Percutaneous foramen ovale puncture

Percutaneous Foramen Ovale Puncture

Foramen ovale (FO) puncture allows percutaneous trigeminal rhizotomy, Foramen ovale electrode placement, and selected biopsy studies.

Balloon compression of the gasserian ganglion has been a well-established percutaneous treatment of trigeminal neuralgia since the 1980s. However, puncture of the foramen ovale by conventional single-plane fluoroscopy can be difficult in cases of local anatomic abnormalities.

Mendes et al. presented the case of a 49-year-old woman diagnosed with idiopathic trigeminal neuralgia refractory to pharmacological treatment. After failure of puncture by conventional fluoroscopy for percutaneous gasserian ganglion balloon compression due to a narrow foramen ovale, the patient was submitted to puncture guided by computed tomography.

Alternative imaging methods, such as computed tomography, should be considered when Percutaneous Foramen Ovale Puncture by conventional single-plane fluoroscopy fails, to minimize the risk of potential complications triggered by frustrated puncture attempts 1).

Complications

Although Gasserian ganglion block is an established treatment for trigeminal neuralgia, the foramen ovale cannot always be clearly visualized by classical X-ray radiography.

Cannulation procedures, including those utilizing neuronavigational technology, are occasionally complicated by anatomical variation of the FO, sometimes resulting in miscannulation and subsequent adverse events. The FO, while commonly thought of as oval-shaped, has also been described as “almond,” “banana,” “D shape,” “pear,” and “triangular.” 2).

Advancement of the catheter more than 10 mm from the foramen ovale is likely to damage the internal carotid artery and the abducens nerve at the medial side of the petrolingual ligament. Thermocoagulation of the lateral wall of the cavernous sinus may damage the cranial nerves by heat, giving rise to pareses 3).


Guo et al., described a technique that includes a stereotactic approach in the preoperative plan in cases where the foramen ovale is difficult to access for radiofrequency thermocoagulation of the Gasserian ganglion.

The study included 395 patients for whom three-dimensional computed tomographic reconstruction of the skull base, maxilla, and mandible was conducted before surgery. Accessibility of the foramen ovale was defined using numerical data from the three-dimensional computed tomographic reconstruction images. In those patients for whom accessibility of the foramen ovale was considered difficult, the authors used a stereotactic frame to design an individual operative plan. Adjustments of a single point of data,-that is, a change in X axis, Y axis, or an arc angle-were guided by radiographic fluoroscopy images. After verifying successful cannulation and electroneurophysiology, thermocoagulation targets-especially multiple targets recorded as data on the Z axis of the stereotactic approach-were identified and treated.

There were 24 patients who met the predetermined criteria for having a difficult-to-access foramen ovales-that is, they had at least two contributing factors and/or involvement of division V1 . Twenty-one of the 24 patients required a single satisfactory puncture; three patients required two to three punctures to successfully access the foramen ovale. There were no permanent complications from the procedure.

The authors conclude that this stereotactic approach combined with three-dimensional computed tomographic reconstruction model can improve the accuracy, safety, and efficiency of percutaneous radiofrequency thermocoagulation in patients with trigeminal neuralgia for whom the foramen ovale is difficult to access 4).


Ding et al., assessed the feasibility of accessing the Gasserian ganglion through the FO from a mandibular angle under computed tomography (CT) and neuronavigation guidance.A total of 108 patients with TN were randomly divided into 2 groups (Group G and Group H) using a random number table. In Group H, anterior Hartel approach was used to puncture the FO; whereas in Group G, a percutaneous puncture through a mandibular angle was used to reach the FO. In both groups, procedures were guided by CT imaging and neuronavigation. The success rates, therapeutic effects, complications, and recurrence rates of the 2 groups were compared.The puncture success rates in Group H and Group G were 52/54 (96.30%) and 49/54 (90.74%), respectively (P = 0.24). The 2 procedural failures in Group H were rescued by using submandibular trajectory, and the 5 failures in Group G were successfully reapproached by Hartel method. Therapeutic effects as measured by Barrow Neurological Institute Pain Scale (P = 0.03) and quality of life (QOL) scores (P = 0.04) were significantly better in Group G than those in Group H at 36 months posttreatment. Hematoma developed in 1/54 (1.85%) cases in Group H, and no cases of hematoma were observed in Group G (P = 0.33). In Group H, RFT resulted in injury to the unintended trigeminal nerve branches and motor fibers in 27/52 (51.92%) cases; in Group G, it resulted in the same type of injury in 7/49 cases (14.29%) (P < 0.01). In Group H, the 24- and 36-month recurrence rates were 12/51 (23.53%) and 20/51 (39.22%), respectively; in Group G, these recurrence rates were 7/49 (12.24%) and 9/49 (16.33%, P = 0.03), respectively.CT- and neuronavigation-guided puncture from a mandibular angle through the FO into the Gasserian ganglion can be safely and effectively used to deliver RFT for the treatment of pTN. This method may represent a viable option to treat TN in addition to Hartel approach 5).


The goals of a study of Peris-Celda et al., were to demonstrate the anatomical basis of complications related to FO puncture, and provide anatomical landmarks for improvement of safety, selective lesioning of the trigeminal nerve (TN), and optimal placement of electrodes.

Both sides of 50 dry skulls were studied to obtain the distances from the FO to relevant cranial base references. A total of 36 sides from 18 formalin-fixed specimens were dissected for Meckel cave and TN measurements. The best radiographic projection for FO visualization was assessed in 40 skulls, and the optimal trajectory angles, insertion depths, and topographies of the lesions were evaluated in 17 specimens. In addition, the differences in postoperative pain relief after the radiofrequency procedure among different branches of the TN were statistically assessed in 49 patients to determine if there was any TN branch less efficiently targeted.

Most severe complications during FO puncture are related to incorrect needle placement intracranially or extracranially. The needle should be inserted 25 mm lateral to the oral commissure, forming an approximately 45° angle with the hard palate in the lateral radiographic view, directed 20° medially in the anteroposterior view. Once the needle reaches the FO, it can be advanced by 20 mm, on average, up to the petrous ridge. If the needle/radiofrequency electrode tip remains more than 18 mm away from the midline, injury to the cavernous carotid artery is minimized. Anatomically there is less potential for complications when the needle/radiofrequency electrode is advanced no more than 2 mm away from the clival line in the lateral view, when the needle pierces the medial part of the FO toward the medial part of the trigeminal impression in the petrous ridge, and no more than 4 mm in the lateral part. The 40°/45° inferior transfacial-20° oblique radiographic projection visualized 96.2% of the FOs in dry skulls, and the remainder were not visualized in any other projection of the radiograph. Patients with V1 involvement experienced postoperative pain more frequently than did patients with V2 or V3 involvement. Anatomical targeting of V1 in specimens was more efficiently achieved by inserting the needle in the medial third of the FO; for V2 targeting, in the middle of the FO; and for V3 targeting, in the lateral third of the FO.

Knowledge of the extracranial and intracranial anatomical relationships of the FO is essential to understanding and avoiding complications during FO puncture. These data suggest that better radiographic visualization of the FO can improve lesioning accuracy depending on the part of the FO to be punctured. The angles and safety distances obtained may help the neurosurgeon minimize complications during FO puncture and TN lesioning 6).


Koizuka et al., presented a new method for percutaneous radio-frequency thermocoagulation of the Gasserian ganglion, in which computed tomography (CT) fluoroscopy is used to guide needle placement.

In the present study, 15 patients with trigeminal neuralgia underwent percutaneous radio-frequency thermocoagulation of the Gasserian ganglion guided by high-speed real-time CT fluoroscopy.

RESULTS: Trigeminal neuralgia was improved in all patients after treatment without any severe complications. Moderate dysesthesia occurred in only one case.

CT fluoroscopy-guided percutaneous radio-frequency thermocoagulation of the Gasserian ganglion was safe, quick, and effective for patients with intractable idiopathic trigeminal neuralgia 7).

Videos

References

1)

Mendes PD, Martins da Cunha PH, Monteiro KKO, Quites LV, Fonseca Filho GA. Percutaneous Foramen Ovale Puncture: Usefulness of Intraoperative CT Control, in the Eventuality of a Narrow Foramen [published online ahead of print, 2020 Sep 16]. Stereotact Funct Neurosurg. 2020;1-4. doi:10.1159/000509821
2)

Zdilla MJ, Fijalkowski KM. The Shape of the Foramen Ovale: A Visualization Aid for Cannulation Procedures. J Craniofac Surg. 2016 Dec 23. doi: 10.1097/SCS.0000000000003325. [Epub ahead of print] PubMed PMID: 28027173.
3)

Kaplan M, Erol FS, Ozveren MF, Topsakal C, Sam B, Tekdemir I. Review of complications due to foramen ovale puncture. J Clin Neurosci. 2007 Jun;14(6):563-8. Epub 2006 Dec 13. PubMed PMID: 17169562.
4)

Guo Z, Wu B, Du C, Cheng M, Tian Y. Stereotactic Approach Combined with 3D CT Reconstruction for Difficult-to-Access Foramen Ovale on Radiofrequency Thermocoagulation of the Gasserian Ganglion for Trigeminal Neuralgia. Pain Med. 2016 Sep;17(9):1704-16. doi: 10.1093/pm/pnv108. Epub 2016 Feb 13. PubMed PMID: 26874883.
5)

Ding W, Chen S, Wang R, Cai J, Cheng Y, Yu L, Li Q, Deng F, Zhu S, Yu W. Percutaneous radiofrequency thermocoagulation for trigeminal neuralgia using neuronavigation-guided puncture from a mandibular angle. Medicine (Baltimore). 2016 Oct;95(40):e4940. PubMed PMID: 27749549; PubMed Central PMCID: PMC5059051.
6)

Peris-Celda M, Graziano F, Russo V, Mericle RA, Ulm AJ. Foramen ovale puncture, lesioning accuracy, and avoiding complications: microsurgical anatomy study with clinical implications. J Neurosurg. 2013 Nov;119(5):1176-93. doi: 10.3171/2013.1.JNS12743. Epub 2013 Apr 19. PubMed PMID: 23600929.
7)

Koizuka S, Saito S, Sekimoto K, Tobe M, Obata H, Koyama Y. Percutaneous radio-frequency thermocoagulation of the Gasserian ganglion guided by high-speed real-time CT fluoroscopy. Neuroradiology. 2009 Sep;51(9):563-6. doi: 10.1007/s00234-009-0541-8. Epub 2009 Jun 5. PubMed PMID: 19499214.

Multiple sclerosis related trigeminal neuralgia treatment

Multiple sclerosis related trigeminal neuralgia treatment

The optimal treatment for medically refractory trigeminal neuralgia in multiple sclerosis (MS-TN) patients is unknown.

Surgical interventions are less effective for the treatment of MS-related TN compared with classic TN, and higher recurrence rates are observed and is more difficult to manage pharmacologically.

Treatment failure occurs in most of the MS-related TN patients independently of the type of treatment.

Lee et al. compared treatment outcomes between stereotactic radiosurgery (SRS) and radiofrequency ablation (RFA).

They performed a retrospective study of MS-TN patients treated with SRS or RFA between 2002 and 2019. Outcomes included degree of pain relief, pain recurrence, and sensory changes, segregated based on initial treatment, final treatment following retreatment with the same modality, and crossover patients.

Sixty surgical cases for 42 MS-TN patients were reviewed. Initial pain freedom outcomes and rates of retreatment were similar (SRS: 30%; RFA: 42%). RFA resulted in faster onset of pain freedom (RFA: <1 week; SRS: 15 weeks; p < 0.001). SRS patients with pain relief had longer intervals to pain recurrence at 2 years (p = 0.044). Final treatment outcomes favored RFA for pain freedom/off-medication outcomes (RFA: 44%; SRS: 11%; p = 0.031), though RFA resulted in more paresthesia (RFA: 81%; SRS: 39%; p = 0.012). Both provided at least 80% of adequate pain relief. Crossover patients did not have improved pain relief.

SRS and RFA are both valid surgical options for MS-TN. Discussion with providers will need to balance patient preference with their unique treatment characteristics 1).

Microvascular decompression

see Microvascular decompression for trigeminal neuralgia and multiple sclerosis.

Gamma Knife surgery

Between July 1992 and November 2010, 43 cases with more than 1 year of follow-up were operated with GKS for TN related to MS and prospectively evaluated in the Timone University Hospital, Marseille, France. Radiosurgery using the Gamma Knife (model B or C or Perfexion) was performed. A single 4-mm isocenter was positioned at a median distance of 8 mm (range 5.7-14.7) anterior to the emergence of the nerve. A median maximum dose of 85 Gy (range 75-90) was delivered. Results: The median follow-up period was 53.8 months (12-157.1). Thirty-nine patients (90.7%) were initially pain free. Their actuarial probability of remaining pain free without medication at 6 months, 1, 3, 5 and 10 years was 87.2, 71.8, 43.1, 38.3 and 20.5%, respectively, and remained stable till 12 years. The hypoesthesia actuarial rate at 6 months, 1 and 2 years was 11.5, 11.5 and 16%, and remained stable till 12 years. GKS proved safe and effective in this special group of patients 2).

Balloon compression

see Percutaneous balloon compression trigeminal rhizotomy for multiple sclerosis related trigeminal neuralgia.

References

1)

Lee AT, Raygor KP, Elefant F, et al. Comparison of Stereotactic Radiosurgery and Radiofrequency Ablation for Trigeminal Neuralgia in Multiple Sclerosis Patients [published online ahead of print, 2020 Sep 3]. Stereotact Funct Neurosurg. 2020;1-8. doi:10.1159/000509315
2)

Tuleasca C, Carron R, Resseguier N, Donnet A, Roussel P, Gaudart J, Levivier M, Régis J. Multiple Sclerosis-Related Trigeminal Neuralgia: A Prospective Series of 43 Patients Treated with Gamma Knife Surgery with More than One Year of Follow-Up. Stereotact Funct Neurosurg. 2014 Jul 8;92(4):203-210. [Epub ahead of print] PubMed PMID: 25011487.

Cerebrospinal fluid leak after endoscopic skull base surgery

Cerebrospinal fluid leak after endoscopic skull base surgery

Although rates of postoperative morbidity and mortality have become relatively low in patients undergoing transnasal transsphenoidal surgery (TSS) for pituitary adenomacerebrospinal fluid fistulas remain a major driver of postoperative morbidity. Persistent CSF fistulas harbor the potential for headache and meningitis.

Staartjes et al., trained and internally validated a robust deep neural network-based prediction model that identifies patients at high risk for intraoperative CSF. Machine learning algorithms may predict outcomes and adverse events that were previously nearly unpredictable, thus enabling safer and improved patient care and better patient counseling 1).


The objective of a study of Umamaheswaran et al., was to assess the incidence of CSF leak following pituitary surgery and the methods of effective skull base repair. This retrospective observational study conducted in a tertiary care hospital after obtaining due clearance from the Institutional ethics committee. The charts of patients who underwent endonasal pituitary surgery between 2013 and 2018 were studied and details noted. Patients undergoing revision surgery or with history of preoperative radiotherapy were excluded from the study. 52 patients were included in the study. Based on the type of CSF leak, the patients were grouped into four. 19 patients (36.5%) had an intraoperative CSF leak. 3 patients developed a postoperative CSF leak. Based on the histopathology, 4 patients had ACTH secreting tumor. 8 patients had growth hormone secreting tumor, 22 had gonadotropin secreting tumor, 9 patients had a non-functioning tumour and 9 patients had prolactinoma. The type of skull base repair performed in these patients were grouped into 4.18 patients underwent type I repair, 21 patients underwent type II repair, 8 patients underwent type III repair and 5 patients underwent type IV repair. They observed that the pedicled nasoseptal flap is particularly advantageous over other repair techniques, especially in low pressure leaks. The strategy for skull base repair should be tailored to suit each patient to minimise the occurrence of morbidity and the duration of hospital stay 2).


Cerebrospinal fluid leakage is always the primary complication during the endoscopic endonasal skull base surgery.

Dural suturing technique may supply a rescue method. However, suturing and knotting in such a deep and narrow space are difficult. Training in the model can improve skills and setting a stepwise curriculum can increase trainers’ interest and confidence.

Xie et al. constructed an easy model using silicone and acrylic as sphenoid sinus and using the egg-shell membrane as skull base dura. The training is divided into three steps: Step 1: extracorporeal knot-tying suture on the silicone of sphenoid sinus, Step 2: intra-nasal knot-tying suture on the same silicone, and Step 3: intra-nasal egg-shell membrane knot-tying suture. Fifteen experienced microneurosurgical neurosurgeons (Group A) and ten inexperienced PGY residents (Group B) were recruited to perform the tasks. Performance measures were time, suturing and knotting errors, and needle and thread manipulations. The third step was assessed through the injection of full water into the other side of the egg to verify the watertight suture. The results were compared between two groups.

Group A finishes the first and second tasks in significantly less time (total time, 125.1 ± 10.8 vs 195.8 ± 15.9 min) and fewer error points (2.4 ± 1.3 vs 5.3 ± 1.0) than group B. There are five trainers in group A who passed the third step, this number in group B was only one.

This low cost and stepwise training model improved the suture and knot skills for skull base repair during endoscopic endonasal surgery. Experienced microneurosurgical neurosurgeons perform this technique more competent 3).

In-Hospital Costs

All endoscopic transsphenoidal approach for pituitary surgeries performed from January 1, 2015, to October 24, 2017, with complete data were evaluated in a retrospective single-institution study. The electronic medical record was reviewed for patient factors, tumor characteristics, and cost variables during each hospital stay. Multivariate linear regression was performed using Stata software.

The analysis included 190 patients and average length of stay was 4.71 days. Average total in-hospital cost was $28,624 (95% confidence interval $25,094-$32,155) with average total direct cost of $19,444 ($17,136-$21,752) and total indirect cost of $9181 ($7592-$10,409). On multivariate regression, post-operative cerebrospinal fluid (CSF) leak was associated with a significant increase in all cost variables, including a total cost increase of $40,981 ($15,474-$66,489, P = .002). Current smoking status was associated with an increased total cost of $20,189 ($6,638-$33,740, P = .004). Self-reported Caucasian ethnicity was associated with a significant decrease in total cost of $6646 (-$12,760 to -$532, P = .033). Post-operative DI was associated with increased costs across all variables that were not statistically significant.

Post-operative CSF leak, current smoking status, and non-Caucasian ethnicity were associated with significantly increased costs. Understanding of cost drivers of endoscopic transphenoidal pituitary surgery is critical for future cost control and value creation initiatives 4).

Case series

see Cerebrospinal fluid leak after endoscopic skull base surgery case series.

References

1)

Staartjes VE, Zattra CM, Akeret K, Maldaner N, Muscas G, Bas van Niftrik CH, Fierstra J, Regli L, Serra C. Neural network-based identification of patients at high risk for intraoperative cerebrospinal fluid leaks in endoscopic pituitary surgery. J Neurosurg. 2019 Jun 21:1-7. doi: 10.3171/2019.4.JNS19477. [Epub ahead of print] PubMed PMID: 31226693.
2)

Umamaheswaran P, Krishnaswamy V, Krishnamurthy G, Mohanty S. Outcomes of Surgical Repair of Skull Base Defects Following Endonasal Pituitary Surgery: A Retrospective Observational Study. Indian J Otolaryngol Head Neck Surg. 2019 Mar;71(1):66-70. doi: 10.1007/s12070-018-1511-4. Epub 2018 Oct 15. PubMed PMID: 30906716; PubMed Central PMCID: PMC6401034.
3)

Xie T, Zhang X, Gu Y, Sun C, Liu T. A low cost and stepwise training model for skull base repair using a suturing and knotting technique during endoscopic endonasal surgery. Eur Arch Otorhinolaryngol. 2018 Jun 1. doi: 10.1007/s00405-018-5024-2. [Epub ahead of print] PubMed PMID: 29858924.
4)

Parasher AK, Lerner DK, Glicksman JT, et al. Drivers of In-Hospital Costs Following Endoscopic Transphenoidal Pituitary Surgery [published online ahead of print, 2020 Aug 24]. Laryngoscope. 2020;10.1002/lary.29041. doi:10.1002/lary.29041
WhatsApp WhatsApp us
%d bloggers like this: