Insular Cavernous Malformation

Insular Cavernous Malformation

Surgical management of cavernous malformation (CM) of the insula consists of total resection of the lesion and the surrounding gliosis to avoid or reduce seizures. When located in the dominant hemisphere, an awake craniotomy with intraoperative mapping reduces the risk of functional damage. The insula is covered by the operculum and has a relationship with the middle cerebral artery and its branches that run along its lateral cortical surface. Therefore high expertise is required to manage the exposure of the insula and its complex anatomy.

Insular Cavernous Malformation Classification.

https://www.neurosurgicalatlas.com/cases/insular-cavernous-malformation


A video of Burkhardt et al. demonstrated the microsurgical resection of a de novo CM adjacent to a previously treated high-grade AVM and clipping of a middle cerebral artery (MCA) aneurysm. A 70-yr-old male with history of radiosurgery for AVM presented with aphasia and confusion. Preoperative angiography showed complete occlusion of the AVM. MRI showed multiple cystic lesions suspicious for radiation-induced necrosis and CM. IRB approval and patient consent was obtained. A pterional craniotomy was performed with transsylvian exposure of the insula. The radiated feeding arteries were followed to the occluded AVM nidus. A CM was noted deep to this candelabra of the MCA vessels, which were mobilized to access and resect the CM. A small incision was made in this insular cortex underneath the malformation circumferentially freeing it of adhesions. The sclerotic AVM nidus was circumferentially dissected and removed en bloc. Thorough exploration of the resection cavity revealed no residual CM or AVM nidus. Attention was then turned to the M2-MCA bifurcation aneurysm, which was occluded with a straight clip. Postoperative imaging confirmed complete CM resection. The patient recovered from his aphasia. This case demonstrates the management of a radiation-induced de novo CM following treatment of a high-grade AVM. Radiographic follow-up for radiosurgically treated AVM is needed to rule out long-term complications. Bleeding from a de novo CM mimics bleeding from residual AVM nidus, requiring careful angiographic evaluation 1).


A video of Norat et al. illustrated the use of a trans-Sylvian, trans-sulcal approach to resect a deep insular/basal ganglia cavernous malformation in a young patient. The use of the neuronavigation is essential for success in these types of operation as this tool limits the surgeon’s footprint in eloquent brain. Unlike superficial lesions where the removal of hemosiderin stained brain is possible and often safe, resection of deep-seated lesions requires the surgeon to distinguish between hemosiderin-stained brain and residual cavernous malformation. This task is not simple, and residual cavernous malformation is the most common reason for re-bleed in patients who have undergone surgery. Resection of symptomatic cavernous malformations in deep locations can be performed safely, but outcomes are heavily influenced by proper patient selection and surgeon experience. In patients with multiple cerebral cavernous malformations, such as the one in this case, genetic testing should be performed 2).


A video of Vigo et al. demonstrated the surgical management of a large left insular CM. A 29-year-old female with multiple CM and 7 years of partial seizures and recent onset of short memory loss. Neuroimaging showed a large left insular and planum polare CM with important mass effect and hemorrhage signs. The patient consented to surgery, and an awake pretemporal craniotomy was carried out with continuous motor evoked potential monitoring. No language function was localized in the superior temporal gyrus; therefore corticectomy of the middle portion was performed to expand the operative corridor. The vessel manipulation during wide opening of the sylvian fissure increased the risk of postoperative vasospasm and blood drain into the surgical field. The CM was exposed and completely removed without functional damage. The patient recovered from surgery without complications, and no seizures occurred at 2 months’ follow-up. Postoperative imaging showed complete removal of the CM 3).

A study included patients affected by iCMs and referred to the Senior Author (FA). All cases were divided in 2 groups, according to a mainly pial growth pattern (exophytic group) or a subcortical one (endophytic group). Endophytic iCM was further subdivided in 3 subgroups, based on the insular gyri involved. According to this classification, each patient underwent a specific additional neuroimaging investigation and surgical evaluation.

Results: A total of 24 patients were included. In the surgical group, trans-sylvian (TS) approach was used in 6 patients with exophytic or Zone I endophytic iCMs. The transcortical (TC) approach with awake monitoring was used in 6 cases of Zone II endophytic vascular lesions. Both TS and trans-intraparietal sulcal (TIS) approach were used for 3 cases of Zone III endophytic iCM. At follow-up, 3 patients were fully recovered from a transient speech impairment while a permanent morbidity was observed in one case.

Conclusions: ICMs represent a single entity with peculiar clinical and surgical aspects. The proposed iCM classification focuses on anatomical and functional concerns, aiming to suggest the best pre-operative work-up and the surgical evaluation 4).

A 25-yr-old female presented with an acute-onset right homonymous hemianopsia. Neuroimaging revealed a large left insular CM, adjacent to the posterior limb of IC. After obtaining IRB approval and patient consent, a left pterional craniotomy with a wide distal Sylvian fissure split was completed. Using neuronavigation, an insular entry point was chosen for corticectomy. The CM was opened with subsequent hematoma evacuation and intracapsular resection technique. Inspection of the cavity revealed remnants anteromedially near the IC, which were removed meticulously, mobilizing the CM away from the IC. Postoperative MRI demonstrated gross total resection of the CM. The patient was discharged home on postoperative day 5 with persistent homonymous hemianopia.This case describes the use of a transsylvian-transinsular approach to access deep lesions with the shortest surgical distance and minimal cortical transgression. A wide Sylvian fissure split exposes the M2 MCA and accesses a safe insular zone, keeping the most eloquent structures deep to the lesion in the surgical corridor. This approach can safely expose vascular pathologies in the insular region without the risk of injury to overlying eloquent frontal and temporal lobes, even in the dominant hemisphere 5).


1)

Burkhardt JK, Gandhi S, Tabani H, Benet A, Lawton MT. Left Transsylvian-Transinsular Approach for Radiation-Induced Cavernous Malformation: 3-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2019 Aug 1;17(2):E62-E63. doi: 10.1093/ons/opy357. PubMed PMID: 30418603.
2)

Norat P, Yagmurlu K, Park MS, Kalani MYS. Keyhole, Trans-Sylvian, Trans-Sulcal Resection of an Insular Cerebral Cavernous Malformation: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2019 Jul 1;17(1):E18. doi: 10.1093/ons/opy326. PubMed PMID: 30496497.
3)

Vigo V, Zanabria Ortiz R, Paganelli SL, da Costa MDS, Campos Filho JM, Chaddad-Neto F. Awake Craniotomy for Removal of Left Insular Cavernous Malformation. World Neurosurg. 2019 Feb;122:209. doi: 10.1016/j.wneu.2018.10.220. Epub 2018 Nov 9. PubMed PMID: 30415050.
4)

Fioravanti A, Elia A, Morandini A, Valtulina C, Bertuccio A. Anatomo-functional evaluation for management and surgical treatment of insular cavernous malformation: a case series. Acta Neurochir (Wien). 2022 Jan 23. doi: 10.1007/s00701-021-05089-3. Epub ahead of print. PMID: 35066681.
5)

Mascitelli J, Gandhi S, Wright E, Lawton MT. Transsylvian-Transinsular Approach for an Insular Cavernous Malformation Resection: 3-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2019 Feb 1;16(2):50. doi: 10.1093/ons/opy155. PubMed PMID: 29905877.

Comaneci

Comaneci

https://www.rapid-medical-us.com/comaneci

Comaneci (Rapid Medical) introduced in the United States in 2019 is a compliant, adjustable mesh that provides temporary scaffolding during coiling of Wide-neck intracranial aneurysms (WNAs) that preserves antegrade flow.

Adjunctive devices are commonly employed in the treatment of wide necked cerebral aneurysms. Balloon remodeling and permanent stent implantation may lead to thromboembolic complications or the need for antiplatelet use. A temporary stent that does not lead to complete flow arrest may be beneficial 1).

Comaneci Madrid Dr Olier, Hospitalario de Navarra from Ronen Eckhouse on Vimeo.

Taqi et al. reported a early multi-institutional experience with the Comaneci device in the USA.

They reviewed all patients with WNAs that were treated using the Comaneci device for coil remodeling of ruptured and unruptured aneurysms at 4 institutions between July 2019 and May 2020. Clinical characteristics, angiographic variables, and endovascular results were assessed.

A total of 26 patients were included (18 women). The mean age was 62.7 years (range 44-81). Fifteen patients presented with ruptured aneurysms and 11 with unruptured aneurysms. The mean aneurysm neck width was 3.91 mm (range 1.9-6.5) with a mean dome-to-neck ratio of 1.57 (range 0.59-3.39). The mean maximum width was 5.80 mm (range 3.0-9.9) and the mean maximum height was 5.61 mm (range 2.0-11.8). Successful aneurysm occlusion was achieved in 25 of 26 patients. Complete occlusion was achieved in 16 patients, near-complete occlusion was observed in 9 patients, and 1 patient demonstrated residual filling. The mean time of device exposure was 24 min (range 8-76). No vasospasm was observed at the device location. Clot formation on the device was noted in 2 separate cases, but there were no clinical sequelae. There was 1 intraprocedural complication in a case that involved the simultaneous use of 2 Comaneci devices.

The initial experience shows that the Comaneci device is a promising and reliable tool that can safely support coil remodeling of WNAs 2).


Five patients underwent Comaneci-assisted wide-necked aneurysm coiling during the study period; 4 were treated via a radial artery approach, and 1 was treated via a femoral artery approach. Two patients presented with subarachnoid hemorrhage: 1 had a ruptured posterior inferior cerebellar artery aneurysm (Hunt-Hess 5, Fisher 4), and 1 had a ruptured middle cerebral artery aneurysm (Hunt-Hess 2, Fisher 1). Mean aneurysmal neck size was 4.4 ± 0.8mm; mean aspect ratio was 1.2 ± 0.3. Raymond-Roy 1 occlusion was achieved in all aneurysms except the posterior inferior cerebellar artery aneurysm. Systematic literature review identified 4 articles that found use of the Comaneci device to treat wide-necked aneurysms to be effective.

This device can be used with transfemoral and transradial approaches, allowing for continued flow through the parent vessel during the coiling procedure while providing a scaffold for dense coiling of the aneurysm and its neck 3).


Kara et al. from Bakirkoy, Istanbul, Turkey reported the experience of using single stent-assisted coiling combined with a Comaneci device in the treatment of unruptured WNBAs at 1-year angiographic follow-up, there was no filling in any aneurysm. There was no mortality or morbidity cases related to the procedure 4).


Molina-Nuevoet al. reported a retrospective single-center analysis taken from a prospective database of consecutive aneurysms of the anterior circulation treated using the Comaneci device in the period from March 2017 to March 2019.

Eighteen aneurysms were collected from 16 patients (9 women and 7 men) treated using the Comaneci device. The mean age was 48.4 years (range 36-81). Twelve patients had SAH, three were incidental aneurysms and one had compressive symptoms. A complete asymptomatic occlusion rate of 88.8% was obtained. The major complication rate was 5.55%.

The Comaneci embolization assist device is a safe, effective option for endovascular treatment of complex aneurysms with an unfavorable ratio 5).


29 ruptured intracranial aneurysms from different locations were included. Successful embolization was achieved in all lesions; complete post-procedure occlusion was seen in 25 (86%) cases. Insufficient embolization or neck remnant was observed in four cases (13.7%). Complications probably related, directly related, or indirectly related to the device occurred in 3.44% of patients (1/29 patients). At least one angiographic follow-up was performed in each of the 29 cases. The 12 month follow-up examination has yet to be done.

Conclusion: The Comaneci device offers a new promising and reliable technique that can safely support aneurysm coiling occlusion even in a rupture environment. However, long term monitoring of patients treated by this device is mandatory 6)


All intracranial aneurysms treated by coil occlusion with the Comaneci device between December 2014 and November 2015 were included. Angiographic and clinical results were retrospectively analysed, including follow-up examinations. All aneurysms were unruptured.

18 aneurysms of the internal carotid artery were included. Successful coil occlusion assisted by the Comaneci device as intended was possible in 14 cases (77.8%). Insufficient coverage of the aneurysmal neck was observed in four cases (22.2%), with modification of the treatment to stent-assisted coiling or remodeling. One clinically relevant complication occurred (5.6%).

The initial experience showed that use of the Comaneci device is straightforward for the treatment of selected wide-necked aneurysms. Further studies with long-term follow-up data are needed to identify the significance of the presented technique in the neurointerventional armamentarium 7).


Three patients were treated with the Comaneci device. Two patients had acute ruptured posterior communicating aneurysms and one patient was treated electively for a carotico-ophthalmic aneurysm. Excellent occlusion of all three aneurysms was obtained. One patient developed a distal middle cerebral artery clot, that was treated with intravenous aspirin, with minor neurological consequences. These early results show that the Comaneci device can be used to achieve good cerebral aneurysm occlusion. Vessel patency is maintained throughout the procedure with potential advantages over conventional balloon assisted coiling 8).

A 57-year-old female patient presented to our hospital with a 3-month history of frequent multiple sentinel severe headaches. At the time of hospitalization, the patient was neurologically intact with a Glasgow Coma Scale score of 15. There was no evidence of focal neurologic deficits or cranial nerve lesions, but there was discrete neck stiffness and a diagnosed saccular aneurysm associated with a fenestration of the basilar artery. After multidisciplinary discussion involving neurosurgeons and interventional neuroradiologists and taking into consideration the patient’s clinical presentation and previous history of subarachnoid hemorrhage, as well as the morphology of the posterior circulation aneurysm, endovascular treatment of the basilar fenestration aneurysm was deemed appropriate or simply use was chosen.

This case results are similar to previously published good results of endovascular coiling and add information regarding the relatively new Comaneci device, which helped to achieve considerable packing density of the aneurysmal sac. Using this device lowers the risk of peri- and postoperative complications. We believe that this technique is safer and better than the balloon-assisted and stent-assisted coiling in ruptured case scenarios of wide-neck aneurysms in the posterior circulation. 9)


1)

Gupta R, Kolodgie FD, Virmani R, Eckhouse R. Comaneci neck bridging device for the treatment of cerebral aneurysms. J Neurointerv Surg. 2016 Feb;8(2):181-5. doi: 10.1136/neurintsurg-2014-011518. Epub 2015 Jan 12. PMID: 25583530.
2)

Taqi MA, Raz E, Vechera A, Shapiro M, Gupta R, Haynes J, Taussky P, Grandhi R, Riina HA, Nelson PK, Nossek E. Early Experience with Comaneci, a Newly FDA-Approved Controllable Assist Device for Wide-Necked Intracranial Aneurysm Coiling. Cerebrovasc Dis. 2021 May 10:1-8. doi: 10.1159/000514371. Epub ahead of print. PMID: 33971661.
3)

Lim J, Vakharia K, Waqas M, Affana C, Siddiqui AH, Davies JM, Levy EI. Comaneci Device for Temporary Coiling Assistance for Treatment of Wide-Necked Aneurysms: Initial Case Series and Systematic Literature Review. World Neurosurg. 2021 May;149:e85-e91. doi: 10.1016/j.wneu.2021.02.080. Epub 2021 Feb 25. PMID: 33640525.
4)

Kara B, Selcuk H, Kilinc F, Cakir C, Zalov H. Combination of temporary bridging device (Comaneci) and permanent stenting in the treatment of unruptured wide neck bifurcation aneurysms. Neuroradiology. 2021 Mar 7. doi: 10.1007/s00234-021-02677-z. Epub ahead of print. PMID: 33677621.
5)

Molina-Nuevo JD, López-Martínez L, Pedrosa-Jiménez MJ, Juliá-Molla E, Hernández-Fernández F. Comaneci device-assisted embolization of wide-necked carotid aneurysms with an unfavorable ratio. BMC Neurol. 2020 Oct 22;20(1):384. doi: 10.1186/s12883-020-01963-2. PMID: 33092561; PMCID: PMC7584075.
6)

Sirakov S, Sirakov A, Hristov H, Minkin K, Penkov M, Karakostov V. Early experience with a temporary bridging device (Comaneci) in the endovascular treatment of ruptured wide neck aneurysms. J Neurointerv Surg. 2018 Oct;10(10):978-982. doi: 10.1136/neurintsurg-2017-013641. Epub 2018 Feb 6. PMID: 29438035.
7)

Fischer S, Weber A, Carolus A, Drescher F, Götz F, Weber W. Coiling of wide-necked carotid artery aneurysms assisted by a temporary bridging device (Comaneci): preliminary experience. J Neurointerv Surg. 2017 Nov;9(11):1039-1097. doi: 10.1136/neurintsurg-2016-012664. Epub 2016 Oct 14. PMID: 27742747; PMCID: PMC5740552.
8)

Lawson AL, Chandran A, Puthuran M, Goddard T, Nahser H, Patankar T. Initial experience of coiling cerebral aneurysms using the new Comaneci device. BMJ Case Rep. 2015 Jun 29;2015:bcr2015011726. doi: 10.1136/bcr-2015-011726. PMID: 26123460; PMCID: PMC4488707.
9)

Sirakov S, Panayotova A, Sirakov A, Hristov H, Minkin K, Raychev R. Fenestration of the Basilar Artery associated with Aneurysm treated by support of temporary bridging device – Comaneci. A case report. World Neurosurg. 2018 Aug 18. pii: S1878-8750(18)31830-8. doi: 10.1016/j.wneu.2018.08.047. [Epub ahead of print] PubMed PMID: 30130570.

Anterior percutaneous endoscopic cervical discectomy

Anterior percutaneous endoscopic cervical discectomy

Since the early 2000s, increasingly practical PECD techniques have been introduced because of advancements in working channel endoscope and surgical instrument technology 1) 2) 3) 4).

Anterior percutaneous endoscopic cervical discectomy (PECD) is an effective minimally invasive surgery for soft cervical disc herniation in properly selected cases 5) 6).

The PECD prototype is fluoroscopically guided percutaneous cervical disc decompression without endoscopic visualization, such as automated nucleotomy 7) 8).

Randomized controlled trials

Ahn et al. compared the surgical results of PECD and ACDF. Data from patients treated with single-level PECD (n = 51) or ACDF (n = 64) were analyzed. Patients were prospectively entered into the clinical database and their records were retrospectively reviewed. Perioperative data and clinical outcomes were evaluated using the visual analogue scale (VAS), Neck Disability Index (NDI), and modified Macnab criteriaVAS and NDI results significantly improved in both groups. The rates of excellent or good results were 88.24% and 90.63% in the PECD and ACDF group, respectively. The revision rates were 3.92% and 1.56% in the PECD and ACDF group, respectively. Operative time, hospital stay, and time to return to work were reduced in the PECD group compared to the ACDF group (p < 0.001). The five-year outcomes of PECD were comparable to those of conventional ACDF. PECD provided the typical benefits of minimally invasive surgery and may be an effective alternative for treating soft cervical disc herniation 9).


A total of 103 patients with ACDF or FACD were followed up for two years. In addition to general parameters specific measuring instruments were used. Postoperatively 85.9% of the patients no longer had arm pain, and 10.1% had occasional pain. There were no significant clinical differences between the decompression with or without fusion. The full-endoscopic technique afforded advantages in operation technique, rehabilitation and soft tissue injury. The recorded results show that FACD is a sufficient and safe alternative to conventional procedures when the indication criteria are fulfilled. At the same time, it offers the advantages of a minimally invasive intervention 10).

References

1)

Chiu, J.C.; Clifford, T.J.; Greenspan, M.; Richley, R.C.; Lohman, G.; Sison, R.B. Percutaneous microdecompressive endoscopic cervical discectomy with laser thermodiskoplasty. Mt. Sinai. J. Med. 2000, 67, 278–282.
2)

Ahn, Y.; Lee, S.H.; Lee, S.C.; Shin, S.W.; Chung, S.E. Factors predicting excellent outcome of percutaneous cervical discectomy: analysis of 111 consecutive cases. Neuroradiology 2004, 46, 378–384.
3)

Ahn, Y.; Lee, S.H.; Shin, S.W. Percutaneous endoscopic cervical discectomy: clinical outcome and radiographic changes. Photomed. Laser Surg. 2005, 23, 362–368.
4)

Ahn, Y.; Lee, S.H.; Chung, S.E.; Park, H.S.; Shin, S.W. Percutaneous endoscopic cervical discectomy for discogenic cervical headache due to soft disc herniation. Neuroradiology 2005, 47, 924–930
5)

Lee, J.H.; Lee, S.H. Clinical and radiographic changes after percutaneous endoscopic cervical discectomy: a long‐term follow‐up. Photomed. Laser. Surg. 2014, 32, 663–668.
6)

Ahn, Y. Percutaneous endoscopic cervical discectomy using working channel endoscopes. Expert. Rev. Med. Devices 2016, 13, 601–610.
7)

Courtheoux, F.; Theron, J. Automated percutaneous nucleotomy in the treatment of cervicobrachial neuralgia due to disc herniation. J. Neuroradiol. 1992, 19, 211–216.
8)

Bonaldi, G.; Minonzio, G.; Belloni, G.; Dorizzi, A.; Fachinetti, P.; Marra, A.; Goddi, A. Percutaneous cervical diskectomy: preliminary experience. Neuroradiology 1994, 36, 483–486.
9)

Ahn Y, Keum HJ, Shin SH. Percutaneous Endoscopic Cervical Discectomy Versus Anterior Cervical Discectomy and Fusion: A Comparative Cohort Study with a Five-Year Follow-Up. J Clin Med. 2020 Jan 29;9(2). pii: E371. doi: 10.3390/jcm9020371. PubMed PMID: 32013206.
10)

Ruetten S, Komp M, Merk H, Godolias G. Full-endoscopic anterior decompression versus conventional anterior decompression and fusion in cervical disc herniations. Int Orthop. 2009 Dec;33(6):1677-82. doi: 10.1007/s00264-008-0684-y. Epub 2008 Nov 18. PubMed PMID: 19015851; PubMed Central PMCID: PMC2899164.
WhatsApp WhatsApp us
%d bloggers like this: