Cerebrospinal fluid fistula after endoscopic skull base surgery prevention

Cerebrospinal fluid fistula after endoscopic skull base surgery prevention



Monitoring of complications after endoscopic skull base surgery is necessary in order to standardize protocols of management and improve our surgical techniques. The presence of late-onset complications underlines the need of a special focus in postoperative care and follow-up 1)


With a suitable technical background and appropriate endoscopic skills, the surgeries of the anterior skull base cerebrospinal fluid fistulas can be performed efficiently and with a low complication rate 2).


Cerebrospinal fluid leakage after endoscopic skull base surgery remains a challenge despite multilayer reconstruction including nasoseptal flap (NSF) has become a standard technique. Injectable hydroxyapatite (HXA) has shown promising results in preventing CSF leakage.

Hong et al. aimed to validate the efficacy of HXA-based skull base reconstruction performed by lessexperienced neurosurgeons who had short-term clinical experiences as independent surgeons. Between March 2018 and November 2022, 41 patients who experienced intraoperative highflow CSF leakage following endoscopic endonasal surgery at two independent tertiary institutions were enrolled. Skull base reconstruction was performed using conventional multilayer techniques combined with or without HXA. The primary outcome was postoperative CSF leakage. The surgical steps and nuances were described in detail. The most common pathology was craniopharyngioma. Injectable HXA was used in 22 patients (HXA group) and conventional techniques were performed in 19 patients (control group). The HXA group achieved a significantly lower incidence of postoperative CSF leakage than the control group (0% vs. 26.3%, p = 0.016). No HXA-related complications were observed. The use of injectable HXA in skull base reconstruction was highly effective and safe. This technique and its favorable results might be readily reproduced by lessexperienced neurosurgeons 3).


Techniques to prevent postoperative cerebrospinal fluid fistula remain controversial in transsphenoidal surgery. Although direct repair of cerebrospinal fluid fistula by primary suture or patch grafting is the most desirable management, conventional stitching is extremely difficult, particularly through an endonasal route with a deep and narrow surgical corridor. To obliterate a CSF fistula, packing of autologous grafts and/or bioabsorbable materials into the sella turcica and the sphenoid sinus has generally been employed with or without postoperative CSF lumbar drainage.


Kassam et al indicated that one of the most common causes of failure in reconstruction for CSF leakage is migration of the graft by stretching under pressure of neighboring tissue or CSF, and this event might occur early in the wound-healing phase before generating a biological seal. They reported that use of the balloon to apply pressure on the graft within the sphenoid sinus was highly effective to prevent graft migration 4).


The U-clip anastomotic device (Medtronic, Minneapolis, MN) has been used for endoscopic suturing to fix a graft patch through an endonasal route 5).


The AnastoClip Vessel Closure System (VCS; LeMaitre Vascular, Boston, MA) is an automatic suture device originally invented for microsurgical vascular reconstruction 6). It was used for closure of a CSF fistula in endonasal transsphenoidal surgery. In all four patients, CSF leakage was successfully obliterated primarily with two to five clips. There was no postoperative CSF rhinorrhea or complications related to the use of the VCS. Metal artifact by the clips on postoperative images was tolerable. Primary closure of the fistula using the VCS was an effective strategy to prevent postoperative CSF leakage in transsphenoidal surgery. Future application can be expanded to reconstruction of the skull base dura via endonasal skull base approaches 7).


Jamshidi et al. demonstrated that a high-volume LP, followed by acetazolamide therapy for 10 days, can be considered in the management of post-operative CSF leaks 8).

Among patients undergoing intradural EES judged to be at high risk for CSF leak as defined by the study’s inclusion criteria, perioperative lumbar drainage used in the context of vascularized nasoseptal flap closure significantly reduced the rate of postoperative CSF leaks. Clinical trial registration no.: NCT03163134 (clinicaltrials.gov) 9).


1)

Constantinidis J, Konstantinidis I. Avoiding complications in endoscopic skull base surgery. Curr Opin Otolaryngol Head Neck Surg. 2017 Feb;25(1):79-85. doi: 10.1097/MOO.0000000000000327. PMID: 28027059.
2)

Piski Z, Büki A, Nepp N, Burián A, Révész P, Gerlinger I. NASOCRANIALIS FISTULÁK ZÁRÁSA “KÁDDUGÓ” TECHNIKÁVAL ÉS TÖBBRÉTEGU REKONSTRUKCIÓVAL [CLOSURE OF NASOCRANIAL FISTULAS WITH “BATH-PLUG” TECHNIQUE AND MULTILAYER RECONSTRUCTION]. Ideggyogy Sz. 2016 Mar 30;69(5-6):211-6. Hungarian. doi: 10.18071/isz.69.0211. PMID: 27468611.
3)

Hong I, Kim KH, Seo Y, Choo YH, Lee HJ, Kim SH. Efficacy of hydroxyapatitebased skull base reconstruction for intraoperative highflow cerebrospinal fluid leakage performed by lessexperienced surgeons. Sci Rep. 2023 Sep 9;13(1):14886. doi: 10.1038/s41598-023-42097-y. PMID: 37689766.
4)

Kassam A, Carrau RL, Snyderman CH, Gardner P, Mintz A. Evolution of reconstructive techniques following endoscopic expanded endonasal approaches. Neurosurg Focus. 2005 Jul 15;19(1):E8. PMID: 16078822.
5)

Gardner P, Kassam A, Snyderman C, Mintz A, Carrau R, Moossy JJ. Endoscopic endonasal suturing of dural reconstruction grafts: a novel application of the U-Clip technology. Technical note. J Neurosurg. 2008 Feb;108(2):395-400. doi: 10.3171/JNS/2008/108/2/0395. PMID: 18240941.
6)

Kirsch WM, Zhu YH, Hardesty RA, Chapolini R. A new method for microvascular anastomosis: report of experimental and clinical research. Am Surg. 1992 Dec;58(12):722-7. PMID: 1456593.
7)

Kobayashi H, Asaoka K, Terasaka S, Murata JI. Primary closure of a cerebrospinal fluid fistula by nonpenetrating titanium clips in endoscopic endonasal transsphenoidal surgery: technical note. Skull Base. 2011 Jan;21(1):47-52. doi: 10.1055/s-0030-1263281. PMID: 22451799; PMCID: PMC3312411.
8)

Jamshidi AM, Shah A, Eichberg DG, Komotar RJ, Ivan M. Conservative Management of Post-Operative Cerebrospinal Fluid Leak following Skull Base Surgery: A Pilot Study. Brain Sci. 2022 Jan 24;12(2):152. doi: 10.3390/brainsci12020152. PMID: 35203915; PMCID: PMC8870023.
9)

Zwagerman NT, Wang EW, Shin SS, Chang YF, Fernandez-Miranda JC, Snyderman CH, Gardner PA. Does lumbar drainage reduce postoperative cerebrospinal fluid leak after endoscopic endonasal skull base surgery? A prospective, randomized controlled trial. J Neurosurg. 2018 Oct 1:1-7. doi: 10.3171/2018.4.JNS172447. Epub ahead of print. PMID: 30485224.

Test your knowledge about Foramen magnum stenosis in Achondroplasia

What is the significance of foramen magnum stenosis in achondroplasia?

a) It is a cosmetic issue with no medical consequences.

b) It can lead to compression of the brainstem and spinal cord, resulting in severe health problems.

c) It only affects adults with achondroplasia.

d) It is completely unrelated to achondroplasia.

What contributes to the narrowing of the foramen magnum in infants with achondroplasia?

a) Growth spurt during adolescence

b) Restricted growth in the first 2 years of life and premature closure of skull plate synchondroses

c) Diet and nutrition

d) Lack of physical activity

How can foramen magnum stenosis be diagnosed?

a) By physical examination alone

b) Through a blood test

c) By acquiring effective neuroimaging

d) By measuring head circumference

Why is standardized imaging protocol essential for children with achondroplasia?

a) It helps in diagnosing achondroplasia itself.

b) It ensures that clinically useful neuroimaging is performed and reduces unnecessary radiation exposure.

c) It is required for insurance purposes.

d) It helps in determining the child's future height.

How did the European Achondroplasia Forum (EAF) contribute to the management of foramen magnum stenosis?

a) By recommending surgery for all cases

b) By providing guidelines for the detection and management of foramen magnum stenosis

c) By developing a new drug

d) By organizing awareness campaigns

What is the Achondroplasia Foramen Magnum Score (AFMS) used for?

a) To assess the severity of sleep apnea in achondroplasia patients

b) To diagnose achondroplasia in infants

c) To evaluate the severity of foramen magnum stenosis in infants with achondroplasia

d) To measure head circumference

What does a high Total Apnea and Hypopnea Index (TAHI) indicate in relation to foramen magnum stenosis?

a) It suggests that the patient has no stenosis.

b) It indicates severe foramen magnum stenosis.

c) It has no correlation with foramen magnum stenosis.

d) It indicates a need for dietary changes.

What is the sensitivity of clinical examination and CRS (cardiorespiratory sleep studies) for predicting the effects of foramen magnum stenosis on the spinal cord?

a) High sensitivity

b) Low sensitivity

c) No sensitivity

d) Moderate sensitivity

How can routine screening with MRI using AFMS benefit infants with achondroplasia?

a) It helps in cosmetic improvements.

b) It has no benefits.

c) It aids in detecting early spinal cord changes and can reduce infant morbidity and mortality.

d) It is only useful for diagnosing other medical conditions.

What percentage of infants required neurosurgery in the study mentioned in the text?

a) 0%

b) 10%

c) 25%

d) 50%

Answers:

b) It can lead to compression of the brainstem and spinal cord, resulting in severe health problems.
b) Restricted growth in the first 2 years and premature closure of skull plate synchondroses
c) By acquiring effective neuroimaging
b) It ensures that clinically useful neuroimaging is performed and reduces unnecessary radiation exposure.
b) By providing guidelines for the detection and management of foramen magnum stenosis
c) To evaluate the severity of foramen magnum stenosis in infants with achondroplasia
b) It indicates severe foramen magnum stenosis.
b) Low sensitivity
c) It aids in detecting early spinal cord changes and can reduce infant morbidity and mortality.
c) 25%

Craniopharyngioma endoscopic endonasal approach

Craniopharyngioma endoscopic endonasal approach

The endoscopic endonasal approach (EEA) for craniopharyngiomas has proven to be a safe option for extensive tumor resection, with minimal or no manipulation of the optic nerves and excellent visualization of the superior hypophyseal artery branches when compared to the Transcranial Approach (TCA). However, there is an ongoing debate regarding the criteria for selecting different approaches. To explore the current results of EEA and discuss its role in the management of craniopharyngiomas, Figueredo et al. performed MEDLINEEmbase, and LILACS searches from 2012 to 2022. Baseline characteristics, the extent of resection, and clinical outcomes were evaluated. Statistical analysis was performed through an X2 and Fisher exact test, and a comparison between quantitative variables through a Kruskal-Wallis and verified with post hoc Bonferroni. The tumor volume was similar in both groups (EEA 11.92 cm3, -TCA 13.23 cm3). The mean follow-up in months was 39.9 for EEA and 43.94 for TCA, p = 0.76). The EEA group presented a higher visual improvement rate (41.96% vs. 25% for TCA, p < 0.0001, OR 7.7). Permanent DI was less frequent with EEA (29.20% vs. 67.40% for TCA, p < 0.0001, OR 0.2). CSF Leaks occurred more frequently with EEA (9.94% vs. 0.70% for TCA, p < 0.0001, OR 15.8). Recurrence rates were lower in the EEA group (EEA 15.50% vs. for TCA 21.20%, p = 0.04, OR 0.7). The results demonstrate that, in selected cases, EEA for resection of craniopharyngiomas is associated with better results regarding visual preservation and extent of tumor resection. Postoperative cerebrospinal fluid fistula rates associated with EEA have improved compared to the historical series. The decision-making process should consider each person’s characteristics; however, it is noticeable that recent data regarding EEA justify its widespread application as a first-line approach in centers of excellence for skull base surgery 1).


Qiao et al., conducted a systematic review and meta-analysis. They conducted a comprehensive search of PubMed to identify relevant studies. Pituitary, hypothalamus functions and recurrence were used as outcome measures. A total of 39 cohort studies involving 3079 adult patients were included in the comparison. Among these studies, 752 patients across 17 studies underwent endoscopic transsphenoidal resection, and 2327 patients across 23 studies underwent transcranial resection. More patients in the endoscopic group (75.7%) had visual symptoms and endocrine symptoms (60.2%) than did patients in the transcranial group (67.0%, p = 0.038 and 42.0%, p = 0.016). There was no significant difference in hypopituitarism and pan-hypopituitarism after surgery between the two groups: 72.2% and 43.7% of the patients in endoscopic group compared to 80.7% and 48.3% in the transcranial group (p = 0.140 and p = 0.713). We observed same proportions of transient and permanent diabetes insipidus in both groups. Similar recurrence was observed in both groups (p = 0.131). Pooled analysis showed that neither weight gain (p = 0.406) nor memory impairment (p = 0.995) differed between the two groups. Meta-regression analysis revealed that gross total resection contributed to the heterogeneity of recurrence proportion (p < 0.001). They observed similar proportions of endocrine outcomes and recurrence in both endoscopic and transcranial groups. More recurrences were observed in studies with lower proportions of gross total resection 2).


Komotar et al performed a systematic review of the available published reports after endoscope-assisted endonasal approaches and compared their results with transsphenoidal purely microscope-based or transcranial microscope-based techniques.

The endoscopic endonasal approach is a safe and effective alternative for the treatment of certain craniopharyngiomas. Larger lesions with more lateral extension may be more suitable for an open approach, and further follow-up is needed to assess the long-term efficacy of this minimal access approach 3)


Nowadays, an endoscopic endonasal approach (EEA) provides an “easier” way for CPs resection allowing a direct route to the tumor with direct visualization of the surrounding structures, diminishing inadvertent injuries, and providing a better outcome for the patient 4).


Historically, aggressive surgical resection was the treatment goal to minimize the risk of tumor recurrence via open transcranial midline, anterolateral, and lateral approaches, but could lead to clinical sequela of visual, endocrine, and hypothalamic dysfunction. However, recent advances in the endoscopic endonasal approach over the last decade have mostly supplanted transcranial surgery as the optimal surgical approach for these tumors. With viable options for adjuvant radiation therapy, targeted medical treatment, and alternative minimally invasive surgical approaches, the management paradigm for craniopharyngiomas has shifted from aggressive open resection to more minimally invasive but maximally safe resection, emphasizing quality of life issues, particularly in regards to visual, endocrine, and hypothalamic function. 5).


Craniopharyngioma surgery has evolved over the last two decades. Traditional transcranial microsurgical approaches were the only option until the advent of the endoscopic endonasal approach 6).

The endoscopic endonasal approach for craniopharyngiomas is increasingly used as an alternative to microsurgical transsphenoidal or transcranial approaches. It is a step forward in treatment, providing improved resection rates and better visual outcome. Especially in retrochiasmatic tumors, this approach provides better lesion access and reduces the degree of manipulations of the optic apparatus. The panoramic view offered by endoscopy and the use of angulated optics allows the removal of lesions extending far into the third ventricle avoiding microsurgical brain splitting. Intensive training is required to perform this surgery 7).


The highest priority of current surgical craniopharyngioma treatment is to maximize tumor removal without compromising the patients’ long-term functional outcome. Surgical damage to the hypothalamus may be avoided or at least ameliorated with a precise knowledge regarding the type of adherence for each case.

Endoscopic endonasal approach, has been shown to achieve higher rates of hypothalamic preservation regardless of the degree of involvement by tumor 8) 9).



Extended endoscopic transsphenoidal approach have gained interest. Surgeons have advocated for both approaches, and at present there is no consensus whether one approach is superior to the other.

With the widespread use of endoscopes in endonasal surgery, the endoscopic transtuberculum transplanum approach have been proposed as an alternative surgical route for removal of different types of suprasellar tumors, including solid craniopharyngiomas in patients with normal pituitary function and small sella.

As part of a minimally disruptive treatment paradigm, the extended endoscopic transsphenoidal approach has the potential to improve rates of resection, improve postoperative visual recovery, and minimize surgical morbidity 10).

The endoscopic endonasal approach has become a valid surgical technique for the management of craniopharyngiomas. It provides an excellent corridor to infra- and supradiaphragmatic midline craniopharyngiomas, including the management of lesions extending into the third ventricle chamber. Even though indications for this approach are rigorously lesion based, the data confirm its effectiveness in a large patient series 11).

The endoscopic endonasal approach offers advantages in the management of craniopharyngiomas that historically have been approached via the transsphenoidal approach (i.e., purely intrasellar or intra-suprasellar infradiaphragmatic, preferably cystic lesions in patients with panhypopituitarism).

Use of the extended endoscopic endonasal approach overcomes the limits of the transsphenoidal route to the sella enabling the management of different purely suprasellar and retrosellar cystic/solid craniopharyngiomas, regardless of the sellar size or pituitary function 12).

They provide acceptable results comparable to those for traditional craniotomies. Endoscopic endonasal surgery is not limited to adults and actually shows higher resection rates in the pediatric population 13).


1)

Figueredo LF, Martínez AL, Suarez-Meade P, Marenco-Hillembrand L, Salazar AF, Pabon D, Guzmán J, Murguiondo-Perez R, Hallak H, Godo A, Sandoval-Garcia C, Ordoñez-Rubiano EG, Donaldson A, Chaichana KL, Peris-Celda M, Bendok BR, Samson SL, Quinones-Hinojosa A, Almeida JP. Current Role of Endoscopic Endonasal Approach for Craniopharyngiomas: A 10-Year Systematic Review and Meta-Analysis Comparison with the Open Transcranial Approach. Brain Sci. 2023 May 23;13(6):842. doi: 10.3390/brainsci13060842. PMID: 37371322.
2)

Qiao N. Endocrine outcomes of endoscopic versus transcranial resection of craniopharyngiomas: A system review and meta-analysis. Clin Neurol Neurosurg. 2018 Apr 7;169:107-115. doi: 10.1016/j.clineuro.2018.04.009. [Epub ahead of print] Review. PubMed PMID: 29655011.
3)

Komotar RJ, Starke RM, Raper DM, Anand VK, Schwartz TH. Endoscopic endonasal compared with microscopic transsphenoidal and open transcranial resection of craniopharyngiomas. World Neurosurg. 2012 Feb;77(2):329-41. doi: 10.1016/j.wneu.2011.07.011. Epub 2011 Nov 1. Review. PubMed PMID: 22501020.
4)

Aragón-Arreola JF, Marian-Magaña R, Villalobos-Diaz R, López-Valencia G, Jimenez-Molina TM, Moncada-Habib JT, Sangrador-Deitos MV, Gómez-Amador JL. Endoscopic Endonasal Approach in Craniopharyngiomas: Representative Cases and Technical Nuances for the Young Neurosurgeon. Brain Sci. 2023 Apr 28;13(5):735. doi: 10.3390/brainsci13050735. PMID: 37239207; PMCID: PMC10216292.
5)

Hong CS, Omay SB. The Role of Surgical Approaches in the Multi-Modal Management of Adult Craniopharyngiomas. Curr Oncol. 2022 Feb 24;29(3):1408-1421. doi: 10.3390/curroncol29030118. PMID: 35323318; PMCID: PMC8947636.
6)

Fong RP, Babu CS, Schwartz TH. Endoscopic endonasal approach for craniopharyngiomas. J Neurosurg Sci. 2021 Apr;65(2):133-139. doi: 10.23736/S0390-5616.21.05097-9. PMID: 33890754.
7)

Baldauf J, Hosemann W, Schroeder HW. Endoscopic Endonasal Approach for Craniopharyngiomas. Neurosurg Clin N Am. 2015 Jul;26(3):363-75. doi: 10.1016/j.nec.2015.03.013. Epub 2015 May 26. PMID: 26141356.
8)

Tan TSE, Patel L, Gopal-Kothandapani JS, Ehtisham S, Ikazoboh EC, Hayward R, et al: The neuroendocrine sequelae of paediatric craniopharyngioma: a 40-year meta-data analysis of 185 cases from three UK centres. Eur J Endocrinol 176:359–369, 2017
9)

Yokoi H, Kodama S, Kogashiwa Y, Matsumoto Y, Ohkura Y, Nakagawa T, et al: An endoscopic endonasal approach for early-stage olfactory neuroblastoma: an evaluation of 2 cases with minireview of literature. Case Rep Otolaryngol 2015:541026, 2015
10)

Zacharia BE, Amine M, Anand V, Schwartz TH. Endoscopic Endonasal Management of Craniopharyngioma. Otolaryngol Clin North Am. 2016 Feb;49(1):201-12. doi: 10.1016/j.otc.2015.09.013. Review. PubMed PMID: 26614838.
11)

Cavallo LM, Frank G, Cappabianca P, Solari D, Mazzatenta D, Villa A, Zoli M, D’Enza AI, Esposito F, Pasquini E. The endoscopic endonasal approach for the management of craniopharyngiomas: a series of 103 patients. J Neurosurg. 2014 May 2. [Epub ahead of print] PubMed PMID: 24785324.
12)

Cavallo LM, Solari D, Esposito F, Villa A, Minniti G, Cappabianca P. The Role of the Endoscopic Endonasal Route in the Management of Craniopharyngiomas. World Neurosurg. 2014 Dec;82(6S):S32-S40. doi: 10.1016/j.wneu.2014.07.023. Review. PubMed PMID: 25496633.
13)

Koutourousiou M, Gardner PA, Fernandez-Miranda JC, Tyler-Kabara EC, Wang EW, Snyderman CH. Endoscopic endonasal surgery for craniopharyngiomas: surgical outcome in 64 patients. J Neurosurg. 2013 Nov;119(5):1194-207. doi: 10.3171/2013.6.JNS122259. Epub 2013 Aug 2. PubMed PMID: 23909243.

Pituitary apoplexy

Pituitary apoplexy

Pituitary apoplexy (PA) is a clinical condition characterized by a sudden increase in pituitary gland volume secondary to ischemia and/or necrosis.

● due to the expansion of a pituitary neuroendocrine tumor from hemorrhage or necrosis

● typical presentation: paroxysmal H/A with endocrinologic and/or neurologic deficit (usually ophthalmoplegia or visual loss)

● management: immediate administration of glucocorticoids, and transsphenoidal decompression within 7 days in most cases.

It is important to note that pituitary apoplexy may be divided into hemorrhagic or ischemic, each with unique neuroimaging findings.

Some postulate that a gradual enlarging pituitary tumor becomes impacted at the diaphragmatic notch, compressing and distorting the hypophyseal stalk and its vascular supply. This deprives the anterior pituitary gland and the tumor itself of its vascular supply, apoplectically causing ischemia and subsequent necrosis.

Another theory stipulates that rapid expansion of the tumor outstrips its vascular supply, resulting in ischemia and necrosis. This explanation is doubtful, since most tumors that undergo apoplexy are slow growing.

Cerebral ischemia due to pituitary apoplexy is very rare. It may be caused by vasospasm or direct compression of cerebral vessels by the tumor.

Seung et al., present an unusual case of bitemporal hemianopsia caused by a large anterior communicating artery aneurysm.

A 41-year-old woman was admitted to our neurosurgical department with a sudden-onset bursting headache and visual impairment. On admission, her vision was decreased to finger counting at 30 cm in the left eye and 50 cm in the right eye, and a severe bitemporal hemianopsia was demonstrated on visual field testing. A brain computed tomography scan revealed a subarachnoid hemorrhage at the basal cistern, and conventional cerebral catheter angiography of the left internal carotid artery demonstrated an 18×8 mm dumbbell-shaped aneurysm at the ACoA. Microscopic aneurysmal clipping was performed. An ACoA aneurysm can produce visual field defects by compressing the optic chiasm or nerves.

Seung et al., emphasize that it is important to diagnose an aneurysm through cerebrovascular study to prevent confusing it with pituitary apoplexy 1).


A 52-year-old woman, previously diagnosed with asymptomatic Rathke cleft cyst (RCC), came with a severe headache, along with visual dysfunction and symptoms of pituitary insufficiency. Fluid-attenuated inversion recovery magnetic resonance imaging demonstrated diffuse hyperintensity in the cerebral cisterns, whereas watery clear cerebrospinal fluid was obtained by lumbar puncture. Surgery performed 1 month after onset revealed a nonhemorrhagic lesion, with a final diagnosis of nonhemorrhagic RCC rupture.

Yokota et al., conclude that nonhemorrhagic RCC rupture and subsequent leakage of the contents into subarachnoid space were the underlying pathogenesis in the present case of RCC resembling apoplexy 2).

Nineteen cases of suspected Pituitary apoplexy were included. The majority of dogs showed behavioural abnormalities (11/19). Neurological signs more frequently identified were obtundation (7/19), vestibular signs (7/19) and epileptic seizures (6/19). The onset of neurological signs was per-acute in 14 out of 19 cases. Data regarding CT and MRI were available in 18 and 9 cases, respectively. Neurological signs resolved in less than 24 h in seven patients. The short-term prognosis was defined as favourable in the majority of the study population. The median survival time was of 7 months from the time of PA diagnosis. This is the first description of neurological signs, imaging findings and outcome in a large group of dogs with PA 3).


1)

Seung WB, Kim DY, Park YS. A Large Ruptured Anterior Communicating Artery Aneurysm Presenting with Bitemporal Hemianopsia. J Korean Neurosurg Soc. 2015 Sep;58(3):291-3. doi: 10.3340/jkns.2015.58.3.291. Epub 2015 Sep 30. PubMed PMID: 26539276; PubMed Central PMCID: PMC4630364.
2)

Yokota H, Ida Y, Wajima D, Nishimura F, Nakase H. Rathke Cleft Cyst with Evidence of Rupture into Subarachnoid Space. World Neurosurg. 2016 Oct 21. pii: S1878-8750(16)31061-0. doi: 10.1016/j.wneu.2016.10.072. [Epub ahead of print] PubMed PMID: 27777166.
3)

Galli G, Bertolini G, Dalla Serra G, Menchetti M. Suspected Pituitary Apoplexy: Clinical Presentation, Diagnostic Imaging Findings and Outcome in 19 Dogs. Vet Sci. 2022 Apr 15;9(4):191. doi: 10.3390/vetsci9040191. PMID: 35448689.

Craniopharyngioma (CP)

Craniopharyngioma (CP)



A craniopharyngioma (CP) is an embryonic malformation of the sellar region and parasellar region.

Its relation to Rathke’s cleft cyst (RCC) is controversial, and both lesions have been hypothesized to lie on a continuum of ectodermal cystic lesions of the sellar region.


Jakob Erdheim (1874-1937) was a Viennese pathologist who identified and defined a category of pituitary tumors known as craniopharyngiomas. He named these lesions “hypophyseal duct tumors” (Hypophysenganggeschwülste), a term denoting their presumed origin from cell remnants of the hypophyseal duct, the embryological structure through which Rathke’s pouch migrates to form part of the pituitary gland. He described the two histological varieties of these lesions as the adamantinomatous and the squamous-papillary types. He also classified the different topographies of craniopharyngiomas along the hypothalamus-pituitary axis. Finally, he provided the first substantial evidence for the functional role of the hypothalamus in the regulation of metabolism and sexual functions. Erdheim’s monograph on hypophyseal duct tumors elicited interest in the clinical effects and diagnosis of pituitary tumors. It certainly contributed to the development of pituitary surgery and neuroendocrinology. Erdheim’s work was greatly influenced by the philosophy and methods of research introduced to the Medical School of Vienna by the prominent pathologist Carl Rokitansky. Routine practice of autopsies in all patients dying at the Vienna Municipal Hospital (Allgemeines Krankenhaus), as well as the preservation of rare pathological specimens in a huge collection stored at the Pathological-Anatomical Museum, represented decisive policies for Erdheim’s definition of a new category of epithelial hypophyseal growths. Because of the generalized use of the term craniopharyngioma, which replaced Erdheim’s original denomination, his seminal work on hypophyseal duct tumors is only referenced in passing in most articles and monographs on this tumor.

Jakob Erdheim should be recognized as the true father of craniopharyngiomas 1).

Its relation to Rathke’s cleft cyst (RCC) is controversial, and both lesions have been hypothesized to lie on a continuum of cystic ectodermal lesions of the sellar region.

It grows close to the optic nervehypothalamus and pituitary gland.


Craniopharyngiomas frequently grow from remnants of the Rathke pouch, which is located on the cisternal surface of the hypothalamic region. These lesions can also extend elsewhere in the infundibulohypophyseal axis.

These tumors can also grow from the infundibulum or tuber cinereum on the floor of the third ventricle, developing exclusively into the third ventricle.

Genetic and immunological markers show variable expression in different types of CraniopharyngiomaBRAF is implicated in tumorigenesis in papillary Craniopharyngioma (pCP), whereas CTNNB1 and EGFR are often overexpressed in adamantinomatous Craniopharyngioma (aCP) and VEGF is overexpressed in aCP and Craniopharyngioma recurrence. Targeted treatment modalities inhibiting thesepathways can shrink or halt progression of CP. In addition, Epidermal growth factor receptor tyrosine kinase inhibitors may sensitize tumors to radiation therapy. These – drugs show promise in medical management and neoadjuvant therapy for CP. Immunotherapy, including anti-interleukin 6 (IL-6) drugs and interferon treatment, are also effective in managing tumor growth. Ongoing – clinical trials in CP are limited but are testing BRAF/MET inhibitors and IL-6 monoclonal antibodies.

Genetic and immunological markers show variable expression in different subtypes of CP. Several current molecular treatments have shown some success in the management of this disease. Additional clinical trials and targeted therapies will be important to improve CP patient outcomes 2).

Rathke’s cleft cyst.


ependymomapilocytic astrocytomachoroid plexus papilloma (CPP), craniopharyngiomaprimitive neuroectodermal tumor (PNET), choroid plexus carcinoma (CPC), immature teratomaatypical teratoid rhabdoid tumor (AT/RT), anaplastic astrocytoma, and gangliocytoma.


Compared with craniopharyngiomas, sellar gliomas presented with a significantly lower ratio of visual disturbances, growth hormone deficiencies, lesion cystic changes, and calcification. Sellar gliomas had significantly greater effects on the patients’ mentality and anatomical brain stem involvement 3).

Simultaneous sellar-suprasellar craniopharyngioma and intramural clival chordoma, successfully treated by a single staged, extended, fully endoscopic endonasal approach, which required no following adjuvant therapy is reported 4).


1)

Pascual JM, Rosdolsky M, Prieto R, Strauβ S, Winter E, Ulrich W. Jakob Erdheim (1874-1937): father of hypophyseal-duct tumors (craniopharyngiomas). Virchows Arch. 2015 Jun 19. [Epub ahead of print] PubMed PMID: 26089144.
2)

Reyes M, Taghvaei M, Yu S, Sathe A, Collopy S, Prashant GN, Evans JJ, Karsy M. Targeted Therapy in the Management of Modern Craniopharyngiomas. Front Biosci (Landmark Ed). 2022 Apr 20;27(4):136. doi: 10.31083/j.fbl2704136. PMID: 35468695.
3)

Deng S, Li Y, Guan Y, Xu S, Chen J, Zhao G. Gliomas in the Sellar Turcica Region: A Retrospective Study Including Adult Cases and Comparison with Craniopharyngioma. Eur Neurol. 2014 Dec 18;73(3-4):135-143. [Epub ahead of print] PubMed PMID: 25531372.
4)

Iacoangeli M, Rienzo AD, Colasanti R, Scarpelli M, Gladi M, Alvaro L, Nocchi N, Scerrati M. A rare case of chordoma and craniopharyngioma treated by an endoscopic endonasal, transtubercular transclival approach. Turk Neurosurg.2014;24(1):86-9. doi: 10.5137/1019-5149.JTN.7237-12.0. PubMed PMID: 24535799.

Pituitary neuroendocrine tumor

Pituitary neuroendocrine tumor

Pituitary tumors have very few known risk factors, and these are related to genetics. There are no known environmental or lifestyle-related risk factors for pituitary tumors. Though science has suggested that people who are overweight or obese might be at increased risk.


Youn et al. discovered that a 3’untranslated region (3’UTR) variant, rs181031884 of CDKN2B (Asian-specific variant), had significant association with the risk of pituitary neuroendocrine tumor (PA) (Odds ratio = 0.58, P = 0.00003). Also, rs181031884 appeared as an independent causal variant among the significant variants in CDKN2A and CDKN2B, and showed dose-dependent effects on PA.

Although further studies are needed to verify the impact of this variant on pituitary neuroendocrine tumor susceptibility, the results may help to understand CDKN2B polymorphism and the risk of pituitary neuroendocrine tumor 1).

A 45-year-old woman who suffered from limb edema for 2 months. Dong et al. focused on tumor recurrence and other common potential diseases based on the pituitary neuroendocrine tumor history. However, none of the examinations showed any abnormality. Later, her continuous complaints about the family relationship and depressed mood came into sight, and a psychiatry consultation was arranged. Following that, she was diagnosed with major depressive disorder. After several days of Melitracen and tandospirone treatment, the patient’s limb edema dramatically subsided. This is the first case of limb edema associated with depression. This highlights the importance of awareness of mental illness for non-psychiatrists, especially in patients with severe somatic symptoms, but with negative results 2).


A 39-year-old woman reports visual loss (blurred vision) in both eyes for 2 months, the left worse than the right. Refers to headache (twice a week) that subsides with paracetamol In the last 15 days, he has woken up at night several days due to headaches.

Migraines under control by Neurology

Antiphospholipid syndrome antibody/hypercoagulability in follow-up by Hematology

APA is positive at low titer.

Bilateral superior external quadrantanopia

Treatment with Zolmitriptan

Computed tomography

Suprasellar mass is observed that occupies and expands the sella turcica, difficult to define, which produces a break in the continuity of the floor of the sella turcica and a complete occupation of the sphenoid sinus, which also presents an expansion of the same and thinning of its bony walls. It has maximum measurements of 3.5 x 2.8 x 1.2 cm (craniocaudal by transverse by anteroposterior). These findings seem compatible with an aggressive pituitary neuroendocrine tumor

The mass ascends through the sellar diaphragm and compresses the optic chiasm, and in the lateral areas, it completely encompasses both intracavernous carotid arteries and both cavernous sinuses bilaterally.

Brain MRI

A large sellar lesion with a marked isointense suprasellar extension on T1 and heterogeneous on T2 with multiple hyperintense foci on T2, especially the cystic-necrotic suprasellar portion in relation to macroadenoma. The lesion measures approximately 4 cm in diameter craniocaudal, 3.9 anteroposterior, and 4.2 cm transverse. It extends to both cavernous sinuses and surrounds the right internal carotid artery for more than 180° and the left for approximately 180°. It causes a mass effect on the optic chiasm, displacing it superiorly. The pituitary stalk seems to be located anterior to the lesion with a slight right lateralization, although it is difficult to locate it due to the large size of the lesion.

HORMONES

FREE T4 1.7 ng/dL

FSH 5.3 U/L

LH 3.4 U/L

PROLACTIN 8.3ng/mL

ESTRADIOL 32.0 pg/mL

CORTISOL MORNING 10.9 µg/dL

IGF-1 231 ng/mL


Under general anesthesia, orotracheal intubation, and antibiotic prophylaxis with cefazolin 2 gr IV. Supine position with neutral head resting on a donut-type pillow. Preoperative topical intranasal oxymetazoline was applied with lectins.

nasal phase: Right middle turbinate resection. Preparation of a nasoseptal flap with mucosa from the right septum. It is left lodged in the right choana. Posterior septostomy and communication of both nostrils. In the ostium, a tumor is visualized that completely occupies the sphenoid sinus. Wide anterior sphenoidotomy with the help of a laminotome and cutting burr. Profuse bleeding throughout the nasal phase comes from the tumor. Part of the left paramedian septum that was encompassed by the tumor was removed.

Excision phase: Excision of the tumor part contained in the sphenoid sinus until the bony limits of the sella turcica were visualized. With the help of neuronavigation and Doppler, both ICAs were located. Clivus partly eroded. In the most inferior and posterior part, a bone area corresponding to the posterior clinoid is observed, which is moth-eaten and loose, encompassed by a tumor. Intracapsular excision of the tumor is started by way of debulking, and sending tumor samples for AP analysis. The tumor shows a friable consistency and a purplish color compatible with a pituitary neuroendocrine tumor. Central excision until visualizing gradual descent of sellar and arachnoid diagrams in the sellar cavity with contained low-flow fistula. Exeresis in the posterior region until observing the dura mater of the posterior fossa. Excision of the lateral walls and part of the cavernous sinus. Hemostasis with Floseal.

Reconstruction phase: Tachosil is placed covering the arachnoid in the area of ​​the contained fistula. A nasoseptal flap is placed in contact with the bone defect around the sellar opening. The flap is fixed with surgicel and tissucol. Rapid -Rhino binasal tires are left. The free mucosa of the middle turbinate is left covering the part of the septum from which the flap has been removed.


1)

Youn BJ, Cheong HS, Namgoong S, Kim LH, Baek IK, Kim JH, Yoon SJ, Kim EH, Kim SH, Chang JH, Kim SH, Shin HD. Asian-specific 3’UTR variant in CDKN2B associated with risk of pituitary neuroendocrine tumor. Mol Biol Rep. 2022 Sep 12. doi: 10.1007/s11033-022-07796-1. Epub ahead of print. PMID: 36097105.
2)

Dong X, Fang S, Li W, Li X, Zhang S. Deanxit and tandospirone relieved unexplained limb edema in a depressed pituitary neuroendocrine tumor survivor: A case report. Front Psychiatry. 2022 Nov 10;13:965495. doi: 10.3389/fpsyt.2022.965495. PMID: 36440410; PMCID: PMC9685525.

Adamantinomatous craniopharyngioma diagnosis

Adamantinomatous craniopharyngioma diagnosis

Diagnosis of adamantinomatous craniopharyngioma (ACP) is predominantly determined through invasive pathological examination of a neurosurgical biopsy specimen.

▷ ESSENTIAL ◁

Tumor in the sellar region

Squamous non-keratinizing epitheliumbenign

AND

stellate reticulum and/or wet keratin

▷ DESIRABLE ◁

▶ Nuclear immunoreactivity for β-catenin

▶ Mutation in CTNNB1

▶ Absence of BRAF p.V600E mutation


Adamantinomatous craniopharyngiomas typically have a lobulated contour as a result of usually being multiple cystic lesions. Solid components are present, but often form a relatively minor part of the mass and enhance vividly on both CT and MRI. Overall, calcification is very common, but this is only true of the adamantinomatous subtype (~90% are calcified).

These tumors have a predilection to being large, extending superiorly into the third ventricle, encasing vessels, and even adhering to adjacent structures.

Contrast enhancementcyst formation, and calcification are the three characteristic features of craniopharyngiomas on computed tomographic scans. More than 90% of suprasellar craniopharyngiomas exhibit at least two of these three features, thus providing easy radiologic detection. Imaging mnemonic: “90% rule” 90% of adamantinomatous craniopharyngiomas exhibit at least 2 of the following “C” features: cyst formation, prominent calcifications. 1)

T1: iso- to hyperintense to the brain (due to high protein content “motor oil cysts”)

T2: variable but ~80% are mostly or partly T2 hyperintense

T1 C+ (Gd): vivid enhancement

T2: variable or mixed

Difficult to appreciate on conventional imaging

Susceptible sequences may better demonstrate calcification

May show displacement of the A1 segment of the anterior cerebral artery (ACA)

Cyst contents may show a broad lipid spectrum, with an otherwise flat baseline.


Clinical experts can distinguish ACP from Magnetic Resonance Imaging (MRI) with an accuracy of 86%, and 9% of ACP cases are diagnosed this way. Classification using deep learning (DL) provides a solution to support a non-invasive diagnosis of ACP through neuroimaging, but it is still limited in implementation, a major reason being the lack of predictive uncertainty representation. We trained and tested a DL classifier on preoperative MRI from 86 suprasellar tumor patients across multiple institutions. We then applied a Bayesian DL approach to calibrate our previously published ACP classifier, extending beyond point-estimate predictions to predictive distributions. Our original classifier outperforms random forest and XGBoost models in classifying ACP. The calibrated classifier underperformed our previously published results, indicating that the original model was overfitting. The mean values of the predictive distributions were not informative regarding model uncertainty. However, the variance of predictive distributions was indicative of predictive uncertainty. We developed an algorithm to incorporate predicted values and the associated uncertainty to create a classification abstention mechanism. Our model accuracy improved from 80.8% to 95.5%, with a 34.2% abstention rate. We demonstrated that calibration of DL models can be used to estimate predictive uncertainty, which may enable the clinical translation of artificial intelligence to support the non-invasive diagnosis of brain tumors in the future 2).


1)

Johnson LN, Hepler RS, Yee RD, Frazee JG, Simons KB. Magnetic resonance imaging of craniopharyngioma. Am J Ophthalmol. 1986 Aug 15;102(2):242-4. doi: 10.1016/0002-9394(86)90152-2. PMID: 3740186.
2)

Prince EW, Ghosh D, Görg C, Hankinson TC. Uncertainty-Aware Deep Learning Classification of Adamantinomatous Craniopharyngioma from Preoperative MRI. Diagnostics (Basel). 2023 Mar 16;13(6):1132. doi: 10.3390/diagnostics13061132. PMID: 36980440; PMCID: PMC10047069.

Microvascular Decompression Complications

Microvascular Decompression Complications

Latest Pubmed Related Articles



Microvascular decompression (MVD) has a satisfactory safety, and it is the only surgical treatment for neurovascular compression diseases, such as hemifacial spasmtrigeminal neuralgia, and glossopharyngeal neuralgia, from the perspective of etiology.


Microvascular decompression (MVD) is a surgical procedure used to relieve pressure on a nerve root in the brainstem. While the procedure has a high success rate, like all surgeries, it does carry some risks and potential complications.

Some possible complications of microvascular decompression include:

Bleeding: Bleeding can occur during or after the surgery, which may require additional medical intervention.

Infection: Infection can occur at the site of the surgery or in the brain, which can lead to serious complications.

Nerve damage: Nerve damage can occur during the surgery, which may lead to a range of symptoms, including weakness, numbness, and paralysis.

Hearing loss: MVD can lead to hearing loss in some cases, particularly if the acoustic nerve is damaged during the procedure.

Balance problems: MVD can cause balance problems or vertigo, which may persist for several weeks or months after the surgery.

Cerebrospinal fluid leak: In rare cases, MVD can cause a cerebrospinal fluid leak, which may require further medical intervention.

It’s important to note that while these complications are possible, they are relatively rare.


Bilateral dilated and fixed pupils have long been regarded as a sign of life threatening, which is common in patients with brain herniation due to intracranial hypertension. However, transient dilated pupils after MVD have not been previously reported.

Wang et al. presented 2 patients with bilateral transient dilated and fixed pupils after MVD and discussed the possible etiologies through the literature review. Physical examination of both patients showed bilateral pupils were normal and without a medical history of pupil dilation. They underwent MVD under general anesthesia and used propofol and sevoflurane. In both cases, the vertebral artery was displaced, and Teflon pads were inserted between the vertebral artery and the brain stem. Postoperation, we found transient bilateral mydriasis without light reflection in both patients. The emergency head computed tomography revealed no obvious signs of hemorrhage and cerebral herniation. About 1 hour later, this phenomenon disappeared. Therefore, the authors think if MVD is successfully carried out, bilateral transient mydriasis may not necessarily indicate brain stem hemorrhage, cerebral herniation, and other emergency conditions, which can be recovered within a short time. The causes could be related to stimulation of the sympathetic pathway in the brain stem during MVD and side effects of anesthetics 1).


1)

Wang L, Fan H, Xu X, Su S, Feng W, Wu C, Chen Y. Bilateral Transient Dilated and Fixed Pupils After Microvascular Decompression: Rare Clinical Experience. J Craniofac Surg. 2023 Mar 21. doi: 10.1097/SCS.0000000000009293. Epub ahead of print. PMID: 36941233.

Olfactory groove meningioma

Olfactory groove meningioma



Olfactory groove meningiomas (OGMs) are arachnoid cell neoplasms of the frontoethmoidal suture and lamina cribrosa1) and may involve any part of the area from the crista galli to the planum sphenoidale 2) 3) 4).

The Meningiomas Arising from the Olfactory Groove and Their Removal by the Aid of Electro-surgery By Harvey Cushing · 1927


Cushing H, Eisenhardt L (1938) The olfactory meningiomas with primary anosmia. In: Cushing H, Eisenhardt L (eds) Meningiomas: their classification, regional behavior, life history, and surgical results. Charles C Thomas, Springfield, pp 250–282


Ojemann RG (1991) Olfactory groove meningiomas. In: Al-Mefty O (ed) Meningiomas. Raven Press, New York, pp 383–393


Al-Mefty O (1993) Tuberculum sellae and olfactory groove meningioma. In: Sekhar LN, Janecka IP (eds) Surgery of cranial base tumors. Raven Press, New York, pp 507–519


Surgery of Skull Base Meningiomas: With a Chapter Madjid Samii, ‎Mario Ammirati · 2012


Meningiomas of the Skull Base Treatment Nuances in Contemporary Neurosurgery 2018

A systematic review was performed to identify studies that compared outcomes following EEA and TCA for OGMs. Data extracted from each study included gross total resection (GTR), the incidence of cerebrospinal fluid (CSF) leaks, and post-operative complications including anosmia. The results of the search yielded 5 studies that met the criteria for inclusion and analysis. All studies compared TCA (n = 922) with EEA (n = 141) outcomes for OGMs. Overall, the rate of gross total resection (GTR) was lower among the endoscopic group (70.9%) relative to the transcranial group (91.5%). The rate of postoperative CSF leak was 6.3% vs. 25.5% for the transcranial and endoscopic groups, respectively. Post-operative anosmia was higher for patients undergoing EEA (95.9%) compared with patients in the transcranial group (37.4%). In this analysis, EEA was associated with a lower rate of GTR and higher incidences of CSF leaks and post-operative anosmia. However, with increasing surgeon familiarity with the endoscopic anatomy and technique for managing ASB pathologies, a nuanced approach may be used to minimize patient morbidity and widen the spectrum of skull base surgery 5).


Electronic databases were searched from inception until December 2019 for studies delineating TCAs for OGM patients. Patient demographics, pre-operative symptoms, surgical outcomes, and complications were evaluated and analyzed with a meta-analysis of proportions. Results: A total of 27 observational case series comparing 554 unilateral vs. 451 bilateral TCA patients were eligible for review. The weighted pooled incidence of gross total resection is 94.6% (95% CI, 90.7-97.5%; I 2 = 59.0%; p = 0.001) for unilateral and 90.9% (95% CI, 85.6-95.4%; I 2 = 58.1%; p = 0.003) for bilateral cohorts. Similarly, the incidence of OGM recurrence is 2.6% (95% CI, 0.4-6.0%; I 2 = 53.1%; p = 0.012) and 4.7% (95% CI, 1.4-9.2%; I 2 = 55.3%; p = 0.006), respectively. Differences in oncologic outcomes were not found to be statistically significant (p = 0.21 and 0.35, respectively). Statistically significant differences in complication rates in bilateral vs. unilateral TCA cohorts include meningitis (1.0 vs. 0.0%; p = 0.022) and mortality (3.2 vs. 0.2%; p = 0.007). Conclusions: While both cohorts have similar oncologic outcomes, bilateral TCA patients exhibit higher postoperative complication rates. This may be explained by underlying tumor characteristics necessitating more radical resection but may also indicate increased morbidity with bilateral approaches. However, evidence from more controlled, comparative studies is warranted to further support these findings 6).


A PubMed search of the recent literature (2011-2016) was performed to examine outcomes following EEA and TCA for OGM. The extent of resection, visual outcome, postoperative complications, and recurrence rates were analyzed using percentages and proportions, the Fischer exact test, and the Student’s t-test using GraphPad PRISM 7.0Aa (San Diego, CA) software.

Results: There were 444 patients in the TCA group with a mean diameter of 4.61 (±1.17) cm and 101 patients in the EEA group with a mean diameter of 3.55 (± 0.58) cm (p = 0.0589). GTR was achieved in 90.9% (404/444) in the TCA group and 70.2% (71/101) in the EEA group (p < 0.0001). Of the patients with preoperative visual disturbances, 80.7% (21/26) of patients in the EEA cohort had an improvement in vision compared to 12.83%(29/226) in the TCA group (p < 0.0001). Olfaction was lost in 61% of TCA and in 100% of EEA patients. CSF leaks and meningitis occurred in 25.7% and 4.95% of EEA patients and 6.3% and 1.12% of TCA patients, respectively (p < 0.0001; p = 0.023).

The updated literature review demonstrates that despite more experience with endoscopic resection and skull base reconstruction, the literature still supports TCA over EEA with respect to the extent of resection and complications. EEA may be an option in selected cases where visual improvement is the main goal of surgery and postoperative anosmia is acceptable to the patient or in medium-sized tumors with existing preoperative anosmia. Nevertheless, based on our results, it seems more prudent at this time to use TCA for the majority of OGMs 7).


1)

Guinto G. Olfactory Groove Meningiomaas. World Neurosurg. 2015 Jun;83(6):1046-7. doi: 10.1016/j.wneu.2014.12.044. Epub 2015 Jan 14. PMID: 25596435.
2)

Hentschel SJ, DeMonte F, Olfactory groove meningiomas. DeMonte F, McDermott MW, Al-Mefty O: Al-Mefty’s Meningiomas 2New York, Thieme, 2011. 196–205
3)

Nakamura M, Struck M, Roser F, Vorkapic P, Samii M: Olfactory groove meningiomas: clinical outcome and recurrence rates after tumor removal through the frontolateral and bifrontal approach. Neurosurgery 62:6 Suppl 31224–1232, 2008
4)

Pepper J, Hecht SL, Gebarski SS, Lin EM, Sullivan SE, Marentette LJ. Olfactory groove meningioma: discussion of clinical presentation and surgical outcomes following excision via the subcranial approach. Laryngoscope. 2011;121:2282–2289.
5)

Purohit A, Jha R, Khalafallah AM, Price C, Rowan NR, Mukherjee D. Endoscopic endonasal versus transcranial approach to resection of olfactory groove meningiomas: a systematic review. Neurosurg Rev. 2020 Dec;43(6):1465-1471. doi: 10.1007/s10143-019-01193-2. Epub 2019 Nov 10. PMID: 31709465.
6)

Feng AY, Wong S, Saluja S, Jin MC, Thai A, Pendharkar AV, Ho AL, Reddy P, Efron AD. Resection of Olfactory Groove Meningiomas Through Unilateral vs. Bilateral Approaches: A Systematic Review and Meta-Analysis. Front Oncol. 2020 Oct 22;10:560706. doi: 10.3389/fonc.2020.560706. PMID: 33194626; PMCID: PMC7642686.
7)

Shetty SR, Ruiz-Treviño AS, Omay SB, Almeida JP, Liang B, Chen YN, Singh H, Schwartz TH. Limitations of the endonasal endoscopic approach in treating olfactory groove meningiomas. A systematic review. Acta Neurochir (Wien). 2017 Oct;159(10):1875-1885. doi: 10.1007/s00701-017-3303-0. Epub 2017 Aug 22. PMID: 28831590.

Cerebellar mutism

Cerebellar mutism

Incidence of cerebellar mutism: 11–29% of children following surgery for cerebellar tumor2) including cerebellar medulloblastoma (53%), posterior fossa ependymoma (33%) & cerebellar pilocytic astrocytoma (11%) 3).

It has also been reported in both children and adults following several other cerebellar insults, including vascular events, infections, and trauma 4).

The uncertain etiology of PFS, myriad of cited risk factors and therapeutic challenges make this phenomenon an elusive entity.

Cerebellar mutism is a rare occurrence following paediatric trauma 5) 6) 7) 8). , this phenomenon has rarely been reported following other insults, such as trauma, and its pathophysiology remains poorly understood.

A seven-year-old child who presented to the casualty department of Sultan Qaboos University Hospital in Muscat, Oman, in May 2013 with a traumatic right cerebellar contusion. The child presented with clinical features of cerebellar mutism but underwent a rapid and spontaneous recovery 9).

The pathogenic mechanism is likely due to the damage occurring to the proximal efferent cerebellar pathway, including the dentate nucleus, the superior cerebellar peduncle, and its decussation in the mesencephalic tegmentum 10).

Superior and inferior cerebellar peduncles and the superior part of the cerebellum were related to CMS, especially the right side 11).

This syndrome involves a variety of signs and symptoms including cerebellar mutism or speech disturbances, dysphagia, decreased motor movement, cranial nerve palsy and, emotional lability. These signs and symptoms develop from an average range of 24 to 107 hours after surgery and may take weeks to months to resolve.

Multi-inflow time arterial spin-labeling shows promise as a noninvasive tool to evaluate cerebral perfusion in the setting of pediatric obstructive hydrocephalus and demonstrates increased CBF following the resolution of cerebellar mutism syndrome 12).

The importance of olivary hypertrophic degeneration as a differential diagnosis in cerebellar mutism syndrome 13).

Early recognition of this syndrome could facilitate preventive and restorative patient care, prevent subsequent complications, decrease length of hospital stays, and promote patient and family understanding of and coping with the syndrome 14).

20 cases of PFS (8%), 12 males and 8 females. Age ranged from 1.5 to 13 years (mean = 6.5). Of the 20, 16 were medulloblastoma, 3 ependymoma and 1 astrocytoma. There was a 21 % incidence (16/76) of PFS in medulloblastoma of the posterior fossa. The incidence for ependymoma was 13% (3/24) and 1% (1/102) for astrocytoma. All 20 cases (100%) had brainstem involvement by the tumor. The most frequent postoperative findings included mutism, ataxia, 6th and 7th nerve palsies and hemiparesis. Mutism had a latency range of 1-7 days (mean = 1.7) and a duration of 6-365 days (mean = 69.2, median = 35). Although mutism resolved in all cases, the remaining neurologic complications which characterized our findings of PFS were rarely reversible. We describe potential risk factors for developing PFS after surgery with hopes of making neurosurgeons more aware of potential problems following the removal of lesions in this area. Early recognition of PFS would further promote patient and family understanding and coping with this síndrome 15)


19 children diagnosed with posterior fossa syndrome 16)


1)

Rekate HL, Grubb RL, Aram DM, Hahn JF, Ratcheson RA. Muteness of cerebellar origin. Arch Neurol. 1985;42:697–8. doi: 10.1001/archneur.1985.04060070091023.
2)

Gudrunardottir T, Sehested A, Juhler M, et al. Cerebellar mutism: review of the literature. Childs Nerv Syst. 2011; 27:355–363
3)

Catsman-Berrevoets C E, Van Dongen HR, Mulder PG, et al. Tumour type and size are high risk factors for the syndrome of “cerebellar” mutism and subsequent dysarthria. J Neurol Neurosurg Psychiatry. 1999; 67:755–757
4)

Gudrunardottir T, Sehested A, Juhler M, Schmiegelow K. Cerebellar mutism: Review of the literature. Childs Nerv Syst. 2011;27:355–63. doi: 10.1007/s00381-010-1328-2.
5)

Erşahin Y, Mutluer S, Saydam S, Barçin E. Cerebellar mutism: Report of two unusual cases and review of the literature. Clin Neurol Neurosurg. 1997;99:130–4. doi: 10.1016/S0303-8467(97)80010-8.
6)

Fujisawa H, Yonaha H, Okumoto K, Uehara H, le T, Nagata Y, et al. Mutism after evacuation of acute subdural hematoma of the posterior fossa. Childs Nerv Syst. 2005;21:234–6. doi: 10.1007/s00381-004-0999-y.
7)

Koh S, Turkel SB, Baram TZ. Cerebellar mutism in children: Report of six cases and potential mechanisms. Pediatr Neurol. 1997;16:218–19. doi: 10.1016/S0887-8994(97)00018-0.
8)

Yokota H, Nakazawa S, Kobayashi S, Taniguchi Y, Yukihide T. [Clinical study of two cases of traumatic cerebellar injury] No Shinkei Geka. 1990;18:67–70.
9)

Kariyattil R, Rahim MI, Muthukuttiparambil U. Cerebellar mutism following closed head injury in a child. Sultan Qaboos Univ Med J. 2015 Feb;15(1):e133-5. Epub 2015 Jan 21. PubMed PMID: 25685374; PubMed Central PMCID: PMC4318595.
10)

Fabozzi F, Margoni S, Andreozzi B, Musci MS, Del Baldo G, Boccuto L, Mastronuzzi A, Carai A. Cerebellar mutism syndrome: From pathophysiology to rehabilitation. Front Cell Dev Biol. 2022 Dec 2;10:1082947. doi: 10.3389/fcell.2022.1082947. PMID: 36531947; PMCID: PMC9755514.
11)

Yang W, Li Y, Ying Z, Cai Y, Peng X, Sun H, Chen J, Zhu K, Hu G, Peng Y, Ge M. A presurgical voxel-wise predictive model for cerebellar mutism syndrome in children with posterior fossa tumors. Neuroimage Clin. 2022 Dec 13;37:103291. doi: 10.1016/j.nicl.2022.103291. Epub ahead of print. PMID: 36527996; PMCID: PMC9791171.
12)

Toescu SM, Hales PW, Cooper J, Dyson EW, Mankad K, Clayden JD, Aquilina K, Clark CA. Arterial Spin-Labeling Perfusion Metrics in Pediatric Posterior Fossa Tumor Surgery. AJNR Am J Neuroradiol. 2022 Oct;43(10):1508-1515. doi: 10.3174/ajnr.A7637. Epub 2022 Sep 22. PMID: 36137658; PMCID: PMC9575521.
13)

Ballestero M, de Oliveira RS. The importance of olivary hypertrophic degeneration as a differential diagnosis in cerebellar mutism syndrome. Childs Nerv Syst. 2022 Dec 21. doi: 10.1007/s00381-022-05815-x. Epub ahead of print. PMID: 36542117.
14) , 16)

Kirk EA, Howard VC, Scott CA. Description of posterior fossa syndrome in children after posterior fossa brain tumor surgery. J Pediatr Oncol Nurs. 1995 Oct;12(4):181-7. PubMed PMID: 7495523.
15)

Doxey D, Bruce D, Sklar F, Swift D, Shapiro K. Posterior fossa syndrome: identifiable risk factors and irreversible complications. Pediatr Neurosurg. 1999 Sep;31(3):131-6. PubMed PMID: 10708354.