Developmental venous anomaly

Developmental venous anomaly

● a vascular malformation that is part of the venous drainage of the involved area with intervening brain present. Therefore direct treatment is rarely indicated

● low-flow, low-pressure

● usually demonstrable on angiography as a starburst pattern

● rarely symptomatic: seizures rare, hemorrhage even more uncommon. Venous infarcts may occur (controversial)

● may have an associated cavernous malformation which is more likely to be symptomatic

Developmental venous anomaly (DVA) AKA venous malformation or (developmental) venous angioma. A tuft of medullary veins that converge into an enlarged central trunk that drains either to the deep or superficial venous system. The veins lack large amounts of smooth muscle and elastic. No abnormal arteries are found. There is neural parenchyma between the vessels. Most common in regions supplied by the MCA or in the region of the vein of Galen. They may be associated with a cavernous malformation.

Non hereditary. These are low-flow and low-pressure.

Most are clinically silent, but rarely seizures and even less frequently hemorrhage may occur. Venous infarcts have been described, but maybe coincidental. If symptoms are present, look for an associated cavernous malformation (GRASS MRI images may reveal some cavernous malformations that might otherwise be occult).


They have mostly supplanted the more pedestrian venous angioma 1).

Congenital malformation of veins which drain normal brain. They were thought to be rare before cross-sectional imaging but are now recognised as being the most common cerebral vascular malformation, accounting for ~55% of all such lesions.

venous anomaly is characterized by the caput medusae sign of veins draining into a single larger collecting vein, which in turn drains into either a dural sinus or into a deep ependymal vein. The appearance has also been likened to a palm tree.

The aetiology of VAs remains uncertain, but may relate to arrested development of venous structures

Histologically they consist of a number of abnormally thickened veins with normal feeding arteries and capillaries

The most common locations are:

frontoparietal region (36-64%) 1, usually draining towards the frontal horn of the lateral ventricle

cerebellar hemisphere (14-27%) draining towards the fourth ventricle

However, DVAs can be seen anywhere, draining either superficially or deep.

see Spinal cord venous angioma.

Lesions are usually solitary (75%), except in blue rubber bleb naevus syndrome

~20% (range 8-33%) of cases 2 are associated with cavernous malformations and are referred to as mixed vascular malformations (MVM) there is an association with venous malformations of the head and neck.

Developmental venous anomaly diagnosis.

In general, these should not be treated, as they are the venous drainage of the brain in that vicinity. If surgery is indicated for associated cavernous malformations, the angioma should be left alone. Surgery for the angioma itself is reserved only for documented bleeding or for intractable seizures that can be definitely attributed to the lesion.

Fifty-two children (20 boys and 32 girls [median age: 6 years] were identified with DVAs. Their age distribution was as follows: 1.9% neonates (< 1 month), 11.5% infants (1 month to 1 year), 30.8% 1-5 years, 30.8% 5-12 years and 25% 12-16 years. The majority (92.3%) presented with asymptomatic DVAs identified incidentally. Overall, anatomical distribution revealed predilection for frontal region (42.3%) with other common sites being posterior fossa (17.3%) and basal ganglia (13.5%). Temporal (11.5%), parietal (9.6%) and occipital (5.8%) were the remainder. Associated cavernous malformations (CMs) were present in 3/52 (5.8%), and no DVAs were associated with aneurysms or arteriovenous malformations (AVMs). Three patients had more than one DVA. There were three deaths unrelated to DVAs over median follow-up of 3.8 years. Four patients (7.7%) suffered DVA-related intracranial haemorrhage presenting with neurological deficits. The ages of the children with DVA-related haemorrhages were 21 days, 2 years and 6 months, 7 years and 1 month and 11 years and 7 months. Left-sided DVA haemorrhages predominated (3/4, 75%). The relative risk of a cerebellar DVA haemorrhage compared to its supratentorial counterpart was 5.35 (OR 6.8, 95% CI 0.8-58).

DVA-related haemorrhage is sevenfold greater in the paediatric cohort compared to adults and is significantly associated with a cerebellar location and cavernous malformations. There were no haemorrhages over a median period of 3.8 years of prospective follow-up 2).

A 27-year-old woman who presented with a sensorineural hearing loss followed by facial paresis. Magnetic resonance imaging (MRI) and computed tomography (CT) angiography revealed hematoma with adjacent converging veins showing a typical “caput medusa” sign in the left middle cerebellar peduncle, in favor of DVA. Due to the compression effect of hematoma, she underwent surgery. Hearing loss and facial paresis improved significantly during the postoperative follow-up.

Although DVA is mostly benign and asymptomatic, complications such as hemorrhage rarely occur. Hearing loss is an extremely rare presentation that can be attributable to the compression effect on the cranial nerve VII to VIII complex. In the case of compression effect or progression of symptoms, surgical intervention is necessary. A good clinical outcome could be expected postoperatively 3).


Although the association of developmental venous anomalies (DVAs) with cavernous malformations is well documented, the association with arteriovenous malformations (AVM) is unusual. The aim is to report an additional case and to review the concepts associated with these mixed malformations in order to guide patient management.

A case of AVM associated with a DVA was identified and a literature review was performed according to PRISMA guidelines.

Case report: In an 18-year-old man presented with sub-acute headache but with a normal neurological examination, the MRI-scan showed a right occipital DVA associated with hemosiderin spots evocative of earlier asymptomatic bleedings. The Digital Subtraction Angiography revealed a right parieto-occipital Spetzler-Martin Grade III AVM, fed by branches from the right middle and posterior cerebral arteries, with a superficial drainage flowing into a DVA that then joined the superior sagittal sinus. Multistep embolization was performed, leading to a partial reduction of the nidus, but preserving the DVA permeability. After a six-year follow-up. bleeding did not recur and the MRI aspect of the malformation was perfectly stable.

The co-occurrence of a DVA and an AVM is rare but has a higher bleeding risk than AVM alone (69% vs 38%) and must consequently be suspected when a DVA is revealed by a hemorrhage, in the absence of associated cavernoma. These mixed malformations represent a therapeutic challenge that has to be tailored to the venous anatomy and to the malformation Spetzler-Martin grade. DVA permeability should be preserved to avoid deleterious venous infarction 4)


1)

Lasjaunias P, Burrows P, Planet C, et al. Developmental venous anomalies (DVA): the so-called venous angioma. Neurosurg Rev 1986;9:233–42.
2)

Silva AHD, Wijesinghe H, Lo WB, Walsh AR, Rodrigues D, Solanki GA. Paediatric developmental venous anomalies (DVAs): how often do they bleed and where? Childs Nerv Syst. 2020 Jan 3. doi: 10.1007/s00381-019-04460-1. [Epub ahead of print] PubMed PMID: 31900628.
3)

Ebrahimzadeh K, Tavassol HH, Mousavinejad SA, Ansari M, Kazemi R, Bahrami-Motlagh H, Jalili Khoshnoud R, Sharifi G, Samadian M, Rezaei O. The Sensorineural Hearing Loss Related to a Rare Infratentorial Developmental Venous Angioma: A Case Report and Review of Literature. J Neurol Surg A Cent Eur Neurosurg. 2021 Jun 14. doi: 10.1055/s-0041-1725960. Epub ahead of print. PMID: 34126638.
4)

Picart T, Dumot C, Guyotat J, Eker O, Berhouma M, Pelissou-Guyotat I. Arteriovenous malformation drained into a developmental venous anomaly: a case report and up-dated literature review. Neurochirurgie. 2020 Oct 10:S0028-3770(20)30404-5. doi: 10.1016/j.neuchi.2020.08.003. Epub ahead of print. PMID: 33049289.

Gamma Knife radiosurgery for cavernous malformation


Gamma Knife radiosurgery for cavernous malformation

Stereotactic radiosurgery (SRS) is a therapeutic option for repeatedly hemorrhagic cavernous malformations (CMs) located in areas deemed to be high risk for resection. During the latency period of 2 or more years after SRS, recurrent hemorrhage remains a persistent risk until the obliterative process has finished. The pathological response to SRS has been studied in relatively few patients.


Gamma Knife radiosurgery (GKRS) has been used to treat cavernous malformations (CMs) located in basal ganglia and thalamus. However, previous reports are limited by small patient population.

Hu et al. retrospectively reviewed the clinical and radiological data of 53 patients with CMs of basal ganglia and thalamus who underwent GKRS at West China Medical Center between May 2009 and July 2018. All patients suffered at least once bleeding before GKRS. The mean volume of these lesions was 1.77 cm3, and the mean marginal dose was 13.2 Gy. After treatment, patients were followed to determine the change in symptom and hemorrhage event.

The mean follow-up period was 52.1 months (6.2-104.3 months). The calculated annual hemorrhage rate (AHR) was 48.5% prior to GKRS and 3.0% after treatment (p < 0.001). The Kaplan-Meier analysis revealed that 2-, 3-, and 5-year hemorrhage-free survival were 88, 80.9, and 80.9%, respectively. Preexisting symptoms were resolved in 11 patients, improved in 14, and stable in 5. Only 2 patients (3.8%) developed new neurological deficit.

This study suggests that AHR after GKRS was comparable to the recorded AHR of natural history (3.1-4.1%) in previous studies. GKRS is a safe and effective treatment modality for CMs of basal ganglia and thalamus. Considering the relative insufficient understanding of natural history of CMs, future study warrants longer follow-up 1)

Wen et al., from the West China Hospital performed a meta-analysis is to evaluate the clinical efficacy of gamma knife radiosurgery for treating cavernous malformation.

PUBMEDOVID EMBASE, and OVID MEDLINE electronic databases are searched. The primary outcome is hemorrhage rate and this meta-analysis is performed with REVMAN 5.3.

9 studies are included in this meta-analysis. The overall RR of hemorrhage rate of pre-GKRS and post-GKRS is 6.08(95% CI: 5.04-7.35). The overall RR is 3.03(95% CI: 2.65-4.11) between the hemorrhage rate of pre-GKRS and the first 2 years of post-radiosurgery, and the overall RR is 12.13 (95% CI: 1.73-85.07) comparing pre-GKRS with 2 years after GKRS. There is no significant difference of the hemorrhage rate between the first 2 years of post-radiosurgery and 2 years after GKRS (RR =2.81, 95% CI: 0.20-13.42). The neurological deficiency is the commonest radiosurgery related complications.

Patients with cerebral CMs, especially who were deep seated and surgically inaccessible, seems to benefit from GKRS due to a reduction of annual hemorrhage rate in the first 2 years, and after that time, despite of a number of cases that suffer from negative side effects of radiation 2).

Between 1993 and 2018, 261 patients with 331 symptomatic CCMs were treated by GKS. The median age was 39.9 years and females were predominant (54%). The median volume of CCMs was 3.1 mL. The median margin dose was 11.9 Gy treat to a median isodose level of 59%. Median clinical and imaging follow-up times were 69 and 61 months, respectively. After the initial hemorrhage that led to CCM diagnosis, 136 hemorrhages occurred in the period prior to GKS (annual incidence = 23.6%). After GKS, 15 symptomatic hemorrhages occurred within the first 2 years of follow-up (annual incidence = 3.22%), and 37 symptomatic hemorrhages occurred after the first 2 years of follow-up (annual incidence = 3.16%). Symptomatic radiation-induced complication was encountered in 8 patients (3.1%). Mortality related to GKS occurred in 1 patient (0.4%). In conclusion, GKS decreased the risk of hemorrhage in CCM patients presenting with symptomatic hemorrhage. GKS is a viable alternative treatment option for patients with surgically-inaccessible CCMs or significant medical comorbidities 3).


Shin et al. aimed to gain insight into the effect of SRS on CM and to propose possible mechanisms leading to recurrent hemorrhages following SRS.

During a 13-year interval between 2001 and 2013, bleeding recurred in 9 patients with CMs that had been treated using Gamma Knife surgery at the authors’ institution. Microsurgical removal was subsequently performed in 5 of these patients, who had recurrent hemorrhages between 4 months and 7 years after SRS. Specimens from 4 patients were available for analysis and used for this report.

Histopathological analysis demonstrated that vascular sclerosis develops as early as 4 months after SRS. In the samples from 2 to 7 years after SRS, sclerotic vessels were prominent, but there were also vessels with incomplete sclerosis as well as some foci of neovascularization.

Recurrent bleeding after SRS for CM could be related to incomplete sclerosis of the vessels, but neovascularization may also play a role 4).


From 1994 to 2001, 92 patients with 114 CMs were treated by GKS and then followed up for 2-8 years (mean 4.1+/-1.9). We analyzed the MRI features of CMs bleeding, efficacy of GKS, and the complications of treatment. Six pathological specimens after radiosurgery (1 from our group, 5 from other centers) were also assayed.

Among 43 patients who were treated by GKS to control their epilepsy, epileptic paroxysm was alleviated in 36 patients (83.7%), including 12 (27.9%) seizure-free. Rebleeding was confirmed in 9 patients (9.8%) by neuroimage, one of whom died. Transient symptomatic radiation edema occurred in 7 cases (7.6%) within 6-12 months after radiosurgery, and one patient underwent open surgery for cerebral decompression. The main pathological changes of cavernoma were coagulation necrosis and the vessels obliterated gradually after radiosurgery.

It is feasible to treat small and surgically high risk CMs by radiosurgery. The treatment has to be prudent in an acute bleeding and symptomatic progression. Optimal treatment timing and dose planning are prerequisites to reduce radiation-related complications. GKS is safe and effective to control the epilepsy caused by CMs, and also to bring down the rebleeding rate after a latency interval of several years 5).

Gamma knife radiosurgery for brainstem cavernous malformation.


1)

Hu YJ, Zhang LF, Ding C, Tian Y, Chen J. Gamma Knife Radiosurgery for Cavernous Malformations of Basal Ganglia and Thalamus: A Retrospective Study of 53 Patients. Stereotact Funct Neurosurg. 2021 Jun 9:1-8. doi: 10.1159/000510108. Epub ahead of print. PMID: 34107485.
2)

Wen R, Shi Y, Gao Y, Xu Y, Xiong B, Li D, Gong F, Wang W. The efficacy of gamma knife radiosurgery for cavernous malformation: a meta-analysis and review. World Neurosurg. 2018 Dec 21. pii: S1878-8750(18)32869-9. doi: 10.1016/j.wneu.2018.12.046. [Epub ahead of print] Review. PubMed PMID: 30583131.
3)

Lee CC, Wang WH, Yang HC, Lin CJ, Wu HM, Lin YY, Hu YS, Chen CJ, Chen YW, Chou CC, Liu YT, Chung WY, Shiau CY, Guo WY, Hung-Chi Pan D, Hsu SPC. Gamma Knife radiosurgery for cerebral cavernous malformation. Sci Rep. 2019 Dec 24;9(1):19743. doi: 10.1038/s41598-019-56119-1. PMID: 31874979; PMCID: PMC6930272.
4)

Shin SS, Murdoch G, Hamilton RL, Faraji AH, Kano H, Zwagerman NT, Gardner PA, Lunsford LD, Friedlander RM. Pathological response of cavernous malformations following radiosurgery. J Neurosurg. 2015 Oct;123(4):938-44. doi: 10.3171/2014.10.JNS14499. Epub 2015 Jun 19. PubMed PMID: 26090838.
5)

Liu AL, Wang CC, Dai K. [Gamma knife radiosurgery for cavernous malformations]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2005 Feb;27(1):18-21. Chinese. PMID: 15782486.

Middle meningeal artery embolization for chronic subdural hematoma

Middle meningeal artery embolization for chronic subdural hematoma

middlemeningealartery.jpg

Perioperative prophylactic Middle meningeal artery embolization in the setting of surgical evacuation, via either craniotomy or subdural evacuating port system (SEPS), may help to lower the recurrence rate of cSDH 1).

It can be used safely and effectively as an alternative or adjunctive minimally invasive chronic subdural hematoma treatment in elderly and advanced elderly patients 2).

It has been proposed as a curative treatment for chronic subdural hematoma (cSDH), but evidence for the indication and timing is not definitive.

Given the encouraging results with a 91% long-term success rate in the series of Link et al., a large scale clinical trial is warranted 3).

https://clinicaltrials.gov/ct2/show/NCT03307395

Middle meningeal artery embolization for chronic subdural hematoma systematic reviews.

Middle meningeal artery embolization for chronic subdural hematoma case series

A case of a 74-year-old male on aspirin with a history of recurrent symptomatic chronic right-sided subdural hematoma treated successfully with a SEPS and right middle meningeal artery embolization with poly vinyl alcohol (PVA) microparticles. The patient initially presented to the emergency department with headaches, difficulty walking, and left sided hemiparesis. CT Head showed a large chronic right-sided subdural hematoma measuring 2.7 cm thick with 1 cm of leftward shift. Patient underwent placement of a right-sided SEPS and the subdural hematoma decreased in size to 1.0 cm with 2 mm of leftward shift. The patient had resolution of headaches and neurological symptoms and was discharged home. Three months later, the patient returned to the emergency department with headache and left hand numbness. CT Head showed an acute on chronic right-sided subdural hematoma measuring 1.4 cm with 3 mm of leftward shift. Patient underwent right-sided SEPS placement. Repeat CT Head showed reduction in the subdural hematoma to 1.2 cm. The SEPS was removed and the patient had resolution of neurological symptoms. The patient then had a diagnostic cerebral angiogram with PVA microparticle embolization of the right middle meningeal artery. A SEPS was placed at the time of the angiogram to further reduce the size of the subdural hematoma.

Repeat CT Head after SEPS and middle meningeal artery embolization showed decrease in size of the subdural hematoma. Follow-up CT Head showed stability of the subdural hematoma and patient had no further neurological symptoms. Patient was discharged home.

Middle meningeal artery embolization is a useful endovascular technique for reducing the arterial supply to the membranes in chronic subdural hematomas. Middle meningeal artery embolization can reduce the recurrence rate of subdural hematomas 4).


In 1994 a rare case of chronic subdural hematoma associated with a middle meningeal arteriovenous fistula was treated by a combination of embolization and burr hole drainage. This clinical situation might be missed in this era of computed tomography, when cerebral angiography is seldom indicated for the diagnosis of neuro-traumatic diseases. We should bear in mind the possibility of this clinical situation of a chronic subdural hematoma associated with a linear skull fracture crossing the middle meningeal groove in order to avoid possible hemorrhagic complications during surgery for chronic subdural hematoma 5)


1)

Schwarz J, Carnevale JA, Goldberg JL, Ramos AD, Link TW, Knopman J. Perioperative prophylactic middle meningeal artery embolization for chronic subdural hematoma: a series of 44 cases. J Neurosurg. 2021 May 21:1-9. doi: 10.3171/2020.10.JNS202856. Epub ahead of print. PMID: 34020417.
2)

Joyce E, Bounajem MT, Scoville J, Thomas AJ, Ogilvy CS, Riina HA, Tanweer O, Levy EI, Spiotta AM, Gross BA, Jankowitz BT, Cawley CM, Khalessi AA, Pandey AS, Ringer AJ, Hanel R, Ortiz RA, Langer D, Levitt MR, Binning M, Taussky P, Kan P, Grandhi R. Middle meningeal artery embolization treatment of nonacute subdural hematomas in the elderly: a multiinstitutional experience of 151 cases. Neurosurg Focus. 2020 Oct;49(4):E5. doi: 10.3171/2020.7.FOCUS20518. PMID: 33002874.
3)

Link TW, Boddu S, Paine SM, Kamel H, Knopman J. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma: A Series of 60 Cases. Neurosurgery. 2019 Dec 1;85(6):801-807. doi: 10.1093/neuros/nyy521. PMID: 30418606.
5)

Komiyama M, Yasui T, Tamura K, Nagata Y, Fu Y, Yagura H. Chronic subdural hematoma associated with middle meningeal arteriovenous fistula treated by a combination of embolization and burr hole drainage. Surg Neurol. 1994 Oct;42(4):316-9. doi: 10.1016/0090-3019(94)90400-6. PMID: 7974127.
WhatsApp WhatsApp us
%d bloggers like this: