MVD have not been previously reported.

Wang et al. presented 2 patients with bilateral transient dilated and fixed pupils after MVD and discussed the possible etiologies through the literature review. Physical examination of both patients showed bilateral pupils were normal and without a medical history of pupil dilation. They underwent MVD under general anesthesia and used propofol and sevoflurane. In both cases, the vertebral artery was displaced, and Teflon pads were inserted between the vertebral artery and the brain stem. Postoperation, we found transient bilateral mydriasis without light reflection in both patients. The emergency head computed tomography revealed no obvious signs of hemorrhage and cerebral herniation. About 1 hour later, this phenomenon disappeared. Therefore, the authors think if MVD is successfully carried out, bilateral transient mydriasis may not necessarily indicate brain stem hemorrhage, cerebral herniation, and other emergency conditions, which can be recovered within a short time. The causes could be related to stimulation of the sympathetic pathway in the brain stem during MVD and side effects of anesthetics 1).


1)

Wang L, Fan H, Xu X, Su S, Feng W, Wu C, Chen Y. Bilateral Transient Dilated and Fixed Pupils After Microvascular Decompression: Rare Clinical Experience. J Craniofac Surg. 2023 Mar 21. doi: 10.1097/SCS.0000000000009293. Epub ahead of print. PMID: 36941233.

Olfactory groove meningioma

Olfactory groove meningioma



Olfactory groove meningiomas (OGMs) are arachnoid cell neoplasms of the frontoethmoidal suture and lamina cribrosa1) and may involve any part of the area from the crista galli to the planum sphenoidale 2) 3) 4).

The Meningiomas Arising from the Olfactory Groove and Their Removal by the Aid of Electro-surgery By Harvey Cushing · 1927


Cushing H, Eisenhardt L (1938) The olfactory meningiomas with primary anosmia. In: Cushing H, Eisenhardt L (eds) Meningiomas: their classification, regional behavior, life history, and surgical results. Charles C Thomas, Springfield, pp 250–282


Ojemann RG (1991) Olfactory groove meningiomas. In: Al-Mefty O (ed) Meningiomas. Raven Press, New York, pp 383–393


Al-Mefty O (1993) Tuberculum sellae and olfactory groove meningioma. In: Sekhar LN, Janecka IP (eds) Surgery of cranial base tumors. Raven Press, New York, pp 507–519


Surgery of Skull Base Meningiomas: With a Chapter Madjid Samii, ‎Mario Ammirati · 2012


Meningiomas of the Skull Base Treatment Nuances in Contemporary Neurosurgery 2018

A systematic review was performed to identify studies that compared outcomes following EEA and TCA for OGMs. Data extracted from each study included gross total resection (GTR), the incidence of cerebrospinal fluid (CSF) leaks, and post-operative complications including anosmia. The results of the search yielded 5 studies that met the criteria for inclusion and analysis. All studies compared TCA (n = 922) with EEA (n = 141) outcomes for OGMs. Overall, the rate of gross total resection (GTR) was lower among the endoscopic group (70.9%) relative to the transcranial group (91.5%). The rate of postoperative CSF leak was 6.3% vs. 25.5% for the transcranial and endoscopic groups, respectively. Post-operative anosmia was higher for patients undergoing EEA (95.9%) compared with patients in the transcranial group (37.4%). In this analysis, EEA was associated with a lower rate of GTR and higher incidences of CSF leaks and post-operative anosmia. However, with increasing surgeon familiarity with the endoscopic anatomy and technique for managing ASB pathologies, a nuanced approach may be used to minimize patient morbidity and widen the spectrum of skull base surgery 5).


Electronic databases were searched from inception until December 2019 for studies delineating TCAs for OGM patients. Patient demographics, pre-operative symptoms, surgical outcomes, and complications were evaluated and analyzed with a meta-analysis of proportions. Results: A total of 27 observational case series comparing 554 unilateral vs. 451 bilateral TCA patients were eligible for review. The weighted pooled incidence of gross total resection is 94.6% (95% CI, 90.7-97.5%; I 2 = 59.0%; p = 0.001) for unilateral and 90.9% (95% CI, 85.6-95.4%; I 2 = 58.1%; p = 0.003) for bilateral cohorts. Similarly, the incidence of OGM recurrence is 2.6% (95% CI, 0.4-6.0%; I 2 = 53.1%; p = 0.012) and 4.7% (95% CI, 1.4-9.2%; I 2 = 55.3%; p = 0.006), respectively. Differences in oncologic outcomes were not found to be statistically significant (p = 0.21 and 0.35, respectively). Statistically significant differences in complication rates in bilateral vs. unilateral TCA cohorts include meningitis (1.0 vs. 0.0%; p = 0.022) and mortality (3.2 vs. 0.2%; p = 0.007). Conclusions: While both cohorts have similar oncologic outcomes, bilateral TCA patients exhibit higher postoperative complication rates. This may be explained by underlying tumor characteristics necessitating more radical resection but may also indicate increased morbidity with bilateral approaches. However, evidence from more controlled, comparative studies is warranted to further support these findings 6).


A PubMed search of the recent literature (2011-2016) was performed to examine outcomes following EEA and TCA for OGM. The extent of resection, visual outcome, postoperative complications, and recurrence rates were analyzed using percentages and proportions, the Fischer exact test, and the Student’s t-test using GraphPad PRISM 7.0Aa (San Diego, CA) software.

Results: There were 444 patients in the TCA group with a mean diameter of 4.61 (±1.17) cm and 101 patients in the EEA group with a mean diameter of 3.55 (± 0.58) cm (p = 0.0589). GTR was achieved in 90.9% (404/444) in the TCA group and 70.2% (71/101) in the EEA group (p < 0.0001). Of the patients with preoperative visual disturbances, 80.7% (21/26) of patients in the EEA cohort had an improvement in vision compared to 12.83%(29/226) in the TCA group (p < 0.0001). Olfaction was lost in 61% of TCA and in 100% of EEA patients. CSF leaks and meningitis occurred in 25.7% and 4.95% of EEA patients and 6.3% and 1.12% of TCA patients, respectively (p < 0.0001; p = 0.023).

The updated literature review demonstrates that despite more experience with endoscopic resection and skull base reconstruction, the literature still supports TCA over EEA with respect to the extent of resection and complications. EEA may be an option in selected cases where visual improvement is the main goal of surgery and postoperative anosmia is acceptable to the patient or in medium-sized tumors with existing preoperative anosmia. Nevertheless, based on our results, it seems more prudent at this time to use TCA for the majority of OGMs 7).


1)

Guinto G. Olfactory Groove Meningiomaas. World Neurosurg. 2015 Jun;83(6):1046-7. doi: 10.1016/j.wneu.2014.12.044. Epub 2015 Jan 14. PMID: 25596435.
2)

Hentschel SJ, DeMonte F, Olfactory groove meningiomas. DeMonte F, McDermott MW, Al-Mefty O: Al-Mefty’s Meningiomas 2New York, Thieme, 2011. 196–205
3)

Nakamura M, Struck M, Roser F, Vorkapic P, Samii M: Olfactory groove meningiomas: clinical outcome and recurrence rates after tumor removal through the frontolateral and bifrontal approach. Neurosurgery 62:6 Suppl 31224–1232, 2008
4)

Pepper J, Hecht SL, Gebarski SS, Lin EM, Sullivan SE, Marentette LJ. Olfactory groove meningioma: discussion of clinical presentation and surgical outcomes following excision via the subcranial approach. Laryngoscope. 2011;121:2282–2289.
5)

Purohit A, Jha R, Khalafallah AM, Price C, Rowan NR, Mukherjee D. Endoscopic endonasal versus transcranial approach to resection of olfactory groove meningiomas: a systematic review. Neurosurg Rev. 2020 Dec;43(6):1465-1471. doi: 10.1007/s10143-019-01193-2. Epub 2019 Nov 10. PMID: 31709465.
6)

Feng AY, Wong S, Saluja S, Jin MC, Thai A, Pendharkar AV, Ho AL, Reddy P, Efron AD. Resection of Olfactory Groove Meningiomas Through Unilateral vs. Bilateral Approaches: A Systematic Review and Meta-Analysis. Front Oncol. 2020 Oct 22;10:560706. doi: 10.3389/fonc.2020.560706. PMID: 33194626; PMCID: PMC7642686.
7)

Shetty SR, Ruiz-Treviño AS, Omay SB, Almeida JP, Liang B, Chen YN, Singh H, Schwartz TH. Limitations of the endonasal endoscopic approach in treating olfactory groove meningiomas. A systematic review. Acta Neurochir (Wien). 2017 Oct;159(10):1875-1885. doi: 10.1007/s00701-017-3303-0. Epub 2017 Aug 22. PMID: 28831590.

Cerebellar mutism

Cerebellar mutism

Incidence of cerebellar mutism: 11–29% of children following surgery for cerebellar tumor2) including cerebellar medulloblastoma (53%), posterior fossa ependymoma (33%) & cerebellar pilocytic astrocytoma (11%) 3).

It has also been reported in both children and adults following several other cerebellar insults, including vascular events, infections, and trauma 4).

The uncertain etiology of PFS, myriad of cited risk factors and therapeutic challenges make this phenomenon an elusive entity.

Cerebellar mutism is a rare occurrence following paediatric trauma 5) 6) 7) 8). , this phenomenon has rarely been reported following other insults, such as trauma, and its pathophysiology remains poorly understood.

A seven-year-old child who presented to the casualty department of Sultan Qaboos University Hospital in Muscat, Oman, in May 2013 with a traumatic right cerebellar contusion. The child presented with clinical features of cerebellar mutism but underwent a rapid and spontaneous recovery 9).

The pathogenic mechanism is likely due to the damage occurring to the proximal efferent cerebellar pathway, including the dentate nucleus, the superior cerebellar peduncle, and its decussation in the mesencephalic tegmentum 10).

Superior and inferior cerebellar peduncles and the superior part of the cerebellum were related to CMS, especially the right side 11).

This syndrome involves a variety of signs and symptoms including cerebellar mutism or speech disturbances, dysphagia, decreased motor movement, cranial nerve palsy and, emotional lability. These signs and symptoms develop from an average range of 24 to 107 hours after surgery and may take weeks to months to resolve.

Multi-inflow time arterial spin-labeling shows promise as a noninvasive tool to evaluate cerebral perfusion in the setting of pediatric obstructive hydrocephalus and demonstrates increased CBF following the resolution of cerebellar mutism syndrome 12).

The importance of olivary hypertrophic degeneration as a differential diagnosis in cerebellar mutism syndrome 13).

Early recognition of this syndrome could facilitate preventive and restorative patient care, prevent subsequent complications, decrease length of hospital stays, and promote patient and family understanding of and coping with the syndrome 14).

20 cases of PFS (8%), 12 males and 8 females. Age ranged from 1.5 to 13 years (mean = 6.5). Of the 20, 16 were medulloblastoma, 3 ependymoma and 1 astrocytoma. There was a 21 % incidence (16/76) of PFS in medulloblastoma of the posterior fossa. The incidence for ependymoma was 13% (3/24) and 1% (1/102) for astrocytoma. All 20 cases (100%) had brainstem involvement by the tumor. The most frequent postoperative findings included mutism, ataxia, 6th and 7th nerve palsies and hemiparesis. Mutism had a latency range of 1-7 days (mean = 1.7) and a duration of 6-365 days (mean = 69.2, median = 35). Although mutism resolved in all cases, the remaining neurologic complications which characterized our findings of PFS were rarely reversible. We describe potential risk factors for developing PFS after surgery with hopes of making neurosurgeons more aware of potential problems following the removal of lesions in this area. Early recognition of PFS would further promote patient and family understanding and coping with this síndrome 15)


19 children diagnosed with posterior fossa syndrome 16)


1)

Rekate HL, Grubb RL, Aram DM, Hahn JF, Ratcheson RA. Muteness of cerebellar origin. Arch Neurol. 1985;42:697–8. doi: 10.1001/archneur.1985.04060070091023.
2)

Gudrunardottir T, Sehested A, Juhler M, et al. Cerebellar mutism: review of the literature. Childs Nerv Syst. 2011; 27:355–363
3)

Catsman-Berrevoets C E, Van Dongen HR, Mulder PG, et al. Tumour type and size are high risk factors for the syndrome of “cerebellar” mutism and subsequent dysarthria. J Neurol Neurosurg Psychiatry. 1999; 67:755–757
4)

Gudrunardottir T, Sehested A, Juhler M, Schmiegelow K. Cerebellar mutism: Review of the literature. Childs Nerv Syst. 2011;27:355–63. doi: 10.1007/s00381-010-1328-2.
5)

Erşahin Y, Mutluer S, Saydam S, Barçin E. Cerebellar mutism: Report of two unusual cases and review of the literature. Clin Neurol Neurosurg. 1997;99:130–4. doi: 10.1016/S0303-8467(97)80010-8.
6)

Fujisawa H, Yonaha H, Okumoto K, Uehara H, le T, Nagata Y, et al. Mutism after evacuation of acute subdural hematoma of the posterior fossa. Childs Nerv Syst. 2005;21:234–6. doi: 10.1007/s00381-004-0999-y.
7)

Koh S, Turkel SB, Baram TZ. Cerebellar mutism in children: Report of six cases and potential mechanisms. Pediatr Neurol. 1997;16:218–19. doi: 10.1016/S0887-8994(97)00018-0.
8)

Yokota H, Nakazawa S, Kobayashi S, Taniguchi Y, Yukihide T. [Clinical study of two cases of traumatic cerebellar injury] No Shinkei Geka. 1990;18:67–70.
9)

Kariyattil R, Rahim MI, Muthukuttiparambil U. Cerebellar mutism following closed head injury in a child. Sultan Qaboos Univ Med J. 2015 Feb;15(1):e133-5. Epub 2015 Jan 21. PubMed PMID: 25685374; PubMed Central PMCID: PMC4318595.
10)

Fabozzi F, Margoni S, Andreozzi B, Musci MS, Del Baldo G, Boccuto L, Mastronuzzi A, Carai A. Cerebellar mutism syndrome: From pathophysiology to rehabilitation. Front Cell Dev Biol. 2022 Dec 2;10:1082947. doi: 10.3389/fcell.2022.1082947. PMID: 36531947; PMCID: PMC9755514.
11)

Yang W, Li Y, Ying Z, Cai Y, Peng X, Sun H, Chen J, Zhu K, Hu G, Peng Y, Ge M. A presurgical voxel-wise predictive model for cerebellar mutism syndrome in children with posterior fossa tumors. Neuroimage Clin. 2022 Dec 13;37:103291. doi: 10.1016/j.nicl.2022.103291. Epub ahead of print. PMID: 36527996; PMCID: PMC9791171.
12)

Toescu SM, Hales PW, Cooper J, Dyson EW, Mankad K, Clayden JD, Aquilina K, Clark CA. Arterial Spin-Labeling Perfusion Metrics in Pediatric Posterior Fossa Tumor Surgery. AJNR Am J Neuroradiol. 2022 Oct;43(10):1508-1515. doi: 10.3174/ajnr.A7637. Epub 2022 Sep 22. PMID: 36137658; PMCID: PMC9575521.
13)

Ballestero M, de Oliveira RS. The importance of olivary hypertrophic degeneration as a differential diagnosis in cerebellar mutism syndrome. Childs Nerv Syst. 2022 Dec 21. doi: 10.1007/s00381-022-05815-x. Epub ahead of print. PMID: 36542117.
14) , 16)

Kirk EA, Howard VC, Scott CA. Description of posterior fossa syndrome in children after posterior fossa brain tumor surgery. J Pediatr Oncol Nurs. 1995 Oct;12(4):181-7. PubMed PMID: 7495523.
15)

Doxey D, Bruce D, Sklar F, Swift D, Shapiro K. Posterior fossa syndrome: identifiable risk factors and irreversible complications. Pediatr Neurosurg. 1999 Sep;31(3):131-6. PubMed PMID: 10708354.

NFTI-QOL

NFTI-QOL

The NFTI-QOL is a robustly constructed disease-specific QOL questionnaire for neurofibromatosis type 2. It correlates strongly and significantly with EuroQOL and all SF-36 domains (p < 0.01). It is straightforward and quick (≤3 minutes) for patients to complete and easy to score. It is suitable as a quantitative method of assessing QOL in NF2 both in a clinical setting and as an outcome measure for treatment. The NFTI-QOL has been validated for adults (>16 years) in the United Kingdom, and could be adapted for use in other countries 1).


The aim of the study of Lawson McLean et al was to produce and validate a German version of the NFTI-QOL (NFTI-QOL-D) and to correlate QOL scores with a depression score (PHQ-9) and clinical disease severity.

The original English-language NFTI-QOL was translated into German and then back-translated in order to preserve the questionnaire’s original concepts and intentions. A link to an online survey encompassing the NFTI-QOL-D and the PHQ-9 depression questionnaire was then sent to 97 patients with NF2 by email. The respondents’ scores were compared to clinician-reported disease severity scores.

77 patients completed the online survey in full. Internal consistency among NFTI-QOL-D responses was strong (Cronbach’s alpha: 0.74). Both PHQ-9 and clinician disease severity scores correlated with NFTI-QOL-D scores (Pearson correlation coefficient rho 0.63 and 0.62, respectively).

The NFTI-QOL-D is a reliable and useful tool to assess patient-reported QOL in German-speaking patients with neurofibromatosis type 2. The correlation of QOL with both psychological and physical disease parameters underlines the importance of individualized interdisciplinary patient care for NF2 patients, with attention paid to mental well-being as well as to somatic disease manifestation2).

Data were evaluated for 288 NF2 patients (n = 464 visits) attending the English national NF2 clinics from 2010 to 2012. The male-to-female ratio was equal and the mean age was 42.2 (SD 17.8) years. The analysis included NFTI-QOL eight-item score, ClinSev graded as mild, moderate, or severe, and GenSev as a rank order of the number of NF2 mutations (graded as mild, moderate, severe). The mean (SD) 8.7 (5.4) score for NFTI-QOL for either a first visit or all visits 9.2 (5.4) was similar to the published norm of 9.4 (5.5), with no significant relationships with age or gender. NFTI-QOL internal reliability was good, with a Cronbach’s alpha score of 0.85 and test re-test reliability r = 0.84. NFTI related to ClinSev (r = 0.41, p < 0.001; r = 0.46 for all visits), but weakly to GenSev (r = 0.16, p < 0.05; r = 0.15 for all visits). ClinSev related to GenSev (r = 0.41, p < 0.001; r = 0.42 for all visits). NFTI-QOL showed good reliability and ability to detect significant longitudinal changes in the QOL of individuals. The moderate relationships of NFTI-QOL with a clinician- and genetic-rated severity suggest that NFTI-QOL taps into NF2 patient experiences that are not encompassed by ClinSev rating or genotype 3)


1)

Hornigold, R. E., Golding, J. F., Leschziner, G., Obholzer, R., Gleeson, M. J., Thomas, N., Walsh, D., Saeed, S., & Ferner, R. E. (2012). The NFTI-QOL: A Disease-Specific Quality of Life Questionnaire for Neurofibromatosis 2. Journal of Neurological Surgery. Part B, Skull Base, 73(2), 104-111. https://doi.org/10.1055/s-0032-1301396
2)

Lawson McLean AC, Freier A, Lawson McLean A, Kruse J, Rosahl S. The German version of the neurofibromatosis 2 impacts on quality of life questionnaire correlates with severity of depression and physician-reported disease severity. Orphanet J Rare Dis. 2023 Jan 6;18(1):3. doi: 10.1186/s13023-022-02607-z. PMID: 36604703.
3)

Ferner RE, Shaw A, Evans DG, McAleer D, Halliday D, Parry A, Raymond FL, Durie-Gair J, Hanemann CO, Hornigold R, Axon P, Golding JF. Longitudinal evaluation of quality of life in 288 patients with neurofibromatosis 2. J Neurol. 2014 May;261(5):963-9. doi: 10.1007/s00415-014-7303-1. Epub 2014 Mar 12. PMID: 24619350; PMCID: PMC4008785.

Foramen magnum meningioma

Foramen magnum meningioma

Foramen magnum meningiomas (FMMs) are slow growing, posterior fossa meningiomas most often intradural and extramedullar. They are those arising anteriorly from the inferior third of the clivus to the superior edge of the C2 body, laterally from the jugular tubercle to the C2 laminae, and posteriorly from the anterior border of the occipital squama to the spinous process of C2 1) 2) 3).

They represent 2% of all meningioma4).

The mean age of the patients with these lesions at the time of diagnosis is approximately 55 years old, but these tumors have been reported in patients of almost every age 5) 6) 7) 8) 9).

They have traditionally been said to involve the lower third of the clivus and the C1 C2 area. However, the last categorizations are arbitrary.

There are some tumors that involve the entire clivus, and others that involve the mid and lower third of the clivus. (The upper clivus is the area above the trigeminal root, the mid-clivus extends to the level of the glossopharyngeal nerve, and the lower clivus is the region below the glossopharyngeal nerve).

The indolent clinical course of FMMs and their insidious onset of symptoms are important factors that contribute to delayed diagnosis and relative large size at the time of presentation. Symptoms are often produced by compression of surrounding structures (such as the medulla oblongata, upper cervical spinal cord, lower cranial nerves, and vertebral artery) within a critically confined space

Matsoukas S, Oemke H, Lopez LS, Gilligan J, Tabani H, Bederson JB. Suboccipital Craniectomy for an Anterior Foramen Magnum Meningioma-Optimization of Resection Using Intraoperative Augmented Reality: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Nov 1;23(5):e321. doi: 10.1227/ons.0000000000000373. Epub 2022 Aug 8. PMID: 36103323.


Emerson SN, Toczylowski M, Al-Mefty O. Dejerine Syndrome Variant Due to Medullary Perforating Artery Ischemia During Foramen Magnum Meningioma Resection: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Jul 1;23(1):e52-e53. doi: 10.1227/ons.0000000000000211. Epub 2022 Apr 20. PMID: 35726936. Danish B, Costello MC, Patel NV, Higgins DMO, Komotar RJ, Ivan ME. Commentary: Dejerine Syndrome Variant Due to Medullary Perforating Artery Ischemia During Foramen Magnum Meningioma Resection: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Sep 1;23(3):e205-e206. doi: 10.1227/ons.0000000000000336. Epub 2022 Jul 11. PMID: 35972118.


Danish B, Costello MC, Patel NV, Higgins DMO, Komotar RJ, Ivan ME. Commentary: Dejerine Syndrome Variant Due to Medullary Perforating Artery Ischemia During Foramen Magnum Meningioma Resection: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Sep 1;23(3):e205-e206. doi: 10.1227/ons.0000000000000336. Epub 2022 Jul 11. PMID: 35972118.


Medina EJ, Revuelta Barbero JM, Porto E, Garzon-Muvdi T, Henriquez O, Solares CA, Pradilla G. Exoscopic and Microscopic Combined Far Lateral Retrocondylar Approach for Resection of a Ventral Foramen Magnum Lesion: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Aug 1;23(2):e126. doi: 10.1227/ons.0000000000000250. Epub 2022 May 9. PMID: 35838470.


Jeelani Y, Ibn Essayed W, Al-Mefty O. Extended Transcondylar Approach With C-1 Lateral Mass Resection for the Removal of a Calcified Ventral “Spinocranial” Meningioma: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Aug 1;23(2):e117-e118. doi: 10.1227/ons.0000000000000278. Epub 2022 May 9. PMID: 35838463.


Essayed W, Aboud E, Al-Mefty O. Foramen Magnum Meningioma-The Attainment of the Intra-Arachnoidal Dissection: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2021 Nov 15;21(6):E518-E519. doi: 10.1093/ons/opab317. PMID: 34498699.


Campero A, Baldoncini M, Villalonga JF, Paíz M, Giotta Lucifero A, Luzzi S. Transcondylar Fossa Approach for Resection of Anterolateral Foramen Magnum Meningioma: 2-Dimensional Operative Video. World Neurosurg. 2021 Oct;154:91-92. doi: 10.1016/j.wneu.2021.07.058. Epub 2021 Jul 21. PMID: 34303002.


1)

öçmez C, Göya C, Hamidi C, Kamaşak K, Yilmaz T, Turan Y, et al. Three-dimensional analysis of foramen magnum and its adjacent structures. J Craniofac Surg. 2014;25(1):93–97.
2)

George B, Lot G, Boissonnet H. Meningioma of the foramen magnum: a series of 40 cases. Surg Neurol. 1997;47(4):371–9.
3) , 4)

Bruneau M, George B. Foramen magnum meningiomas: detailed surgical approaches and technical aspects at Lariboisière Hospital and review of the literature. Neurosurg Rev. 2008 Jan;31(1):19-32; discussion 32-3. doi: 10.1007/s10143-007-0097-1. Epub 2007 Sep 20. PMID: 17882459; PMCID: PMC2077911.
5)

Colli BO, Carlotti-Junior CG, Assirati-Junior JA, Borba LA, Coelho-Junior Vde P, Neder L. Foramen magnum meningiomas: surgical treatment in a single public institution in a developing country. Arq Neuropsiquiatr. 2014;72(7):528–37.
6)

Pirotte BJ, Brotchi J, DeWitte O. Management of anterolateral foramen magnum meningiomas: surgical vs conservative decision making. Neurosurgery. 2010;67(3):58–70.
7)

Flores BC, Boudreaux BP, Klinger DR, Mickey BE, Barnett SL. The far-lateral approach for foramen magnum meningiomas. Neurosurg Focus. 2013;35(6):E12. doi:10.3171/2013.10.FOCUS13332.
8)

Borba LA, de Oliveira JG, Giudicissi-Filho M, Colli BO. Surgical management of foramen magnum meningiomas. Neurosurg Rev. 2009;32(1):49–60.
9)

Goel A, Desai K, Muzumdar D. Surgery on anterior foramen magnum meningiomas using a conventional posterior suboccipital approach: a report on an experience with 17 cases. Neurosurgery. 2001;49(1):102–7.
10)

Suisa H, Soustiel JF, Grober Y. IgG4-related pachymeningitis masquerading as foramen magnum meningioma: illustrative case. J Neurosurg Case Lessons. 2021 Dec 6;2(23):CASE21398. doi: 10.3171/CASE21398. PMID: 36061082; PMCID: PMC9435580.
11)

Uramaru K, Sakata K, Shimohigoshi W, Kawasaki T, Manaka H. Primary Meningeal Melanocytoma Located in the Craniovertebral Junction: A Case Report and Literature Review. NMC Case Rep J. 2021 Jun 25;8(1):349-354. doi: 10.2176/nmccrj.cr.2020-0191. PMID: 35079487; PMCID: PMC8769411.

Pituitary adenoma recurrence

Pituitary adenoma recurrence

Tumor recurrence or residual regrowth are poor prognosis for pituitary adenoma.


comprehensive review of the literature quantified the pituitary adenoma recurrence rates for commonly observed pituitary adenomas after transsphenoidal surgical resection with curative intent. Findings suggest that surveillance within 1 year may be of low yield. Further, clinical trials and cohort studies investigating the cost-effectiveness of surveillance schedules and their impact on the quality of life of patients under surveillance will provide further insight to optimize follow-up 1).


The old 2004 World Health Organization classification introduced atypical adenoma, which was equivocally defined as an invasion with increased mitotic activity that had a Ki67 labeling index (LI) greater than 3%, and extensive p53 immunoreactivity. However, aPAs that exhibit all of these features are rare and the predictive value for recurrent pituitary adenomas (PAs) remains uncertain.

Remission is lowest in patients with nonfunctioning adenomas, and recurrence is highest in patients with a prolactinoma. The remission rate has not improved over 3 decades of publication, but there is a modest decrease in recurrences with time. The highest incidence of tumor recurrence is between 1 and 5 years after surgery. Surgery-related hypopituitarism was highest in Cushing’s disease. The most important predictor for recurrence is the postoperative basal (non-stimulated) hormone level in functioning adenomas, while in nonfunctioning adenomas no single convincing factor could be identified 2).


With a high rate of recurrence, Nonfunctioning pituitary adenomas (NFPA) should be closely followed-up over a long-term period. Improvement of surgical techniques with advanced surgical equipment and adjuvant radiosurgery would lead to reduce the recurrence rate and improve patients’ outcome 3).

Postoperative residue, age, immunohistological subtypes, invasion, tumor size, hormone levels, and postoperative radiotherapy can predict the risk of recurrence in patients with PAs. Additionally, biomarkers such as Ki-67, p53, cadherin, pituitary tumor transforming gene, matrix metalloproteinase-9, epidermal growth factor receptor, fascin actin-bundling protein 1, cyclooxygenase-2, and some miRNAs and lncRNAs may be utilized as valuable tools for predicting PA recurrence. As no single marker can independently predict PA recurrence, we introduce an array of comprehensive models and grading methods, including multiple prognostic factors, to predict the prognosis of PAs, which have shown good effectiveness and would be beneficial for predicting PA recurrence 4).


There is no validated and well-accepted prognostic classification of PAs to predict the clinical outcome and guide clinical practice. Tumor recurrence or residual regrowth identified by MRI scans and endocrine studies and associated clinical and pathological characteristics were analyzed for patients who underwent surgery in the years 2008-2016 at West China Hospital. Thereby, a new clinicopathological classification was proposed and applied.

After a median follow-up of 44.0 months, tumor recurrence and residual progression were identified in 48 (25.0%) and 29 (37.2%) cases, respectively. Proliferative potential (HR=2.188, p=0.002), invasiveness (HR=1.698, p=0.029), larger tumor size (HR=1.029, p=0.004), high-risk PA subtype (HR=2.151, p=0.004) and postoperative residual (HR=1.941, p=0.007) were risk factors for recurrence/progression in the early stage after surgery. With respect to clinicopathological classification, compared with Grade 1a tumors, Grade 1b, 2a and 2b adenomas had poorer prognoses with an increased probability of tumor recurrence/progression of 5.133-, 4.467- and 20.1-fold, respectively.

The proposed clinicopathological classification of PAs showed significant value in predicting prognosis and succeeded in identifying cases with more clinically aggressive lesions with recurrence or residual regrowth. This prognostic classification may be helpful when identifying aggressive PAs and deciding the appropriate therapeutic strategy for patients with PAs 5).


1)

Caulley L, Whelan J, Khoury M, Mavedatnia D, Sahlollbey N, Amrani L, Eid A, Doyle MA, Malcolm J, Alkherayf F, Ramsay T, Moher D, Johnson-Obaseki S, Schramm D, Hunink MGM, Kilty SJ. Post-operative surveillance for somatotroph, lactotroph and non-functional pituitary adenomas after curative resection: a systematic review. Pituitary. 2022 Nov 23. doi: 10.1007/s11102-022-01289-x. Epub ahead of print. PMID: 36422846.
2)

Roelfsema F, Biermasz NR, Pereira AM. Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary. 2012 Mar;15(1):71-83. doi: 10.1007/s11102-011-0347-7. Review. PubMed PMID: 21918830; PubMed Central PMCID: PMC3296023.
3)

Lee MH, Lee JH, Seol HJ, Lee JI, Kim JH, Kong DS, Nam DH. Clinical Concerns about Recurrence of Non-Functioning Pituitary Adenoma. Brain Tumor Res Treat. 2016 Apr;4(1):1-7. doi: 10.14791/btrt.2016.4.1.1. Epub 2016 Apr 29. PubMed PMID: 27195254; PubMed Central PMCID: PMC4868810.
4)

Lu L, Wan X, Xu Y, Chen J, Shu K, Lei T. Prognostic Factors for Recurrence in Pituitary Adenomas: Recent Progress and Future Directions. Diagnostics (Basel). 2022 Apr 13;12(4):977. doi: 10.3390/diagnostics12040977. PMID: 35454025; PMCID: PMC9024548.
5)

Lv L, Yin S, Zhou P, Hu Y, Chen C, Ma W, Jiang Y, Wang Z, Jiang S. Clinical and pathological characteristics predicted the postoperative recurrence and progression of pituitary adenoma: a retrospective study with 10 years follow-up. World Neurosurg. 2018 Jul 4. pii: S1878-8750(18)31426-8. doi: 10.1016/j.wneu.2018.06.210. [Epub ahead of print] PubMed PMID: 29981466.

Spontaneous intracranial hypotension diagnosis

Spontaneous intracranial hypotension diagnosis

Spontaneous intracranial hypotension diagnosis have evolved due to improved understanding of spontaneous intracranial hypotension pathophysiology and implementation of advanced myelography techniques. Farnsworth et al. synthesized recent updates and contextualize them in an algorithm for diagnosis and treatment of SIH, highlighting basic principles and points of practice variability or continued debate. This discussion includes finer points of SIH diagnosis, spontaneous cerebrospinal fluid fistula classification systems, less common types and variants of CSF leaks, Brain MRI Bern scoring for intracranial hypotension diagnosis, potential spontaneous intracranial hypotension complications, key technical considerations, and positioning strategies for different types of Dynamic CT myelography. 1).


The diagnosis of spontaneous intracranial hypotension or cerebrospinal fluid (CSF) hypovolemia syndrome requires a high index of suspicion and meticulous history taking, demonstration of low CSF pressure and/or neuroimaging features.


Diagnostic criteria of headache attributed to low cerebrospinal fluid pressure (per IHS Classification (ICHD-III)):

  1. any headache that developed in temporal relation to low CSF pressure or cerebrospinal fluid fistula or has led to its discovery

  2. low CSF pressure (< 6 cm of water) and/or evidence of CSF leakage on imaging

  3. not better accounted for by another ICHD-III

Radiographic criteria are not required for diagnosis since no characteristic findings are seen in 20– 25% of patients.

The median delay from presentation to the diagnosis of SIH is 4 months.

This delay may be detrimental to patient outcomes. Therefore, brain MRI without and with contrast is recommended in patients with new-onset orthostatic headaches.


The diagnosis requires a high index of suspicion and meticulous history taking, demonstration of low CSF pressure and/or neuroimaging features.

Intracranial hypotension is associated with simple clinical presentation, orthostatic headache, and characteristic MRI findings. Misdiagnosed, it leads to unnecessary procedures 2).

The primary diagnostic factor relies on confirmation of cerebrospinal fluid leakage based on reduced spinal fluid pressure. Determining the specific leakage site is the most important issue for effective treatment but remains a difficult task. Although CT myelogram, radionuclide cisternography, and MRI are commonly performed in the diagnosis of CSF hypovolemia, these techniques can rarely identify the precise leakage site.

Therefore, an epidural blood patch is performed in the lumbar spine in many cases.

The identification of the site of CSF leak in the spinal canal can be very challenging. In some cases, the site cannot be identified.

Magnetic resonance imaging for intracranial hypotension diagnosis

Continuous intracranial pressure monitoring is definitive for documenting abnormally negative intracranial pressures.

A 31-year-old male, presented with subacute onset moderate occipital and sub-occipital headaches precipitated by upright posture and relieved on recumbency and neck pain for 2 years. There was no trauma, cranial/spinal surgery. Clinical examination was normal and CSF opening pressure and laboratory study were normal. Magnetic resonance imaging (MRI) brain showed thin subdural hygroma. Another patient, 41-year-old male presented with 1 month of subacute onset severe bifrontal throbbing orthostatic headaches (OHs). CSF opening pressure was normal. Contrast MRI brain showed the presence of bilateral subdural hygromas, diffuse meningeal enhancement, venous distension, sagging of the brain, and tonsillar herniation. We report two cases of “spontaneous OHs” with normal CSF pressures who were successfully treated with epidural blood patching after poor response to conservative management 3).

Repeated measurements of the optic nerve sheath diameter (ONSD) using B-mode sonography were performed before treatment initiation, during medical treatment, and during a course of repeated placement of epidural blood patches.

On admission, transorbital sonography revealed a decreased ONSD of 4.1 mm on the right and 4.3 mm on the left side. After 8 months of treatment with caffeine and computed tomography-guided epidural blood patches a gradual distension of the ONSD into the normal range was bilaterally observed (right: 5.2 mm; left: 5.3 mm).

The ultrasound-based evaluation of the optic nerve sheath may be helpful in detecting CSF hypovolemia and for determination of treatment effects. This report should be seen as a basis for future investigations on the sonographic assessment of the optic nerve sheath in diagnosis and treatment of intracranial hypotension 4).

Symptomatic patients with SIH showed a significant decrease of ONSD, as assessed by ultrasound, when changing from the supine to the upright position. Ultrasound assessment of the ONSD in two positions may be a novel, non-invasive tool for the diagnosis and follow-up of SIH and for elucidating the pathophysiology of SIH 5).


1)

Farnsworth PJ, Madhavan AA, Verdoorn JT, Shlapak DP, Johnson DR, Cutsforth-Gregory JK, Brinjikji W, Lehman VT. Spontaneous intracranial hypotension: updates from diagnosis to treatment. Neuroradiology. 2022 Nov 7. doi: 10.1007/s00234-022-03079-5. Epub ahead of print. PMID: 36336758.
2)

Louhab N, Adali N, Laghmari M, Hymer WE, Ben Ali SA, Kissani N. Misdiagnosed spontaneous intracranial hypotension complicated by subdural hematoma following lumbar puncture. Int J Gen Med. 2014 Jan 15;7:71-3. doi: 10.2147/IJGM.S48656. eCollection 2014. PubMed PMID: 24470768; PubMed Central PMCID: PMC3896286.
3)

Hassan KM, Prakash S, Majumdar SS, Banerji A. Two cases of medically-refractory spontaneous orthostatic headaches with normal cerebrospinal fluid pressures responding to epidural blood patching: Intracranial hypotension versus hypovolemia and the need for clinical awareness. Ann Indian Acad Neurol. 2013 Oct;16(4):699-702. doi: 10.4103/0972-2327.120461. PubMed PMID: 24339614; PubMed Central PMCID: PMC3841635.
4)

Bäuerle J, Gizewski ER, Stockhausen Kv, Rosengarten B, Berghoff M, Grams AE, Kaps M, Nedelmann M. Sonographic assessment of the optic nerve sheath and transorbital monitoring of treatment effects in a patient with spontaneous intracranial hypotension: case report. J Neuroimaging. 2013 Apr;23(2):237-9. doi: 10.1111/j.1552-6569.2011.00640.x. Epub 2011 Sep 1. PubMed PMID: 21883624.
5)

Fichtner J, Ulrich CT, Fung C, Knüppel C, Veitweber M, Jilch A, Schucht P, Ertl M, Schömig B, Gralla J, Z’Graggen WJ, Bernasconi C, Mattle HP, Schlachetzki F, Raabe A, Beck J. Management of spontaneous intracranial hypotension – Transorbital ultrasound as discriminator. J Neurol Neurosurg Psychiatry. 2016 Jun;87(6):650-5. doi: 10.1136/jnnp-2015-310853. Epub 2015 Aug 18. PubMed PMID: 26285586; PubMed Central PMCID: PMC4893146.

Vestibular schwannoma treatment

Vestibular schwannoma treatment

Optimal decision making in new diagnosed vestibular schwannoma remains a matter of debate. For small- to medium-sized lesions (Koos grading scale I–III), the options are radiosurgery (RS), microsurgery, or a “wait and-scan” approach 1).

This is mainly based on the hospital setting, as well as surgeon’s preference. It is worth noting that comparative studies advocate that GKS compares favorably with microsurgery, with high local tumor control, much lower rate of facial nerve palsy, and much higher rate of serviceable hearing preservation 2) 3) 4) 5) 6).

see Vestibular schwannoma conservative treatment.

see Fractionated stereotactic radiotherapy for vestibular schwannoma

see Vestibular schwannoma radiosurgery.

see Vestibular schwannoma surgery.


Subjects presented to the Department of Otolaryngology-Head and Neck Surgery and the Department of Neurosurgery at the Johns Hopkins University, Baltimore, Maryland for management of unilateral vestibular schwannoma from 1997 through 2007, with at least two visits within the first year of presentation. The proportion of patients for whom initial management consisted of observation, surgical resection, or radiation therapy was determined, and the relative influence of study year, patient age, hearing status, and tumor size was analyzed.

RESULTS: Over the study period there was an increase in the proportion of cases that were observed with follow-up scanning (10.5% to 28.0%) and recommended for radiation (0% to 4.0%), whereas the proportion of operated cases declined (89.5% to 68.0%). There were no changes in mean age or hearing status at diagnosis, but mean tumor size declined significantly. Compared to those undergoing surgery, patients choosing observation and radiation therapy were on average 11.7 and 4.5 years older, respectively. Tumors that were surgically removed were on average 11.6 mm larger than those that were observed. The increasing frequency over time of observation relative to surgery was significant even after controlling for age, hearing status, and tumor size.

CONCLUSIONS: Among patients managed by our center, there has been a significant shift in management of vestibular schwannomas over the last decade, with increasing tendency towards observation. This trend implies changing provider philosophy and patient expectations 7).


Patients with VS completed a voluntary survey over a 3-month period. Setting Surveys were distributed online through email, Facebook, and member website. Subjects and Methods All patients had a diagnosis of VS and were members of the Acoustic Neuroma Association (ANA). A total of 789 patients completed the online survey. Results Of the 789 participants, 474 (60%) cited physician recommendation as a significant influential factor in deciding treatment. In our sample, 629 (80%) saw multiple VS specialists and 410 (52%) sought second opinions within the same specialty. Of those who received multiple consults, 242 (59%) of patients reported receiving different opinions regarding treatment. Those undergoing observation spent significantly less time with the physician (41 minutes) compared to surgery (68 minutes) and radiation (60 minutes) patients ( P < .001). A total of 32 (4%) patients stated the physician alone made the decision for treatment, and 29 (4%) felt they did not understand all possible treatment options before final decision was made. Of the 414 patients who underwent surgery, 66 (16%) felt they were pressured by the surgeon to choose surgical treatment. Conclusion Deciding on a proper VS treatment for patients can be complicated and dependent on numerous clinical and individual factors. It is clear that many patients find it important to seek second opinions from other specialties. Moreover, second opinions within the same specialty are common, and the number of neurotologists consulted correlated with higher decision satisfaction 8).


From a total of 8330 patients (average age 54.7 years, 51.9% female) were analyzed and from 2004 to 2011, there was a statistically significant decrease in tumor size category at time of diagnosis (P < .01). Overall, 3982 patients (48%) received primary microsurgery, 1978 (24%) radiation therapy alone, and 2370 (29%) observation. Within the microsurgical cohort, 732 (18%) underwent subtotal resection, and of those, 98 (13.4%) received postoperative radiation therapy. Multivariable regression revealed that surgical treatment was more common in younger patients and larger tumor size categories (P < .05). Management trend analysis revealed that microsurgery was used less frequently over time (P < .0001), observation was used more frequently (P < .0001), and the pattern of radiation therapy remained unchanged. Linear regression was used to create an equation that was applied to predict future management practices. These data predict that by 2026, half of all cases of VS will be managed initially with observation.

While the incidence of VS has remained steady, tumor size at time of diagnosis has decreased over time. Within the United States there has been a clear, recent evolution in management toward observation 9).

Rapid progression of residual vestibular schwannoma following subtotal surgical resection has an underlying immune etiology that may be virally originating; and despite an abundant adaptive immune response, T-cell immunosenescence may be associated with rapid progression of VS. These findings provide a rationale for clinical trials evaluating immunotherapy in patients with rapidly progressing VS 10)


1)

Kondziolka D, Mousavi SH, Kano H, Flickinger JC, Lunsford LD. The newly diagnosed vestibular schwannoma: radiosurgery, resection, or observation? Neurosurg Focus 2012;33(03):E8
2)

Pollock BE, Lunsford LD, Kondziolka D, et al. Outcome analysis of acoustic neuroma management: a comparison of microsurgery and stereotactic radiosurgery. Neurosurgery 1995;36(01):215- –224, discussion 224–229
3)

Régis J, Pellet W, Delsanti C, et al. Functional outcome after Gamma knife radiosurgery or microsurgery for vestibular schwannomas. J Neurosurg 2002;97(05):1091–1100
4)

Myrseth E, Møller P, Pedersen PH, Vassbotn FS, Wentzel-Larsen T, Lund-Johansen M. Vestibular schwannomas: clinical results and quality of life after microsurgery or Gamma Knife radiosurgery. Neurosurgery 2005;56(05):927–935, discussion 927– 935
5)

Myrseth E, Møller P, Pedersen PH, Lund-Johansen M. Vestibular schwannoma: surgery or Gamma Knife radiosurgery? A prospective, nonrandomized study. Neurosurgery 2009;64(04):654–661, discussion 661–663
6)

Pollock BE, Driscoll CL, Foote RL, et al. Patient outcomes after vestibular schwannoma management: a prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery 2006;59(01):77–85, discussion 77–85
7)

Tan M, Myrie OA, Lin FR, Niparko JK, Minor LB, Tamargo RJ, Francis HW. Trends in the management of vestibular schwannomas at Johns Hopkins 1997-2007. Laryngoscope. 2010 Jan;120(1):144-9. doi: 10.1002/lary.20672. PubMed PMID: 19877188.
8)

Moshtaghi O, Goshtasbi K, Sahyouni R, Lin HW, Djalilian HR. Patient Decision Making in Vestibular Schwannoma: A Survey of the Acoustic Neuroma Association. Otolaryngol Head Neck Surg. 2018 Feb 1:194599818756852. doi: 10.1177/0194599818756852. [Epub ahead of print] PubMed PMID: 29436268.
9)

Carlson ML, Habermann EB, Wagie AE, Driscoll CL, Van Gompel JJ, Jacob JT, Link MJ. The Changing Landscape of Vestibular Schwannoma Management in the United States-A Shift Toward Conservatism. Otolaryngol Head Neck Surg. 2015 Jun 30. pii: 0194599815590105. [Epub ahead of print] PubMed PMID: 26129740.
10)

Amit M, Xie T, Gleber-Netto FO, Hunt PJ, Mehta GU, Bell D, Silverman DA, Yaman I, Ye Y, Burks JK, Fuller GN, Gidley PW, Nader ME, Raza SM, DeMonte F. Distinct immune signature predicts progression of vestibular schwannoma and unveils a possible viral etiology. J Exp Clin Cancer Res. 2022 Oct 4;41(1):292. doi: 10.1186/s13046-022-02473-4. PMID: 36195959.

Intraosseous meningioma of the sphenoid bone

Intraosseous meningioma of the sphenoid bone

Some sphenoid wing meningiomas are associated with a significant hyperostosis of the adjacent sphenoid ridge that may even exceed the size of the intradural mass. The decision-making process and surgical planning based on neuroanatomic knowledge are the mainstays of management of this group of lesions. Given their natural history and biologic behavior, many hyperostosing meningiomas at this location require long-term management analogous to a chronic disease. This is particularly true when making initial decisions regarding treatment and planning surgical intervention, when it is important to take into consideration the possibility of further future interventions during the patient’s life span 1).


The relationship of the development of intraosseous meningioma to the entrapment of dura containing arachnoid cells is discussed in considering the cause of such lesions, and it is stressed that calvarial fractures and cranial sutures may contribute to the entrapment of arachnoidal tissue and later the formation of a meningioma 2).


Intraosseous growth is a unique feature of sphenoorbital meningioma. Quantitative assessment of the biological behavior of intraosseous remnants revealed a continuous slow growth rate independent of the soft tumor component of more than half of SOM. According to our data, application of a multimodal image guidance provided high accuracy and significantly increased the resection rate of the intraosseous component of SOM 3)

A 24-year-old woman presented with subdural hemorrhage, and subsequent radiology depicted an osteolytic mass-like lesion in the sphenoid bone. Intraoperatively, a solid and cystic hemorrhagic lesion mimicking an aneurysmal bone cyst was observed in the sphenoid bone with dural tearing. Frozen cytology showed singly scattered or epithelioid clusters of round to elongated cells intermixed with many neutrophils. Tumor cells had bland-looking round nuclei with rare prominent nucleoli and nuclear inclusions and eosinophilic granular to globoid cytoplasm in capillary-rich fragments. Histology revealed intraosseous meningothelial and microcystic meningioma (World Health Organization grade 1) in right lesser wing of the sphenoid bone. Considering its unusual location and cytologic findings, differential diagnoses included chordomachondromachondrosarcoma, and aneurysmal bone cyst. The present case posed a diagnostic challenge due to possible confusion with these entities 4)


A 43-year-old female presented with a 1 year history of headache, peri-orbital pain, proptosis, and severe vision loss. She had previously undergone subtotal resection of a large Simpson Grade 1 spheno-orbital meningioma 3 years prior at an outside institution. Workup at our institution revealed hyperostosis of the left greater wing of the sphenoid bone and narrowing of the optic canal along with bony enhancement concerning for residual tumor. The patient was given the recommendation from outside institutions for radiation, presumably due to the chronicity of her visual loss. Our institution recommended resection of the residual osseous tumor with orbital reconstruction. Less than 2 weeks after surgery, the patient noted significant improvement in orbital pain and vision. At 3 months, she had regained full and symmetric orbital appearance with no orbital pain. Her visual acuity improved to 20/30 with full visual fields. Conclusion Surgical decompression of the optic canal and orbital contents for tumor related sphenoid wing hyperostosis should be strongly considered, despite an extended duration of visual change and loss. This case report shows that vision can be significantly restored even after symptoms have been present for greater than 6 months 5).


A 30-year-old female patient presented to the Emergency Department (ED) with a six-week history of right eye pain, diplopia on lateral gaze, and proptosis. She had reported progressive onset of symptoms over the past 12 months. Her only previous medical issue was asthma. Haematological and biochemical results were all normal.

Non-contrast CT orbits were undertaken to evaluate for intraconal or extraconal masses or collection. Findings demonstrated poorly marginated diffuse right greater sphenoid wing cortical thickening, resulting in mass effect on the lateral rectus muscle. Post-contrast CT orbits did not show lesional or soft-tissue enhancement. A CT thorax/abdomen/pelvis was undertaken to exclude a primary malignancy.

MRI orbits pre-and post-contrast demonstrated low-signal thickening of the right greater sphenoid wing with lesional and adjacent dural enhancement on post-contrast sequences. 6).


Use of an acrylic jig to aid orbital reconstruction after resection of a sphenoid intraosseous meningioma: a technical note 7)


A 50-year-old female presented to the Neurosurgery clinic with dimness of vision and proptosis of her right eye. Maxillofacial CT showed a hyperostotic mass involving the right sphenoid ridgeanterior clinoid processorbital roof, and lateral wall with mass effect on the intraorbital contents and lateral wall of the sphenoid sinus. MRI of the brain and orbit showed a heterogeneous enhancement of underlying dura and right orbital apex extending into the cavernous sinus. The patient underwent a staged resection in which pathological analysis showed an intraosseous meningioma. When a hyperostotic mass of the skull is encountered, meningioma should be considered in the differential diagnosis. Although primary intraosseous meningiomas are rare benign tumors, they can be associated with morbidity secondary to mass effect. 8)


A 40-year-old man treated for systemic hypertension complained of decreased vision and floaters in his right eye. Initial examination revealed decreased visual acuity to 20/50 of the right eye with a slight dyschromatopsia, but a lack of afferent pupillary defect and normal visual fields. Fundus examination showed the presence of a slightly swollen right optic disc and chorioretinal folds. A diagnosis of presumed anterior ischemic optic neuropathy was made. Symptoms persisted and, five months later, right proptosis was noted. Magnetic resonance imaging revealed a diffuse thickening of the parieto-temporal bone and the greater wing of the sphenoid bone on the right side. Radiological differential diagnosis included fibrous dysplasia and metastasis.

Bone biopsy revealed a grade I intraosseous meningioma. Conservative management was chosen because the lesion was too extensive to be resected and radiotherapy is usually not efficient on grade I meningiomas.

Intraosseous meningiomas are benign tumors which are due to meningeal cells entrapment during vaginal delivery. It is a rare tumor of slow progression. Therapy usually consists of resection and cranioplasty and/or radiotherapy. In the present case, decompression of the optic canal remains feasible in case of further visual loss 9).


A 71-year-old woman with a long history of slowly progressive proptosis was found to have an intraosseous meningioma of the right sphenoid bone. Radiologically, the lesion resembled fibrous dysplasia. The key to the diagnosis is irregularity of the inner table of the skull. The histologic appearance is characteristic. Intraosseous meningioma is one part of the spectrum of diseases known as primary extraneuraxial meningioma. In this paper we discuss the theories of cellular origin as well as the radiologic differential diagnosis 10)


1)

Kirollos RW. Hyperostosing sphenoid wing meningiomas. Handb Clin Neurol. 2020;170:45-63. doi: 10.1016/B978-0-12-822198-3.00027-6. PMID: 32586508.
2)

Van Tassel P, Lee YY, Ayala A, Carrasco CH, Klima T. Case report 680. Intraosseous meningioma of the sphenoid bone. Skeletal Radiol. 1991;20(5):383-6. doi: 10.1007/BF01267669. PMID: 1896882.
3)

Maschke S, Martínez-Moreno M, Micko A, Millesi M, Minchev G, Mallouhi A, Knosp E, Wolfsberger S. Challenging the osseous component of sphenoorbital meningiomas. Acta Neurochir (Wien). 2019 Nov;161(11):2241-2251. doi: 10.1007/s00701-019-04015-y. Epub 2019 Aug 1. PMID: 31368053; PMCID: PMC6820812.
4)

Kim NR, Yie GT. Intraoperative frozen cytology of intraosseous cystic meningioma in the sphenoid bone. J Pathol Transl Med. 2020 Nov;54(6):508-512. doi: 10.4132/jptm.2020.05.21. Epub 2020 Jul 1. PMID: 32601263; PMCID: PMC7674761.
5)

Parish JM, Shields M, Jones M, Wait SD, Deshmukh VR. Proptosis, Orbital Pain, and Long-Standing Monocular Vision Loss Resolved by Surgical Resection of Intraosseous Spheno-Orbital Meningioma: A Case Report and Literature Review. J Neurol Surg Rep. 2020 Jan;81(1):e28-e32. doi: 10.1055/s-0040-1708845. Epub 2020 Mar 31. PMID: 32257766; PMCID: PMC7108951.
7)

Williams JV, Parmar JD, Carter LM, Woodhead P, Corns R. Use of an acrylic jig to aid orbital reconstruction after resection of a sphenoid intraosseous meningioma: a technical note. Br J Oral Maxillofac Surg. 2019 Dec;57(10):1156-1157. doi: 10.1016/j.bjoms.2019.08.026. Epub 2019 Oct 6. PMID: 31594717.
8)

Hussaini SM, Dziurzynski K, Fratkin JD, Jordan JR, Hussain SA, Khan M. Intraosseous meningioma of the sphenoid bone. Radiol Case Rep. 2015 Nov 6;5(1):357. doi: 10.2484/rcr.v5i1.357. PMID: 27307848; PMCID: PMC4898218.
9)

Henchoz L, Borruat FX. Intraosseous meningioma: a rare cause of chronic optic neuropathy and exophthalmos. Klin Monbl Augenheilkd. 2004 May;221(5):414-7. doi: 10.1055/s-2004-812812. PMID: 15162295.
10)

Daffner RH, Yakulis R, Maroon JC. Intraosseous meningioma. Skeletal Radiol. 1998 Feb;27(2):108-11. doi: 10.1007/s002560050347. PMID: 9526778.

Pituitary adenoma

Pituitary adenoma

Pituitary adenoma (PA) is a common pituitary tumor that arises from the adenohypophysis, in the pituitary gland.

Pituitary adenoma epidemiology.

see Pituitary adenoma classification.

Pituitary tumors have very few known risk factors, and these are related to genetics. There are no known environmental or lifestyle-related risk factors for pituitary tumors. Though science has suggested that people who are overweight or obese might be at increased risk.


Youn et al. discovered that a 3’untranslated region (3’UTR) variant, rs181031884 of CDKN2B (Asian-specific variant), had significant association with the risk of pituitary adenoma (PA) (Odds ratio = 0.58, P = 0.00003). Also, rs181031884 appeared as an independent causal variant among the significant variants in CDKN2A and CDKN2B, and showed dose-dependent effects on PA.

Although further studies are needed to verify the impact of this variant on pituitary adenoma susceptibility, the results may help to understand CDKN2B polymorphism and the risk of pituitary adenoma 1).

Multiple endocrine neoplasia type 1

Multiple endocrine neoplasia type 4

McCune-Albright syndrome

Carney complex

Pituitary adenoma pathogenesis

see Pituitary adenoma Natural History.

see Pituitary adenoma clinical features.

Pituitary Adenoma Diagnosis.

see Pituitary adenoma treatment.

Pituitary Adenoma Outcome.

see Pituitary adenoma recurrence.

see Pituitary adenoma case series.


1)

Youn BJ, Cheong HS, Namgoong S, Kim LH, Baek IK, Kim JH, Yoon SJ, Kim EH, Kim SH, Chang JH, Kim SH, Shin HD. Asian-specific 3’UTR variant in CDKN2B associated with risk of pituitary adenoma. Mol Biol Rep. 2022 Sep 12. doi: 10.1007/s11033-022-07796-1. Epub ahead of print. PMID: 36097105.