Cervical spondylotic myelopathy surgery outcome

Cervical spondylotic myelopathy surgery outcome

Indications and optimal timing for surgical treatment of degenerative cervical myelopathy (DCM) remain unclear, and data from daily clinical practice are warranted.

Gulati et al. investigated clinical outcomes following decompressive surgery for DCM.

Data were obtained from the Norwegian Registry for Spine Surgery. The primary outcome was change in the neck disability index (NDI) 1 yr after surgery. Secondary endpoints were the European myelopathy score (EMS), quality of life (EuroQoL 5D [EQ-5D]), numeric rating scales (NRS) for headache, neck pain, and arm pain, complications, and perceived benefit of surgery assessed by the Global Perceived Effect scale.

They included 905 patients operated between January 2012 and June 2018. There were significant improvements in all Patient-reported outcome measures (PROMs) including NDI (mean -10.0, 95% CI -11.5 to -8.4, P < .001), EMS (mean 1.0, 95% CI 0.8-1.1, P < .001), EQ-5D index score (mean 0.16, 95% CI 0.13-0.19, P < .001), EQ-5D visual analogue scale (mean 13.8, 95% CI 11.7-15.9, P < .001), headache NRS (mean -1.1, 95% CI -1.4 to -0.8, P < .001), neck pain NRS (mean -1.8, 95% CI -2.0 to -1.5, P < .001), and arm pain NRS (mean -1.7, 95% CI -1.9 to -1.4, P < .001). According to GPE scale assessments, 229/513 patients (44.6%) experienced “complete recovery” or felt “much better” at 1 yr. There were significant improvements in all PROMs for both mild and moderate-to-severe DCM. A total of 251 patients (27.7%) experienced adverse effects within 3 mo.

Surgery for DCM is associated with significant and clinically meaningful improvement across a wide range of PROMs 1).


Objective scoring of the post-operative neurological function did not correlate with patient-perceived outcomes in Degenerative cervical myelopathy outcome (DCM). Traditional testing of motor and sensory function as part of the neurological assessment may not be sensitive enough to assess the scope of neurological changes experienced by Degenerative cervical myelopathy patients 2).


Hamdan assessed the relation between MRI T2 Weighted images (T2WIhyperintense cord signal and clinical outcome after anterior cervical discectomy in patients with degenerative cervical disc herniation.

This retrospective observational study was conducted on twenty-five patients with degenerative cervical disc prolapse associated with MRI T2WI hyperintense cord signal, at the Department of Neurosurgery, Qena University Hospital, South Valley University from August 2014 to December 2016. A complete clinical and radiological evaluation of the patients was done. Anterior cervical discectomy and fusion was done for all patients. Patients were clinically assessed preoperatively and postoperatively at 3, 6, and 12 months using Modified Japanese Orthopaedic Association scale (MJOA). Radiographic assessment was done by preoperative and postoperative T2WI MRI. The statistical analysis was done using Statistical Package for the Social Sciences (SPSS) software (version 22.0).

There were 25 patients included in the study; 16 (64%) females and 9 (36%) males. The mean age was 46.89 ± 7.52 standard deviation (SD) years with range from 26 to 64 years, 3 (12%) patients had worsened in the form of postoperative motor power deterioration, and 14 (56%) patients has no improvement and remain as preoperative condition. The remaining 8 (32%) patients had a reported postoperative improvement of symptoms and signs according to MJOA score. The mean follow-up period (in months) was 11 ± 2.34 (SD). Conclusion:

The presence of T2W hyperintense signal on preoperative MRI predicts a poor surgical outcome in patients with cervical disc prolapse. The regression of T2W ISI postoperatively correlates with better functional outcomes 3).


Whilst decompressive surgery can halt disease progression, existing spinal cord damage is often permanent, leaving patients with lifelong disability.

Early surgery improves the likelihood of recovery, yet the average time from onset of symptoms to correct diagnosis is over 2 years. The majority of delays occur initially, before and within primary care, mainly due to a lack of recognition. Symptom checkers are widely used by patients before medical consultation and can be useful for preliminary triage and diagnosis. Lack of recognition of Degenerative Cervical Myelopathy (DCM) by symptom checkers may contribute to the delay in diagnosis.

The impact of the changes in myelopathic signs following cervical decompression surgery and their relationship to functional outcome measures remains unclear.

Surgery is associated with a significant quality of life improvement. The intervention is cost effective and, from the perspective of the hospital payer, should be supported 4).

Surgical decompression for CSM is safe and results in improved functional status and quality of life in patients around the world, irrespective of differences in medical systems and socio-cultural determinants of health 5).

The successful management of CSM depends upon an early and accurate diagnosis, an objective assessment of impairment and disability, and an ability to predict outcome. In this field, quantitative measures are increasingly used by clinicians to grade functional and neurological status and to provide decision-making support 6).


In addition, objective assessment tools allow clinicians to quantify myelopathy severity, predict outcome, and evaluate surgical benefits by tracking improvements throughout follow-up 7) 8) 9).

Several outcome measures assess functional impairment and quality of life in patients with cervical myelopathy 10) 11) 12) 13) 14).

A validated “gold standard,” however, has not been established, preventing the development of quantitative guidelines for CSM management 15).

In this field, one of the most widely accepted tool for assessing functional status is the modified Japanese Orthopaedic Association scale (mJOA).

Some studies have found that resolution of T2 hyperintensity in subjects with CSM who undergo ventral decompressive surgery correlates with improved functional outcomes. Other studies have found little correlation with postoperative outcome 16) 17).

Machine learning for degenerative cervical myelopathy

see Machine learning for degenerative cervical myelopathy.

References


1) Gulati S, Vangen-Lønne V, Nygaard ØP, Gulati AM, Hammer TA, Johansen TO, Peul WC, Salvesen ØO, Solberg TK. Surgery for Degenerative Cervical Myelopathy: A Nationwide Registry-Based Observational Study With Patient-Reported Outcomes. Neurosurgery. 2021 Jul 29:nyab259. doi: 10.1093/neuros/nyab259. Epub ahead of print. PMID: 34325471.2) McGregor SM, Detombe S, Goncalves S, Doyle-Pettypiece P, Bartha R, Duggal N. Does the Neurological Exam Correlate with Patient Perceived Outcomes in Degenerative Cervical Myelopathy? World Neurosurg. 2019 Aug 2. pii: S1878-8750(19)32111-4. doi: 10.1016/j.wneu.2019.07.195. [Epub ahead of print] PubMed PMID: 31382071.3) Hamdan ARK. The Relation between Cord Signal and Clinical Outcome after Anterior Cervical Discectomy in Patients with Degenerative Cervical Disc Herniation. Asian J Neurosurg. 2019 Jan-Mar;14(1):106-110. doi: 10.4103/ajns.AJNS_262_17. PubMed PMID: 30937019; PubMed Central PMCID: PMC6417293.4) Witiw CD, Tetreault LA, Smieliauskas F, Kopjar B, Massicotte EM, Fehlings MG. Surgery for degenerative cervical myelopathy: a patient centered quality of life and health economic evaluation. Spine J. 2016 Oct 25. pii: S1529-9430(16)31022-1. doi: 10.1016/j.spinee.2016.10.015. [Epub ahead of print] PubMed PMID: 27793760.5) Fehlings MG, Ibrahim A, Tetreault L, Albanese V, Alvarado M, Arnold P, Barbagallo G, Bartels R, Bolger C, Defino H, Kale S, Massicotte E, Moraes O, Scerrati M, Tan G, Tanaka M, Toyone T, Yukawa Y, Zhou Q, Zileli M, Kopjar B. A Global Perspective on the Outcomes of Surgical Decompression in Patients with Cervical Spondylotic Myelopathy: Results from the Prospective Multicenter AOSpine International Study on 479 patients. Spine (Phila Pa 1976). 2015 May 27. [Epub ahead of print] PubMed PMID: 26020847.6) , 15) Singh A, Tetreault L, Casey A, et al. A summary of assessment tools for patients suffering from cervical spondylotic myelopathy: a systematic review on validity, reliability, and responsiveness [published online ahead of print September 5, 2013]. Eur Spine J. doi:10.1007/s00586-013-2935-x.7) Laing RJ. Measuring outcome in neurosurgery. Br J Neurosurg 2000;14:181–4.8) Holly LT, Matz PG, Anderson PA, et al. Clinical prognostic indicators of surgical outcome in cervical spondylotic myelopathy. J Neurosurg Spine 2009;11:112–8.9) Kalsi-Ryan S, Singh A, Massicotte EM, et al. Ancillary outcome measures for assessment of individuals with cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2013;38:S111–22.10) Singh A, Crockard HA. Quantitative assessment of cervical spondylotic myelopathy by a simple walking test. Lancet 1999;354:370–3.11) Nurick S. The natural history and the results of surgical treatment of the spinal cord disorder associated with cervical spondylosis. Brain 1972;95:101–8.12) Olindo S, Signate A, Richech A, et al. Quantitative assessment of hand disability by the nine-hole-peg test (9-HPT) in cervical spondylotic myelopathy. J Neurol Neurosurg Psychiatry 2008;79:965–7.13) Hosono N, Sakaura H, Mukai Y, et al. A simple performance test for quantifying the severity of cervical myelopathy [erratum in: J Bone Joint Surg Br 2008;90:1534]. J Bone Joint Surg Br 2008;90:1210–3.14) Casey AT, Bland JM, Crockard HA. Development of a functional scoring system for rheumatoid arthritis patients with cervical myelopathy. Ann Rheum Dis 1996;55:901–6.16) Sarkar S, Turel MK, Jacob KS, Chacko AG. The evolution of T2-weighted intramedullary signal changes following ventral decompressive surgery for cervical spondylotic myelopathy. J Neurosurg Spine. 2014;21(4):538-546.17) Vedantam A, Rajshekhar V. Change in morphology of intramedullary T2- weighted increased signal intensity after anterior decompressive surgery for cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2014;39(18):1458-1462.

Transthyretin amyloidosis

Transthyretin amyloidosis

Hereditary transthyretin amyloidosis (ATTR) is usually characterised by a progressive peripheral and autonomic neuropathy often with associated cardiac failure and is due to dominantly inherited transthyretin mutations causing accelerated amyloid deposition. The UK population is unique in that the majority of patients have the T60A missense mutation in ATTR where tyrosine is replaced by adenine at position 60. This has been traced to a single founder mutation from north-west Ireland 1).

An accurate and timely diagnosis of amyloid neuropathy can greatly impact on the outcomes for patients, especially as there will soon be new gene-silencing treatments for hereditary transthyretin amyloidosis 2).

Results raise the possibility of a diagnostic role for MIBG scintigraphy at an early stage of cardiac involvement in TTR-mutated carriers, in addition to its well-established prognostic value 3).

Godara et al. investigated consecutive patients undergoing surgery for spinal stenosis (SS) for ATTR deposition in the resected ligamentum flavum (LF) and concomitant risk of cardiac amyloidosis. Each surgical specimen (LF) was stained with Congo red, and if positive, the amyloid deposits were typed by mass spectrometry. Patients with positive specimens underwent standard of care evaluation with fat pad aspirates, serum and urine protein electrophoresis with immunofixation, free light-chain assay, TTR gene sequencing and technetium 99 m-pyrophosphate-scintigraphy. In 2018-2019, 324 patients underwent surgery for SS and 43 patients (13%) had ATTR in the LF with wild-type TTR gene sequences. Two cases of ATTRwt cardiac amyloidosis were diagnosed and received treatment. In this large series, ATTRwt was identified in 13% of the patients undergoing laminectomy for SS. Patients with amyloid in the ligamentum flavum were older and had a higher prevalence of CTS, suggesting a systemic form of ATTR amyloidosis involving connective tissue. Further prospective study of patients with SS at risk for systemic amyloidosis is warranted 4).


Carr et al. presented the findings from an observational cohort study of patients with ATTR attending the National Hospital Inherited Neuropathy Clinic between 2009 and 2013. Detailed clinical neurological and electrophysiological data were collected on all patients alongside correlating autonomic and cardiac assessments. Follow-up data were available on a subset.

Forty-four patients with genetically confirmed ATTR were assessed; 37 were symptomatic; mean age at onset=62 years, range=38-75 years; 75.7% male. T60A was the most common mutation (17/37), followed by V30M (5/37). A severe, rapidly progressive, predominantly length dependent axonal sensorimotor neuropathy was the predominant phenotype. T60A patients were distinguished by earlier and more frequent association with carpal tunnel syndrome; a predominance of negative sensory symptoms at onset; significant vibration deficits; and a non-length dependent progression of motor deficit. Progression of the neuropathy was observed over a relatively short follow-up period (2 years) in 20 patients with evidence of clinically measurable annual change in Medical Research Council (MRC) sum score (-1.5 points per year) and Charcot Marie Tooth Neuropathy Score (CMTNS:2.7 points per year), and a congruent trend in the electrophysiological measures used.

The description of the ATTR neuropathy phenotype, especially in the T60A patients, should aid early diagnosis as well as contribute to the understanding of its natural history 5).

Carret al., described a patient with genetically confirmed Transthyretin amyloidosis (ATTR), a family history of the disease and histological confirmation following carpal tunnel release surgery but no other manifestations. The first major neurological or systemic manifestation was cauda equina syndrome with ATTR deposits contributing to lumbar spinal stenosis. Recent gene therapy trials showed improvement in the neuropathy in TTR amyloidosis. This case highlights the need for awareness of the heterogeneous neurological phenotype seen in ATTR to aid earlier diagnosis especially now that disease modifying therapies are available 6).


Patel et al., reported a case of transthyretin amyloidosis with myopathy, neuropathy, and cardiomyopathy resulting from an exceedingly rare mutation transthyretin Ala120Ser (c.418G > T, p.Ala140Ser) 7).


Oculoleptomeningeal amyloidosis (OLMA) represents a rare subtype of familial transthyretin (TTR) amyloidosis, characterized by deposition of amyloid in cranial and spinal leptomeninges along with ocular involvement. Of >100 TTR mutations identified, few have been associated with OLMA. Herein we describe the first report of leptomeningeal amyloidosis associated with the c.381T>G (p.Ile127Met) TTR mutation, linking this variant to the OLMA phenotype. CASE DESCRIPTION:

A 53 year-old man presented with a 2-year history of progressive symptoms including upper and lower limb weakness, ataxia, and peripheral and autonomic neuropathy. Neuroimaging, including gadolinium-enhanced magnetic resonance imaging of the brain and spinal axis, identified diffuse leptomeningeal enhancement along the brainstem and spinal cord plus evidence of hemosiderosis. Pathologic and genetic analyses of biopsy material from enhancing intradural extramedullary tissue at the thoracolumbar junction was diagnostic of amyloidosis of a transthyretin type secondary to a TTR c.381T>G (p.Ile127Met) mutation.

OLMA represents a rare subtype of heritable transthyretin amyloidosis that may present with progressive neurological decline secondary to central nervous system leptomeningeal amyloid deposition. This case identifies the c.381T>G (p.Ile127Met) TTR mutation variant as being implicated in the OLMA phenotype 8).


Cervicomedullary compression as the main manifestation of wild-type transthyretin amyloidosis 9).


present an unusual case of V122I amyloidosis with features of amyloid neuropathy and myopathy, supported by histological confirmation in both sites and diffuse tracer uptake on (99m)Tc-3,3-Diphosphono-1,2-Propanodicarboxylic acid (DPD) scintigraphy throughout skeletal and cardiac muscle. A 64 year old Jamaican man presented with cardiac failure. Cardiac MR revealed infiltrative cardiomyopathy; abdominal fat aspirate confirmed the presence of amyloid, and he was homozygous for the V122I variant of transthyretin. He also described general weakness and EMG demonstrated myopathic features. Sural nerve and vastus lateralis biopsy showed TTR amyloid. The patient is being treated with diflunisal, an oral TTR stabilising agent. Symptomatic myopathy and neuropathy with confirmation of tissue amyloid deposition has not previously been described. Extracardiac amyloidosis has implications for diagnosis and treatment 10)


1) , 5)

Carr AS, Pelayo-Negro AL, Evans MR, Laurà M, Blake J, Stancanelli C, Iodice V, Wechalekar AD, Whelan CJ, Gillmore JD, Hawkins PN, Reilly MM. A study of the neuropathy associated with transthyretin amyloidosis (ATTR) in the UK. J Neurol Neurosurg Psychiatry. 2016 Jun;87(6):620-7. doi: 10.1136/jnnp-2015-310907. Epub 2015 Aug 4. PubMed PMID: 26243339.
2)

Kapoor M, Rossor AM, Jaunmuktane Z, Lunn MPT, Reilly MM. Diagnosis of amyloid neuropathy. Pract Neurol. 2018 Dec 30. pii: practneurol-2018-002098. doi: 10.1136/practneurol-2018-002098. [Epub ahead of print] PubMed PMID: 30598431.
3)

Piekarski E, Chequer R, Algalarrondo V, Eliahou L, Mahida B, Vigne J, Adams D, Slama MS, Le Guludec D, Rouzet F. Cardiac denervation evidenced by MIBG occurs earlier than amyloid deposits detection by diphosphonate scintigraphy in TTR mutation carriers. Eur J Nucl Med Mol Imaging. 2018 Jul;45(7):1108-1118. doi: 10.1007/s00259-018-3963-x. Epub 2018 Mar 6. PubMed PMID: 29511839.
4)

Godara A, Riesenburger RI, Zhang DX, Varga C, Fogaren T, Siddiqui NS, Yu A, Wang A, Mastroianni M, Dowd R, Nail TJ, McPhail ED, Kurtin PJ, Theis JD, Toskic D, Arkun K, Pilichowska M, Kryzanski J, Patel AR, Comenzo R. Association between spinal stenosis and wild-type ATTR amyloidosis. Amyloid. 2021 Jul 15:1-8. doi: 10.1080/13506129.2021.1950681. Epub ahead of print. PMID: 34263670.
6)

Carr AS, Shah S, Choi D, Blake J, Phadke R, Gilbertson J, Whelan CJ, Wechalekar AD, Gillmore JD, Hawkins PN, Reilly MM. Spinal Stenosis in Familial Transthyretin Amyloidosis. J Neuromuscul Dis. 2019 Mar 7. doi: 10.3233/JND-180348. [Epub ahead of print] PubMed PMID: 30856118.
7)

Patel K, Tagoe C, Bieri P, Weidenheim K, Tauras JM. A case of transthyretin amyloidosis with myopathy, neuropathy, and cardiomyopathy resulting from an exceedingly rare mutation transthyretin Ala120Ser (c.418G > T, p.Ala140Ser). Amyloid. 2018 Sep;25(3):211-212. doi: 10.1080/13506129.2018.1491398. Epub 2018 Jul 24. PubMed PMID: 30039724.
8)

Mathieu F, Morgan E, So J, Munoz DG, Mason W, Kongkham P. Oculoleptomeningeal Amyloidosis Secondary to the Rare Transthyretin c.381T>G (p.Ile127Met) Mutation. World Neurosurg. 2018 Mar;111:190-193. doi: 10.1016/j.wneu.2017.12.096. Epub 2017 Dec 23. PubMed PMID: 29277593.
9)

Rezania K, Pytel P, Highsmith WE, Gabikian P. Cervicomedullary compression as the main manifestation of wild-type transthyretin amyloidosis. Amyloid. 2017 Jun;24(2):133-134. doi: 10.1080/13506129.2017.1331907. Epub 2017 May 23. PubMed PMID: 28532173.
10)

Carr AS, Pelayo-Negro AL, Jaunmuktane Z, Scalco RS, Hutt D, Evans MR, Heally E, Brandner S, Holton J, Blake J, Whelan CJ, Wechalekar AD, Gillmore JD, Hawkins PN, Reilly MM. Transthyretin V122I amyloidosis with clinical and histological evidence of amyloid neuropathy and myopathy. Neuromuscul Disord. 2015 Jun;25(6):511-5. doi: 10.1016/j.nmd.2015.02.001. Epub 2015 Feb 14. PubMed PMID: 25819286.

Nerve root retraction

Nerve root retraction

Findings showed that posterior lumbar procedures, including retraction of paravertebral muscle, fenestration of the lamina, and retraction of the nerve root affect the posterior ramus. Excessive retraction of the nerve root has an especially disastrous effect on the posterior ramus. Such a violent maneuver within the spinal canal must be avoided 1).


Feltes et al. studied whether the amount of retraction pressure applied to a compromised nerve root during lumbar discectomy has an impact on intra- or postoperative outcomes.

The authors conducted a prospective analysis of 20 patients. There were 12 men and 12 women whose mean age (+/- standard deviation [SD]) was 42.25 years +/- 15 years (range 21-65 years). During intraoperative electromyography (EMG) monitoring, measurements were obtained during routine retraction of the affected nerve root by using a specially designed and constructed nerve root retractor connected to a reconfigured personal computer for this specific purpose. Follow-up results were assessed in the immediate postoperative period and at up to 1 year. The maximum measured force applied during random periods of time was 9.85 N/second (mean 6.95 +/- N/second [+/- SD]). The mean retraction time was 39.5 +/- 21 (SD). No intraoperative EMG-detected irritation was noted during or after routine retraction. In four of 20 patients, sensory changes occurred at the ipsilateral nerve root level, which resolved at the time of discharge.

The authors found that routine nerve root retraction does not cause nerve root irritation, as demonstrated by EMG monitoring, nor was patient outcome affected in this series 2).


The aim of a retrospective case study was to analyze the outcomes of minimal nerve root retraction in patients with an impending neurologic deficit in degenerative lumbar spine disease using full-endoscopic spine surgery.

Thirty-seven consecutive patients with impending neurologic deficit underwent endoscopic spine surgery through either the transforaminal or the interlaminar approach. Their clinical outcomes were evaluated with visual analog scale (VAS) leg pain score, Oswestry Disability Index (ODI), and MacNab scale score. The outcome of motor deficits were evaluated with the Medical Research Council Scale for Muscle Strength grade. Completeness of decompression was documented with a postoperative magnetic resonance imaging (MRI) and computed tomography (CT) scan.

A total of 40 lumbar levels of 37 patients were operated on, VAS score of the leg improved from 7.7 ± 1 to 1.9 ± 0.6 (p < 0.0001). ODI score improved from 74.7 ± 6.5 to 25.4 ± 3.49 (p < 0.0001). Motor weakness improved significantly immediately after surgery. The mean MRC grade increased to 1.97, 3.65, 4.41, and 4.76 preoperatively, at 1 week, at 3 months, and at the final follow-up, respectively, and all the patients with foot drop and cauda equina syndrome symptoms recovered completely. One patient with great toe drop recovered partially to MRC grade 3. The mean follow-up of the study was 13.3 ± 6.1 months. According to MacNab’s criteria, 30 patients (80.1%) had good and 7 patients (18.9%) had excellent results. Three patients required revision surgery.

Minimal nerve root retraction during full-endoscopic spine surgery is safe and effective for the treatment of the impending neurologic deficit. They could achieve a thorough decompression of the affected nerve root with acceptable clinical outcome and minimal postoperative morbidity 3).


1)

Nagayama R, Nakamura H, Yamano Y, Yamamoto T, Minato Y, Seki M, Konishi S. An experimental study of the effects of nerve root retraction on the posterior ramus. Spine (Phila Pa 1976). 2000 Feb 15;25(4):418-24. doi: 10.1097/00007632-200002150-00005. PMID: 10707385.
2)

Feltes C, Fountas K, Davydov R, Dimopoulos V, Robinson JS Jr. Effects of nerve root retraction in lumbar discectomy. Neurosurg Focus. 2002 Aug 15;13(2):E6. doi: 10.3171/foc.2002.13.2.7. PMID: 15916403.
3)

Kim HS, Raorane HD, Choi I, Wu PH, Yang KH, Yi YJ, Jang IT. Full-Endoscopic Lumbar Decompression with Minimal Nerve Root Retraction for Impending Neurologic Deficit in Degenerative Lumbar Spine Diseases. J Neurol Surg A Cent Eur Neurosurg. 2021 Jul 8. doi: 10.1055/s-0041-1725955. Epub ahead of print. PMID: 34237776.
WhatsApp WhatsApp us
%d bloggers like this: