IntuitivePlan

IntuitivePlan

http://www.intuitivetherapeutics.com/index.php/en/


Levivier et al. developed a new, real-time interactive inverse planning approach, based on a fully convex framework, to be used for Gamma Knife radiosurgery.

The convex framework is based on the precomputation of a dictionary composed of the individual dose distributions of all possible shots, considering all their possible locations, sizes, and shapes inside the target volume. The convex problem is solved to determine the plan, i.e., which shots and with which weights, that will actually be used, considering a sparsity constraint on the shots to fulfill the constraints while minimizing the beam-on time. The system is called IntuitivePlan and allows data to be transferred from generated dose plans into the Gamma Knife treatment planning software for further dosimetry evaluation.

The system has been very efficiently implemented, and an optimal plan is usually obtained in less than 1 to 2 minutes, depending on the complexity of the problem, on a desktop computer or in only a few minutes on a high-end laptop. Dosimetry data from 5 cases, 2 meningiomas and 3 vestibular schwannomas, were generated with IntuitivePlan. Results of evaluation of the dosimetry characteristics are very satisfactory and adequate in terms of conformity, selectivity, gradient, protection of organs at risk, and treatment time.

The possibility of using optimal, interactive real-time inverse planning in conjunction with the Leksell Gamma Knife opens new perspectives in radiosurgery, especially considering the potential use of the full capabilities of the latest generations of the Leksell Gamma Knife. This approach gives new users the possibility of using the system for easier and quicker access to good-quality plans with a shorter technical training period and opens avenues for new planning strategies for expert users. The use of a convex optimization approach allows an optimal plan to be provided in a very short processing time. This way, innovative graphical user interfaces can be developed, allowing the user to interact directly with the planning system to graphically define the desired dose map and to modify on-the-fly the dose map by moving, in a very user-friendly manner, the isodose surfaces of an initial plan. Further independent quantitative prospective evaluation comparing inverse planned and forward planned cases is warranted to validate this novel and promising treatment planning approach 1).


To compare planning indices achieved using manual and inverse planning approaches for Gamma knife radiosurgery for arteriovenous malformation.

For a series of consecutive AVM patients, treatment plans were manually created by expert planners using Leksell GammaPlan (LGP). Patients were re-planned using a new commercially released inverse planning system, IntuitivePlan. Plan quality metrics were calculated for both groups of plans and compared.

Overall, IntuitivePlan created treatment plans of similar quality to expert planners. For some plan quality metrics statistically significant higher scores were achieved for the inversely generated plans (Coverage 96.8% vs 96.3%, P = 0.027; PCI 0.855 vs 0.824, P = 0.042), but others did not show statistically significant differences (Selectivity 0.884 vs 0.856, P = 0.071; GI 2.85 vs 2.76, P = 0.096; Efficiency Index 47.0% vs 48.1%, P = 0.242; Normal Brain V12 (cc) 5.81 vs 5.79, P = 0.497). Automatic inverse planning demonstrated significantly shorter planning times over manual planning (3.79 vs 11.58 min, P < 10-6 ) and greater numbers of isocentres (40.4 vs 10.8, P < 10-6 ), with an associated cost of longer treatment times (57.97 vs 49.52 min, P = 0.009). When planning and treatment time were combined, there was no significant difference in the overall time between the two methods (61.76 vs 61.10, P = 0.433).

IntuitivePlan can offer savings on the labor of treatment planning. In many cases, it achieves higher quality indices than those achieved by an “expert planner” 2).

References

1)

Levivier M, Carrillo RE, Charrier R, Martin A, Thiran JP. A real-time optimal inverse planning for Gamma Knife radiosurgery by convex optimization: description of the system and first dosimetry data. J Neurosurg. 2018;129(Suppl1):111-117. doi:10.3171/2018.7.GKS181572
2)

Paddick I, Grishchuk D, Dimitriadis A. IntuitivePlan inverse planning performance evaluation for Gamma Knife radiosurgery of AVMs [published online ahead of print, 2020 Aug 4]. J Appl Clin Med Phys. 2020;10.1002/acm2.12973. doi:10.1002/acm2.12973

Moyamoya Disease Epidemiology outside of Asia

Moyamoya Disease Epidemiology outside of Asia

Studies from outside of Asia are rare. In Washington state and California, the incidence of MMD was reported to be 0.086/100,000 based on 298 patients. The incidence was the highest in Asians, followed by Blacks, Whites, and Hispanics. The incidence in Asian Americans was 4.6 times higher than that in Whites. Female preponderance was also noted 1).

African-Americans had an earlier disease onset with a median age of 18. However, a more recent study based on the Nationwide Inpatient Sample database reported that MMD appears to be distributed among the races according to their relative proportions in the USA population 2).

From 2005 to 2008, there were an estimated 7,473 (2,236 pediatric and 5,237 adult) patients admitted with a diagnosis of MMD in the USA. MMD patients were most frequently Caucasians. Overall, ischemic stroke was the most common reason for admission in both children and adults. Hemorrhagic stroke was more frequent in adults compared with children, and there was a bimodal age distribution with peaks in the first and fourth decades of life. Female-to-male ratio was 2.2. Thus, MMD in the USA does not seem to differ from East Asian MMD.


The incidence of Moyamoya disease (MMD) in Europe is not well known. In those affected, the risk of brain hemorrhage is considered low. A study of Birkeland et al. aimed to investigate the incidence and clinical presentation of MMD in the Danish population.

Eligible patients were identified in the Danish National Patient Register from 1994 to 2017. They collected clinical and radiological data from individual patient records from neurological, neurosurgical, and pediatric units across Denmark. The diagnosis was validated according to established criteria. They also extracted basic demographic data on the cohort from the Danish Civil Registration System.

A total of 52 patients fulfilled the diagnostic criteria for MMD. Most cases were native Danes and only 15% of cases had an East Asian background. The ratio of female to male patients was 1.8, and the incidence had two peaks: one in childhood and another in young middle age. Until 2007, MMD was only diagnosed sporadically. From 2008 onwards, the incidence rate was 0.07 per 100 000 person-years (95% confidence interval 0.05-0.09 per 100 000 person-years). The most common mode of presentation was ischemic stroke (33%), followed by hemorrhage (23%), headache (17%), and transient ischemic attack (14%).

MMD is rare in Denmark, but associated with a considerable risk of hemorrhage. Thus, MMD should be considered in the workup for ischemic as well as hemorrhagic stroke in children and middle-aged Caucasian3).

References

1)

Uchino K, Johnston SC, Becker KJ, Tirschwell DL. Moyamoya disease in Washington State and California. Neurology. 2005;65(6):956-958. doi:10.1212/01.wnl.0000176066.33797.82
2)

Kainth D, Chaudhry SA, Kainth H, Suri FK, Qureshi AI. Epidemiological and clinical features of moyamoya disease in the USA. Neuroepidemiology. 2013;40(4):282-287. doi:10.1159/000345957
3)

Birkeland P, Tharmabalan V, Lauritsen J, Ganesan V, Bjarkam CR, von Weitzel-Mudersbach P. Moyamoya disease in a european setting: A danish population-based study [published online ahead of print, 2020 Jul 15]. Eur J Neurol. 2020;10.1111/ene.14439. doi:10.1111/ene.14439

Foix-Chavany-Marie Syndrome case reports

Foix-Chavany-Marie Syndrome case reports

Demaerel R, Klein S, Van Calenbergh F. Syndrome of the Trephined presenting as Foix-Chavany-Marie syndrome [published online ahead of print, 2020 Jun 30]. Clin Neurol Neurosurg. 2020;196:106058. doi:10.1016/j.clineuro.2020.106058


Digby et al.from the Division of Neurosurgery, Addenbrooke’s HospitalCambridge, describes a case of a 62-year-old man who developed Foix-Chavany-Marie syndrome subsequent to traumatic brain injury. The initial presentation of the syndrome was profound loss of voluntary control of orofacial muscles, causing a loss of speech and impairment of swallow. Over subsequent months, a remarkable recovery of these functions was observed. The natural history of FCMS in this case was favourable, with good improvement in function over months. Furthermore, the pattern of bilateral opercular injury was more readily recognised on MRI than on CT, supporting the role of MRI in cases of traumatic brain injury 1).


Nitta et al.from the Department of Neurosurgery, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, reported a Foix-Chavany-Marie syndrome after unilateral anterior opercular contusion 2).


Martino et al. from the Department of Neurological Surgery, Hospital Universitario Marqués de Valdecilla and Instituto de Formación e Investigación Marqués de Valdecilla, Santander, reported a 25-year-old right-handed man with an incidentally diagnosed right frontotemporoinsular tumor who underwent surgery using an asleep-awake-asleep technique with direct cortical and subcortical electrical stimulation and a transopercular approach to the insula. While resecting the anterior part of the pars opercularis the patient suffered sudden anarthria and bilateral facial weakness. He was unable to speak or show his teeth on command, but he was able to voluntarily move his upper and lower limbs. This syndrome lasted for 8 days. Postoperative diffusion tensor imaging tractography revealed that connections of the pars opercularis of the right inferior frontal gyrus with the frontal aslant tract (FAT) and arcuate fasciculus (AF) were damaged. This case supplies evidence for localizing the structural substrate of FCMS. It was possible, for the first time in the literature, to accurately correlate the occurrence of FCMS to the resection of connections between the FAT and AF, and the right pars opercularis of the inferior frontal gyrus. The FAT has been recently described, but it may be an important connection to mediate supplementary motor area control of orofacial movement. The present case also contributes to our knowledge of complication avoidance in operculoinsular surgery. A transopercular approach to insuloopercular gliomas can generate FCMS, especially in cases of previous contralateral lesions. The prognosis is favorable, but the patient should be informed of this particular hazard, and the surgeon should anticipate the surgical strategy in case the syndrome occurs intraoperatively in an awake patient 3).


In 2013 Theys et al. from the Department of Neurosurgery, University Hospitals Leuven, reported a 48-year-old male patient recovering from complete anarthria after unilateral right-sided subcortical hemorrhagic stroke is described. The main outcome measures included clinical and neuroimaging data at three different time points (at the onset of symptoms, after 6 weeks and after 6 months). At 6 weeks, increased activations in the right and left frontal operculum were found and were followed by a trend towards normalization of the activation pattern at 6 months. These results suggest a role of anterior opercular regions in recovery from anarthria after subcortical stroke 4).


In 2009 Campbell et al. from the Department of Neurosurgery, Institute of Neurological Sciences, Southern General Hospital, Glasgow, presented a transient manifestation of the syndrome, in a patient who suffered two sequential traumatic brain injuries 5).


In 2006 Duffau et al. from the Department of Neurosurgery, Hôpital de la Salpêtrière, Paris reported in 42 patients a Foix-Chavany-Marie syndrome in 3 cases 6).


In 2003 they reported a 26-year-old right-handed man experienced partial seizures that were poorly controlled by antiepileptic drugs during a 2-year period as a result of a right insulo-opercular low grade glioma, leading to the proposal of surgical resection. In addition, 1 year before the operation, the patient experienced a severe brain injury that resulted in a coma. A computed tomographic scan revealed left opercular contusion. The patient recovered completely within 6 months.

Intraoperative corticosubcortical electrical functional mapping was performed along the resection, allowing the identification and preservation of the facial and upper limb motor structures. A subtotal removal of the glioma was achieved. The patient had postoperative anarthria, with loss of voluntary muscular functions of the face and tongue, and he had trouble chewing and swallowing. All of these symptoms resolved within 3 months.

These findings provide insight into the use of surgery to treat a right insulo-opercular tumor. First, surgeons must be particularly cautious in cases with a potential contralateral lesion (e.g., history of head injury), even if such a lesion is not visible on magnetic resonance imaging scans; preoperative metabolic imaging and electrophysiological investigations should be considered before an operative decision is made. Second, surgeons must perform intraoperative functional mapping to identify and to attempt to preserve the corticosubcortical facial motor structures. A procedure performed while the patient is awake should be discussed to detect the structures involved in chewing and swallowing in cases of suspected bilateral lesions. Third, the patient must be informed of this particular risk before surgery is performed 7).


A 10-year-old boy was brain injured in a traffic accident in August 1996. He was found comatous (initial GCS = 6) without any focal neurological deficit. The hemodynamic situation was stable even though he presented two wounds of the scalp and a hemoperitoneum that required intensive perfusions. The initial CT scan elicited a frontal fracture, ischemo hemorrhagic lesions of the right frontopolar and anterior temporal cortex. On the second day, he developed on the left side a subdural collection and a extradural hematoma which was surgically withdrawn. The comatous state ended on the ninth day. On examination, The child was awake and alert, able to understand spoken and written language but unable to speak. There was masticatory diplegia: the mouth was half open, the patient was drooling, chewing was impossible. The most striking feature was the automatic voluntary dissociation which might be observed on laughing, crying and yawning. The patient was unable to initiate swallowing but reflex swallowing was preserved once food was placed into the pharynx. The child had a deficit of voluntary control of muscles supplied by nerves V, VI, IX, X, XI. These clinical features are the hallmarks of SFMC. The first case was reported in 1837 by Magnus. The syndrome was described by Foix Chavany et Marie in 1926, and called SFMC by Weller (1993). His literature review of 62 SFMC allowed the differentiation of five clinical types: the classical and most common form associated with cerebrovascular disease, a subacute form caused by central nervous system infections, a developmental form, a reversible form in children with epilepsy and a rare type associated with neurodegenerative disorders. Bilateral opercular lesions was confirmed in 31 of 41 patients who had CT or MRI performed, and by necropsy in 7 of 10 patients. As previously reported, the outcome was poor for this boy who recovered very limited orofacial motor abilities. The medical functional readaptation was long et tedious and took in consideration the fact that the speech disturbance was anarthria and not an aphasic or an apraxic one and the age of onset of this acute acquired syndrome 8).

References

1)

Digby R, Wells A, Menon D, Helmy A. Foix-Chavany-Marie syndrome secondary to bilateral traumatic operculum injury. Acta Neurochir (Wien). 2018 Oct 17. doi: 10.1007/s00701-018-3702-x. [Epub ahead of print] PubMed PMID: 30328523.
2)

Nitta N, Shiino A, Sakaue Y, Nozaki K. Foix-Chavany-Marie syndrome after unilateral anterior opercular contusion: a case report. Clin Neurol Neurosurg. 2013 Aug;115(8):1539-41. doi: 10.1016/j.clineuro.2012.12.036. Epub 2013 Jan 28. PubMed PMID: 23369402.
3)

Martino J, de Lucas EM, Ibáñez-Plágaro FJ, Valle-Folgueral JM, Vázquez-Barquero A. Foix-Chavany-Marie syndrome caused by a disconnection between the right pars opercularis of the inferior frontal gyrus and the supplementary motor area. J Neurosurg. 2012 Nov;117(5):844-50. doi: 10.3171/2012.7.JNS12404. Epub 2012 Sep 7. PubMed PMID: 22957529.
4)

Theys T, Van Cauter S, Kho KH, Vijverman AC, Peeters RR, Sunaert S, van Loon J. Neural correlates of recovery from Foix-Chavany-Marie syndrome. J Neurol. 2013 Feb;260(2):415-20. doi: 10.1007/s00415-012-6641-0. Epub 2012 Aug 15. PubMed PMID: 22893305.
5)

Campbell E, St George EJ, Livingston A, Littlechild P. Case report of transient acquired Foix-Chavany-Marie syndrome following sequential trauma. Br J Neurosurg. 2009 Dec;23(6):625-7. doi: 10.3109/02688690902818841. PubMed PMID: 19922277.
6)

Duffau H, Taillandier L, Gatignol P, Capelle L. The insular lobe and brain plasticity: Lessons from tumor surgery. Clin Neurol Neurosurg. 2006 Sep;108(6):543-8. Epub 2005 Oct 6. PubMed PMID: 16213653.
7)

Duffau H, Karachi C, Gatignol P, Capelle L. Transient Foix-Chavany-Marie syndrome after surgical resection of a right insulo-opercular low-grade glioma: case report. Neurosurgery. 2003 Aug;53(2):426-31; discussion 431. PubMed PMID: 12925262.
8)

Laurent-Vannier A, Fadda G, Laigle P, Dusser A, Leroy-Malherbe V. [Foix-Chavany-Marie syndrome in a child caused by a head trauma]. Rev Neurol (Paris). 1999 May;155(5):387-90. Review. French. PubMed PMID: 10427603.
WhatsApp WhatsApp us
%d bloggers like this: