Foramen magnum meningioma

Foramen magnum meningioma

Foramen magnum meningiomas (FMMs) are slow growing, posterior fossa meningiomas most often intradural and extramedullar. They are those arising anteriorly from the inferior third of the clivus to the superior edge of the C2 body, laterally from the jugular tubercle to the C2 laminae, and posteriorly from the anterior border of the occipital squama to the spinous process of C2 1) 2) 3).

They represent 2% of all meningioma4).

The mean age of the patients with these lesions at the time of diagnosis is approximately 55 years old, but these tumors have been reported in patients of almost every age 5) 6) 7) 8) 9).

They have traditionally been said to involve the lower third of the clivus and the C1 C2 area. However, the last categorizations are arbitrary.

There are some tumors that involve the entire clivus, and others that involve the mid and lower third of the clivus. (The upper clivus is the area above the trigeminal root, the mid-clivus extends to the level of the glossopharyngeal nerve, and the lower clivus is the region below the glossopharyngeal nerve).

The indolent clinical course of FMMs and their insidious onset of symptoms are important factors that contribute to delayed diagnosis and relative large size at the time of presentation. Symptoms are often produced by compression of surrounding structures (such as the medulla oblongata, upper cervical spinal cord, lower cranial nerves, and vertebral artery) within a critically confined space

Matsoukas S, Oemke H, Lopez LS, Gilligan J, Tabani H, Bederson JB. Suboccipital Craniectomy for an Anterior Foramen Magnum Meningioma-Optimization of Resection Using Intraoperative Augmented Reality: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Nov 1;23(5):e321. doi: 10.1227/ons.0000000000000373. Epub 2022 Aug 8. PMID: 36103323.


Emerson SN, Toczylowski M, Al-Mefty O. Dejerine Syndrome Variant Due to Medullary Perforating Artery Ischemia During Foramen Magnum Meningioma Resection: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Jul 1;23(1):e52-e53. doi: 10.1227/ons.0000000000000211. Epub 2022 Apr 20. PMID: 35726936. Danish B, Costello MC, Patel NV, Higgins DMO, Komotar RJ, Ivan ME. Commentary: Dejerine Syndrome Variant Due to Medullary Perforating Artery Ischemia During Foramen Magnum Meningioma Resection: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Sep 1;23(3):e205-e206. doi: 10.1227/ons.0000000000000336. Epub 2022 Jul 11. PMID: 35972118.


Danish B, Costello MC, Patel NV, Higgins DMO, Komotar RJ, Ivan ME. Commentary: Dejerine Syndrome Variant Due to Medullary Perforating Artery Ischemia During Foramen Magnum Meningioma Resection: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Sep 1;23(3):e205-e206. doi: 10.1227/ons.0000000000000336. Epub 2022 Jul 11. PMID: 35972118.


Medina EJ, Revuelta Barbero JM, Porto E, Garzon-Muvdi T, Henriquez O, Solares CA, Pradilla G. Exoscopic and Microscopic Combined Far Lateral Retrocondylar Approach for Resection of a Ventral Foramen Magnum Lesion: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Aug 1;23(2):e126. doi: 10.1227/ons.0000000000000250. Epub 2022 May 9. PMID: 35838470.


Jeelani Y, Ibn Essayed W, Al-Mefty O. Extended Transcondylar Approach With C-1 Lateral Mass Resection for the Removal of a Calcified Ventral “Spinocranial” Meningioma: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022 Aug 1;23(2):e117-e118. doi: 10.1227/ons.0000000000000278. Epub 2022 May 9. PMID: 35838463.


Essayed W, Aboud E, Al-Mefty O. Foramen Magnum Meningioma-The Attainment of the Intra-Arachnoidal Dissection: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2021 Nov 15;21(6):E518-E519. doi: 10.1093/ons/opab317. PMID: 34498699.


Campero A, Baldoncini M, Villalonga JF, Paíz M, Giotta Lucifero A, Luzzi S. Transcondylar Fossa Approach for Resection of Anterolateral Foramen Magnum Meningioma: 2-Dimensional Operative Video. World Neurosurg. 2021 Oct;154:91-92. doi: 10.1016/j.wneu.2021.07.058. Epub 2021 Jul 21. PMID: 34303002.


1)

öçmez C, Göya C, Hamidi C, Kamaşak K, Yilmaz T, Turan Y, et al. Three-dimensional analysis of foramen magnum and its adjacent structures. J Craniofac Surg. 2014;25(1):93–97.
2)

George B, Lot G, Boissonnet H. Meningioma of the foramen magnum: a series of 40 cases. Surg Neurol. 1997;47(4):371–9.
3) , 4)

Bruneau M, George B. Foramen magnum meningiomas: detailed surgical approaches and technical aspects at Lariboisière Hospital and review of the literature. Neurosurg Rev. 2008 Jan;31(1):19-32; discussion 32-3. doi: 10.1007/s10143-007-0097-1. Epub 2007 Sep 20. PMID: 17882459; PMCID: PMC2077911.
5)

Colli BO, Carlotti-Junior CG, Assirati-Junior JA, Borba LA, Coelho-Junior Vde P, Neder L. Foramen magnum meningiomas: surgical treatment in a single public institution in a developing country. Arq Neuropsiquiatr. 2014;72(7):528–37.
6)

Pirotte BJ, Brotchi J, DeWitte O. Management of anterolateral foramen magnum meningiomas: surgical vs conservative decision making. Neurosurgery. 2010;67(3):58–70.
7)

Flores BC, Boudreaux BP, Klinger DR, Mickey BE, Barnett SL. The far-lateral approach for foramen magnum meningiomas. Neurosurg Focus. 2013;35(6):E12. doi:10.3171/2013.10.FOCUS13332.
8)

Borba LA, de Oliveira JG, Giudicissi-Filho M, Colli BO. Surgical management of foramen magnum meningiomas. Neurosurg Rev. 2009;32(1):49–60.
9)

Goel A, Desai K, Muzumdar D. Surgery on anterior foramen magnum meningiomas using a conventional posterior suboccipital approach: a report on an experience with 17 cases. Neurosurgery. 2001;49(1):102–7.
10)

Suisa H, Soustiel JF, Grober Y. IgG4-related pachymeningitis masquerading as foramen magnum meningioma: illustrative case. J Neurosurg Case Lessons. 2021 Dec 6;2(23):CASE21398. doi: 10.3171/CASE21398. PMID: 36061082; PMCID: PMC9435580.
11)

Uramaru K, Sakata K, Shimohigoshi W, Kawasaki T, Manaka H. Primary Meningeal Melanocytoma Located in the Craniovertebral Junction: A Case Report and Literature Review. NMC Case Rep J. 2021 Jun 25;8(1):349-354. doi: 10.2176/nmccrj.cr.2020-0191. PMID: 35079487; PMCID: PMC8769411.

Pituitary adenoma recurrence

Pituitary adenoma recurrence

Tumor recurrence or residual regrowth are poor prognosis for pituitary adenoma.


comprehensive review of the literature quantified the pituitary adenoma recurrence rates for commonly observed pituitary adenomas after transsphenoidal surgical resection with curative intent. Findings suggest that surveillance within 1 year may be of low yield. Further, clinical trials and cohort studies investigating the cost-effectiveness of surveillance schedules and their impact on the quality of life of patients under surveillance will provide further insight to optimize follow-up 1).


The old 2004 World Health Organization classification introduced atypical adenoma, which was equivocally defined as an invasion with increased mitotic activity that had a Ki67 labeling index (LI) greater than 3%, and extensive p53 immunoreactivity. However, aPAs that exhibit all of these features are rare and the predictive value for recurrent pituitary adenomas (PAs) remains uncertain.

Remission is lowest in patients with nonfunctioning adenomas, and recurrence is highest in patients with a prolactinoma. The remission rate has not improved over 3 decades of publication, but there is a modest decrease in recurrences with time. The highest incidence of tumor recurrence is between 1 and 5 years after surgery. Surgery-related hypopituitarism was highest in Cushing’s disease. The most important predictor for recurrence is the postoperative basal (non-stimulated) hormone level in functioning adenomas, while in nonfunctioning adenomas no single convincing factor could be identified 2).


With a high rate of recurrence, Nonfunctioning pituitary adenomas (NFPA) should be closely followed-up over a long-term period. Improvement of surgical techniques with advanced surgical equipment and adjuvant radiosurgery would lead to reduce the recurrence rate and improve patients’ outcome 3).

Postoperative residue, age, immunohistological subtypes, invasion, tumor size, hormone levels, and postoperative radiotherapy can predict the risk of recurrence in patients with PAs. Additionally, biomarkers such as Ki-67, p53, cadherin, pituitary tumor transforming gene, matrix metalloproteinase-9, epidermal growth factor receptor, fascin actin-bundling protein 1, cyclooxygenase-2, and some miRNAs and lncRNAs may be utilized as valuable tools for predicting PA recurrence. As no single marker can independently predict PA recurrence, we introduce an array of comprehensive models and grading methods, including multiple prognostic factors, to predict the prognosis of PAs, which have shown good effectiveness and would be beneficial for predicting PA recurrence 4).


There is no validated and well-accepted prognostic classification of PAs to predict the clinical outcome and guide clinical practice. Tumor recurrence or residual regrowth identified by MRI scans and endocrine studies and associated clinical and pathological characteristics were analyzed for patients who underwent surgery in the years 2008-2016 at West China Hospital. Thereby, a new clinicopathological classification was proposed and applied.

After a median follow-up of 44.0 months, tumor recurrence and residual progression were identified in 48 (25.0%) and 29 (37.2%) cases, respectively. Proliferative potential (HR=2.188, p=0.002), invasiveness (HR=1.698, p=0.029), larger tumor size (HR=1.029, p=0.004), high-risk PA subtype (HR=2.151, p=0.004) and postoperative residual (HR=1.941, p=0.007) were risk factors for recurrence/progression in the early stage after surgery. With respect to clinicopathological classification, compared with Grade 1a tumors, Grade 1b, 2a and 2b adenomas had poorer prognoses with an increased probability of tumor recurrence/progression of 5.133-, 4.467- and 20.1-fold, respectively.

The proposed clinicopathological classification of PAs showed significant value in predicting prognosis and succeeded in identifying cases with more clinically aggressive lesions with recurrence or residual regrowth. This prognostic classification may be helpful when identifying aggressive PAs and deciding the appropriate therapeutic strategy for patients with PAs 5).


1)

Caulley L, Whelan J, Khoury M, Mavedatnia D, Sahlollbey N, Amrani L, Eid A, Doyle MA, Malcolm J, Alkherayf F, Ramsay T, Moher D, Johnson-Obaseki S, Schramm D, Hunink MGM, Kilty SJ. Post-operative surveillance for somatotroph, lactotroph and non-functional pituitary adenomas after curative resection: a systematic review. Pituitary. 2022 Nov 23. doi: 10.1007/s11102-022-01289-x. Epub ahead of print. PMID: 36422846.
2)

Roelfsema F, Biermasz NR, Pereira AM. Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary. 2012 Mar;15(1):71-83. doi: 10.1007/s11102-011-0347-7. Review. PubMed PMID: 21918830; PubMed Central PMCID: PMC3296023.
3)

Lee MH, Lee JH, Seol HJ, Lee JI, Kim JH, Kong DS, Nam DH. Clinical Concerns about Recurrence of Non-Functioning Pituitary Adenoma. Brain Tumor Res Treat. 2016 Apr;4(1):1-7. doi: 10.14791/btrt.2016.4.1.1. Epub 2016 Apr 29. PubMed PMID: 27195254; PubMed Central PMCID: PMC4868810.
4)

Lu L, Wan X, Xu Y, Chen J, Shu K, Lei T. Prognostic Factors for Recurrence in Pituitary Adenomas: Recent Progress and Future Directions. Diagnostics (Basel). 2022 Apr 13;12(4):977. doi: 10.3390/diagnostics12040977. PMID: 35454025; PMCID: PMC9024548.
5)

Lv L, Yin S, Zhou P, Hu Y, Chen C, Ma W, Jiang Y, Wang Z, Jiang S. Clinical and pathological characteristics predicted the postoperative recurrence and progression of pituitary adenoma: a retrospective study with 10 years follow-up. World Neurosurg. 2018 Jul 4. pii: S1878-8750(18)31426-8. doi: 10.1016/j.wneu.2018.06.210. [Epub ahead of print] PubMed PMID: 29981466.

Spontaneous intracranial hypotension diagnosis

Spontaneous intracranial hypotension diagnosis

Spontaneous intracranial hypotension diagnosis have evolved due to improved understanding of spontaneous intracranial hypotension pathophysiology and implementation of advanced myelography techniques. Farnsworth et al. synthesized recent updates and contextualize them in an algorithm for diagnosis and treatment of SIH, highlighting basic principles and points of practice variability or continued debate. This discussion includes finer points of SIH diagnosis, spontaneous cerebrospinal fluid fistula classification systems, less common types and variants of CSF leaks, Brain MRI Bern scoring for intracranial hypotension diagnosis, potential spontaneous intracranial hypotension complications, key technical considerations, and positioning strategies for different types of Dynamic CT myelography. 1).


The diagnosis of spontaneous intracranial hypotension or cerebrospinal fluid (CSF) hypovolemia syndrome requires a high index of suspicion and meticulous history taking, demonstration of low CSF pressure and/or neuroimaging features.


Diagnostic criteria of headache attributed to low cerebrospinal fluid pressure (per IHS Classification (ICHD-III)):

  1. any headache that developed in temporal relation to low CSF pressure or cerebrospinal fluid fistula or has led to its discovery

  2. low CSF pressure (< 6 cm of water) and/or evidence of CSF leakage on imaging

  3. not better accounted for by another ICHD-III

Radiographic criteria are not required for diagnosis since no characteristic findings are seen in 20– 25% of patients.

The median delay from presentation to the diagnosis of SIH is 4 months.

This delay may be detrimental to patient outcomes. Therefore, brain MRI without and with contrast is recommended in patients with new-onset orthostatic headaches.


The diagnosis requires a high index of suspicion and meticulous history taking, demonstration of low CSF pressure and/or neuroimaging features.

Intracranial hypotension is associated with simple clinical presentation, orthostatic headache, and characteristic MRI findings. Misdiagnosed, it leads to unnecessary procedures 2).

The primary diagnostic factor relies on confirmation of cerebrospinal fluid leakage based on reduced spinal fluid pressure. Determining the specific leakage site is the most important issue for effective treatment but remains a difficult task. Although CT myelogram, radionuclide cisternography, and MRI are commonly performed in the diagnosis of CSF hypovolemia, these techniques can rarely identify the precise leakage site.

Therefore, an epidural blood patch is performed in the lumbar spine in many cases.

The identification of the site of CSF leak in the spinal canal can be very challenging. In some cases, the site cannot be identified.

Magnetic resonance imaging for intracranial hypotension diagnosis

Continuous intracranial pressure monitoring is definitive for documenting abnormally negative intracranial pressures.

A 31-year-old male, presented with subacute onset moderate occipital and sub-occipital headaches precipitated by upright posture and relieved on recumbency and neck pain for 2 years. There was no trauma, cranial/spinal surgery. Clinical examination was normal and CSF opening pressure and laboratory study were normal. Magnetic resonance imaging (MRI) brain showed thin subdural hygroma. Another patient, 41-year-old male presented with 1 month of subacute onset severe bifrontal throbbing orthostatic headaches (OHs). CSF opening pressure was normal. Contrast MRI brain showed the presence of bilateral subdural hygromas, diffuse meningeal enhancement, venous distension, sagging of the brain, and tonsillar herniation. We report two cases of “spontaneous OHs” with normal CSF pressures who were successfully treated with epidural blood patching after poor response to conservative management 3).

Repeated measurements of the optic nerve sheath diameter (ONSD) using B-mode sonography were performed before treatment initiation, during medical treatment, and during a course of repeated placement of epidural blood patches.

On admission, transorbital sonography revealed a decreased ONSD of 4.1 mm on the right and 4.3 mm on the left side. After 8 months of treatment with caffeine and computed tomography-guided epidural blood patches a gradual distension of the ONSD into the normal range was bilaterally observed (right: 5.2 mm; left: 5.3 mm).

The ultrasound-based evaluation of the optic nerve sheath may be helpful in detecting CSF hypovolemia and for determination of treatment effects. This report should be seen as a basis for future investigations on the sonographic assessment of the optic nerve sheath in diagnosis and treatment of intracranial hypotension 4).

Symptomatic patients with SIH showed a significant decrease of ONSD, as assessed by ultrasound, when changing from the supine to the upright position. Ultrasound assessment of the ONSD in two positions may be a novel, non-invasive tool for the diagnosis and follow-up of SIH and for elucidating the pathophysiology of SIH 5).


1)

Farnsworth PJ, Madhavan AA, Verdoorn JT, Shlapak DP, Johnson DR, Cutsforth-Gregory JK, Brinjikji W, Lehman VT. Spontaneous intracranial hypotension: updates from diagnosis to treatment. Neuroradiology. 2022 Nov 7. doi: 10.1007/s00234-022-03079-5. Epub ahead of print. PMID: 36336758.
2)

Louhab N, Adali N, Laghmari M, Hymer WE, Ben Ali SA, Kissani N. Misdiagnosed spontaneous intracranial hypotension complicated by subdural hematoma following lumbar puncture. Int J Gen Med. 2014 Jan 15;7:71-3. doi: 10.2147/IJGM.S48656. eCollection 2014. PubMed PMID: 24470768; PubMed Central PMCID: PMC3896286.
3)

Hassan KM, Prakash S, Majumdar SS, Banerji A. Two cases of medically-refractory spontaneous orthostatic headaches with normal cerebrospinal fluid pressures responding to epidural blood patching: Intracranial hypotension versus hypovolemia and the need for clinical awareness. Ann Indian Acad Neurol. 2013 Oct;16(4):699-702. doi: 10.4103/0972-2327.120461. PubMed PMID: 24339614; PubMed Central PMCID: PMC3841635.
4)

Bäuerle J, Gizewski ER, Stockhausen Kv, Rosengarten B, Berghoff M, Grams AE, Kaps M, Nedelmann M. Sonographic assessment of the optic nerve sheath and transorbital monitoring of treatment effects in a patient with spontaneous intracranial hypotension: case report. J Neuroimaging. 2013 Apr;23(2):237-9. doi: 10.1111/j.1552-6569.2011.00640.x. Epub 2011 Sep 1. PubMed PMID: 21883624.
5)

Fichtner J, Ulrich CT, Fung C, Knüppel C, Veitweber M, Jilch A, Schucht P, Ertl M, Schömig B, Gralla J, Z’Graggen WJ, Bernasconi C, Mattle HP, Schlachetzki F, Raabe A, Beck J. Management of spontaneous intracranial hypotension – Transorbital ultrasound as discriminator. J Neurol Neurosurg Psychiatry. 2016 Jun;87(6):650-5. doi: 10.1136/jnnp-2015-310853. Epub 2015 Aug 18. PubMed PMID: 26285586; PubMed Central PMCID: PMC4893146.
WhatsApp WhatsApp us
%d bloggers like this: