Developmental venous anomaly

Developmental venous anomaly

● a vascular malformation that is part of the venous drainage of the involved area with intervening brain present. Therefore direct treatment is rarely indicated

● low-flow, low-pressure

● usually demonstrable on angiography as a starburst pattern

● rarely symptomatic: seizures rare, hemorrhage even more uncommon. Venous infarcts may occur (controversial)

● may have an associated cavernous malformation which is more likely to be symptomatic

Developmental venous anomaly (DVA) AKA venous malformation or (developmental) venous angioma. A tuft of medullary veins that converge into an enlarged central trunk that drains either to the deep or superficial venous system. The veins lack large amounts of smooth muscle and elastic. No abnormal arteries are found. There is neural parenchyma between the vessels. Most common in regions supplied by the MCA or in the region of the vein of Galen. They may be associated with a cavernous malformation.

Non hereditary. These are low-flow and low-pressure.

Most are clinically silent, but rarely seizures and even less frequently hemorrhage may occur. Venous infarcts have been described, but maybe coincidental. If symptoms are present, look for an associated cavernous malformation (GRASS MRI images may reveal some cavernous malformations that might otherwise be occult).


They have mostly supplanted the more pedestrian venous angioma 1).

Congenital malformation of veins which drain normal brain. They were thought to be rare before cross-sectional imaging but are now recognised as being the most common cerebral vascular malformation, accounting for ~55% of all such lesions.

venous anomaly is characterized by the caput medusae sign of veins draining into a single larger collecting vein, which in turn drains into either a dural sinus or into a deep ependymal vein. The appearance has also been likened to a palm tree.

The aetiology of VAs remains uncertain, but may relate to arrested development of venous structures

Histologically they consist of a number of abnormally thickened veins with normal feeding arteries and capillaries

The most common locations are:

frontoparietal region (36-64%) 1, usually draining towards the frontal horn of the lateral ventricle

cerebellar hemisphere (14-27%) draining towards the fourth ventricle

However, DVAs can be seen anywhere, draining either superficially or deep.

see Spinal cord venous angioma.

Lesions are usually solitary (75%), except in blue rubber bleb naevus syndrome

~20% (range 8-33%) of cases 2 are associated with cavernous malformations and are referred to as mixed vascular malformations (MVM) there is an association with venous malformations of the head and neck.

Developmental venous anomaly diagnosis.

In general, these should not be treated, as they are the venous drainage of the brain in that vicinity. If surgery is indicated for associated cavernous malformations, the angioma should be left alone. Surgery for the angioma itself is reserved only for documented bleeding or for intractable seizures that can be definitely attributed to the lesion.

Fifty-two children (20 boys and 32 girls [median age: 6 years] were identified with DVAs. Their age distribution was as follows: 1.9% neonates (< 1 month), 11.5% infants (1 month to 1 year), 30.8% 1-5 years, 30.8% 5-12 years and 25% 12-16 years. The majority (92.3%) presented with asymptomatic DVAs identified incidentally. Overall, anatomical distribution revealed predilection for frontal region (42.3%) with other common sites being posterior fossa (17.3%) and basal ganglia (13.5%). Temporal (11.5%), parietal (9.6%) and occipital (5.8%) were the remainder. Associated cavernous malformations (CMs) were present in 3/52 (5.8%), and no DVAs were associated with aneurysms or arteriovenous malformations (AVMs). Three patients had more than one DVA. There were three deaths unrelated to DVAs over median follow-up of 3.8 years. Four patients (7.7%) suffered DVA-related intracranial haemorrhage presenting with neurological deficits. The ages of the children with DVA-related haemorrhages were 21 days, 2 years and 6 months, 7 years and 1 month and 11 years and 7 months. Left-sided DVA haemorrhages predominated (3/4, 75%). The relative risk of a cerebellar DVA haemorrhage compared to its supratentorial counterpart was 5.35 (OR 6.8, 95% CI 0.8-58).

DVA-related haemorrhage is sevenfold greater in the paediatric cohort compared to adults and is significantly associated with a cerebellar location and cavernous malformations. There were no haemorrhages over a median period of 3.8 years of prospective follow-up 2).

A 27-year-old woman who presented with a sensorineural hearing loss followed by facial paresis. Magnetic resonance imaging (MRI) and computed tomography (CT) angiography revealed hematoma with adjacent converging veins showing a typical “caput medusa” sign in the left middle cerebellar peduncle, in favor of DVA. Due to the compression effect of hematoma, she underwent surgery. Hearing loss and facial paresis improved significantly during the postoperative follow-up.

Although DVA is mostly benign and asymptomatic, complications such as hemorrhage rarely occur. Hearing loss is an extremely rare presentation that can be attributable to the compression effect on the cranial nerve VII to VIII complex. In the case of compression effect or progression of symptoms, surgical intervention is necessary. A good clinical outcome could be expected postoperatively 3).


Although the association of developmental venous anomalies (DVAs) with cavernous malformations is well documented, the association with arteriovenous malformations (AVM) is unusual. The aim is to report an additional case and to review the concepts associated with these mixed malformations in order to guide patient management.

A case of AVM associated with a DVA was identified and a literature review was performed according to PRISMA guidelines.

Case report: In an 18-year-old man presented with sub-acute headache but with a normal neurological examination, the MRI-scan showed a right occipital DVA associated with hemosiderin spots evocative of earlier asymptomatic bleedings. The Digital Subtraction Angiography revealed a right parieto-occipital Spetzler-Martin Grade III AVM, fed by branches from the right middle and posterior cerebral arteries, with a superficial drainage flowing into a DVA that then joined the superior sagittal sinus. Multistep embolization was performed, leading to a partial reduction of the nidus, but preserving the DVA permeability. After a six-year follow-up. bleeding did not recur and the MRI aspect of the malformation was perfectly stable.

The co-occurrence of a DVA and an AVM is rare but has a higher bleeding risk than AVM alone (69% vs 38%) and must consequently be suspected when a DVA is revealed by a hemorrhage, in the absence of associated cavernoma. These mixed malformations represent a therapeutic challenge that has to be tailored to the venous anatomy and to the malformation Spetzler-Martin grade. DVA permeability should be preserved to avoid deleterious venous infarction 4)


1)

Lasjaunias P, Burrows P, Planet C, et al. Developmental venous anomalies (DVA): the so-called venous angioma. Neurosurg Rev 1986;9:233–42.
2)

Silva AHD, Wijesinghe H, Lo WB, Walsh AR, Rodrigues D, Solanki GA. Paediatric developmental venous anomalies (DVAs): how often do they bleed and where? Childs Nerv Syst. 2020 Jan 3. doi: 10.1007/s00381-019-04460-1. [Epub ahead of print] PubMed PMID: 31900628.
3)

Ebrahimzadeh K, Tavassol HH, Mousavinejad SA, Ansari M, Kazemi R, Bahrami-Motlagh H, Jalili Khoshnoud R, Sharifi G, Samadian M, Rezaei O. The Sensorineural Hearing Loss Related to a Rare Infratentorial Developmental Venous Angioma: A Case Report and Review of Literature. J Neurol Surg A Cent Eur Neurosurg. 2021 Jun 14. doi: 10.1055/s-0041-1725960. Epub ahead of print. PMID: 34126638.
4)

Picart T, Dumot C, Guyotat J, Eker O, Berhouma M, Pelissou-Guyotat I. Arteriovenous malformation drained into a developmental venous anomaly: a case report and up-dated literature review. Neurochirurgie. 2020 Oct 10:S0028-3770(20)30404-5. doi: 10.1016/j.neuchi.2020.08.003. Epub ahead of print. PMID: 33049289.

Diffuse midline glioma H3 K27M-mutant MRI

Diffuse midline glioma H3 K27M-mutant MRI

T1: decreased intensity

T2: heterogeneously increased

T1 C+ (Gd): usually minimal (can enhance post-radiotherapy)

DWI/ADC: usually normal, occasionally mildly restricted

Extensive spread is relatively frequent, both craniocaudally to involve the cerebral hemispheres and spinal cord, as well as leptomeningeal spread 1)

A study included 66 cases (40 in men, 26 in women) of H3 K27M-mutant glioma in adult patients. Tumors were found in the following sites: thalamus (n = 38), brainstem (n = 6), brainstem with cerebellar or thalamic involvement (n = 4), whole-brain (n = 8), corpus callosum (n = 3), hypothalamus (n = 1), hemispheres (n = 2), and spinal cord (n = 4). All pure brainstem lesions were located posteriorly, and all corpus callosal lesions were in the genu. Most spinal tumors were long-segment lesions. Hemispheric lesions mimicked gliomatosis cerebri in presentation, with the addition of traditional midline structure involvement. Most tumors were solid with relatively uniform signals on plain MRI. Of the 61 cases with contrast-enhanced MR images, 36 (59%) showed partial to no enhancement, whereas 25 (41%) showed diffuse or irregular peripheral enhancement. Hemorrhage and edema were rare. Most lesions were solid and showed mild diffusion restriction on diffusion-weighted imaging. Tumor dissemination to the leptomeninges (n = 8) and subependymal layer (n = 3) was observed.

Qiu et al. described the MRI features of diffuse midline glioma with H3 K27M mutation in the largest study done to date in adult patients. Tumors were found in both midline and nonmidline structures, with the thalamus being the most common site. Although adult H3 K27M-mutant gliomas demonstrated highly variable presentations in this cohort of patients, the authors were able to observe shared characteristics within each location 2).


The radiographic features of diffuse midline gliomas with histone H3 K27M mutation were highly variable, ranging from expansile masses without enhancement or necrosis with large areas of surrounding infiltrative growth to peripherally enhancing masses with central necrosis with the significant mass effect but little surrounding T2/FLAIR hyperintensity. When we compared diffuse midline gliomas on the basis of the presence or absence of histone H3 K27M mutation, there was no significant correlation between enhancement or border characteristics, infiltrative appearance, or presence of edema 3)


Zhuo et al. from the Beijing Tiantan Hospital aimed to predict H3K27M mutation status by Amide proton transfer imaging (APTw) and radiomic features.

Methods: Eighty-one BSG patients with APTw imaging at 3T MR and known H3K27M status were retrospectively studied. APTw values (mean, median, and max) and radiomic features within manually delineated 3D tumor masks were extracted. Comparison of APTw measures between H3K27M-mutant and wildtype groups was conducted by two-sample Student’s T/Mann-Whitney U test and receiver operating characteristic curve (ROC) analysis. H3K27M-mutant prediction using APTw-derived radiomics was conducted using a machine learning algorithm (support vector machine) in randomly selected train (n = 64) and test (n = 17) sets. Sensitivity analysis with additional random splits of train and test sets, 2D tumor masks, and other classifiers were conducted. Finally, a prospective cohort including 29 BSG patients was acquired for validation of the radiomics algorithm.

Results: BSG patients with H3K27M-mutant were younger and had higher max APTw values than those with wildtype. APTw-derived radiomic measures reflecting tumor heterogeneity could predict H3K27M mutation status with an accuracy of 0.88, the sensitivity of 0.92, and specificity of 0.80 in the test set. Sensitivity analysis confirmed the predictive ability (accuracy range: 0.71-0.94). In the independent prospective validation cohort, the algorithm reached an accuracy of 0.86, the sensitivity of 0.88, and specificity of 0.85 for predicting H3K27M-mutation status.

Conclusion: BSG patients with H3K27M-mutant had higher max APTw values than those with wildtype. APTw-derived radiomics could accurately predict an H3K27M-mutant status in BSG patients 4).


Piccardo et al., from Genoa, retrospectively analyzed 22 pediatric patients with DMG histologically proved and molecularly classified as H3K27M-mutant (12 subjects) and wild-type (10 subjects) who underwent DWIProton magnetic resonance spectroscopic imaging, and ASL performed within 2 weeks of 18F-FDOPA PET. DWI-derived relative minimum apparent diffusion coefficient (rADC min), 1H-MRS data choline/N-acetylaspartate (Cho/NAA), choline/creatine (Cho/Cr), and presence of lactate and relative ASL-derived cerebral blood flow max (rCBF max) were compared with 18F-DOPA uptake Tumor/Normal tissue (T/N) and Tumor/Striatum (T/S) ratios, and correlated with histological and molecular features of DMG. Statistics included Pearson’s chi-squared test and Mann-Whitney U tests, Spearman’s rank correlation and receiver operating characteristic (ROC) analysis.

The highest degrees of correlation among different techniques were found between T/S, rADC min and Cho/NAA ratio (p < 0.01), and between rCBF max and rADC min (p < 0.01). Significant differences between histologically classified low- and high-grade DMG, independently of H3K27M-mutation, were found among all imaging techniques (p ≤ 0.02). Significant differences in terms of rCBF max, rADC min, Cho/NAA and 18F-DOPA uptake were also found between molecularly classified mutant and wild-type DMG (p ≤ 0.02), even though wild-type DMG included low-grade astrocytomas, not present among mutant DMG. When comparing only histologically defined high-grade mutant and wild-type DMG, only the 18F-DOPA PET data T/S demonstrated statistically significant differences independently of histology (p < 0.003). ROC analysis demonstrated that T/S ratio was the best parameter for differentiating mutant from wild-type DMG (AUC 0.94, p < 0.001).

Advanced MRI and 18F-DOPA PET characteristics of DMG depend on histological features; however, 18F-DOPA PET-T/S was the only parameter able to discriminate H3K27M-mutant from wild-type DMG independently of histology 5).


1)

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007 Aug;114(2):97-109. doi: 10.1007/s00401-007-0243-4. Epub 2007 Jul 6. Erratum in: Acta Neuropathol. 2007 Nov;114(5):547. PMID: 17618441; PMCID: PMC1929165.
2)

Qiu T, Chanchotisatien A, Qin Z, Wu J, Du Z, Zhang X, Gong F, Yao Z, Chu S. Imaging characteristics of adult H3 K27M-mutant gliomas. J Neurosurg. 2019 Nov 15:1-9. doi: 10.3171/2019.9.JNS191920. Epub ahead of print. PMID: 31731269.
3)

Aboian MS, Solomon DA, Felton E, Mabray MC, Villanueva-Meyer JE, Mueller S, Cha S. Imaging Characteristics of Pediatric Diffuse Midline Gliomas with Histone H3 K27M Mutation. AJNR Am J Neuroradiol. 2017 Apr;38(4):795-800. doi: 10.3174/ajnr.A5076. Epub 2017 Feb 9. PMID: 28183840; PMCID: PMC5394943.
4)

Zhuo Z, Qu L, Zhang P, Duan Y, Cheng D, Xu X, Sun T, Ding J, Xie C, Liu X, Haller S, Barkhof F, Zhang L, Liu Y. Prediction of H3K27M-mutant brainstem glioma by amide proton transfer-weighted imaging and its derived radiomics. Eur J Nucl Med Mol Imaging. 2021 Jun 16. doi: 10.1007/s00259-021-05455-4. Epub ahead of print. PMID: 34131804.
5)

Piccardo A, Tortora D, Mascelli S, Severino M, Piatelli G, Consales A, Pescetto M, Biassoni V, Schiavello E, Massollo M, Verrico A, Milanaccio C, Garrè ML, Rossi A, Morana G. Advanced MR imaging and (18)F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas. Eur J Nucl Med Mol Imaging. 2019 Apr 27. doi: 10.1007/s00259-019-04333-4. [Epub ahead of print] PubMed PMID: 31030232.

Cleidocranial dysostosis

Cleidocranial dysostosis

Cleidocranial dysplasia is a rare genetic condition that affects teeth and bones, such as the skullfacespine, collarbones, and legs. The bones in people with CCD might be formed differently or might be more fragile than normal, and certain bones such as collarbones may be absent.


Runx2, also known as Cbfa1, is a multifunctional transcription factor essential for osteoblast differentiation. It also plays a major role in chondrocyte maturation, mesenchymal stem cell differentiation, cleidocranial dysplasia, and the growth and metastasis of tumors.

A review encountered several cases of orthodontic implications but a few cases on cranial defect approach.

The articles present literature that is unanimous on the recommendation of expectant conduct in children since the cranial block can occur spontaneously, even if the delayed form 1).

Hypophosphatasia (HPT) and cleidocranial dysplasia (CCD) are characterized by both defective ossification and bone mineralization. Patients usually present with craniosynostosis and cranial defects which in many cases require surgical repair.


There re only 2 reported case of combined HPT and CCD in the literature.

The reported case of Blionas et al. involves a 3.5-year-old girl with concomitant homozygous CCD and heterozygous HPT. The child had an extended cranial defect since birth which improved with the administration of Strensiq and was followed until preschool age. Bone defects were relatively minor on revaluation. Due to the limited final defect, we decided not to intervene. In HPT-CCD patients, bone defects are overestimated due to osteomalacia, and thus, management strategy should be less aggressive. They should undergo surgical repair with cranioplasty with the use of cement and/or titanium meshes in case of extended final defects 2).


A case of posterior fossa subdural hematoma (PFSDH) after vaginal delivery in a neonate with CCD, which presented with several clinical symptoms such as apnea, vomiting, and bradycardia. Our patient, who had a family history of CCD, developed apnea and vomiting shortly after birth; PFSDH was detected by head computed tomography, and the patient recovered well following standard medical treatment.

The prognosis of intracranial hemorrhage in neonates with CCD is generally poor. In neonates, PFSDH occurs by the following mechanism: the distortion of the infant’s cranium during delivery, by the strong force, causes elongation of the falx and angulation of the tentorium that leads to tears in the posterior fossa venous structures, which then cause bleeding into the subdural space. In CCD, the forces occurring during vaginal delivery may cause excessive distortion of the fragile skull. An awareness of CCD is hence important to avoid vaginal delivery in prenatally diagnosed CCD cases with a family history of CCD 3).


A 40-yr-old woman presented with sensory disturbance on the left side of the body. Magnetic resonance imaging (MRI) revealed cerebellar tonsil herniation into the foramen magnum with cervical syringomyelia, and computed tomography additionally revealed skull anomalies: fontanel closure insufficiencies, cranial dysraphism, thin cranial bone, and dentition abnormalities. We diagnosed as symptomatic CM1 with syringomyelia associated with cleidocranial dysplasia, which is a dominantly inherited autosomal bone disease. Cerebral angiography revealed a developed right occipital sinus and hypoplasia of the bilateral transverse sinus. We performed FMD, paying special attention to the developed occipital sinus using ICG-VA to ensure a safe duraplasty. The angiography clearly highlighted a right-sided occipital sinus with a high contrast ratio, and no left-sided occipital sinus was visible. After a dural incision in a unilateral curvilinear fashion was safely completed, expansive duraplasty was performed. The sensory disorders experienced by the patient disappeared postoperatively. Postoperative MRI revealed elevation of the cerebellar tonsil and decreasing of the syringomyelia.

Conclusion: Additional assessment using intraoperative ICG-VA provides useful information for a safe FMD, particularly in patients with complicated cerebral venous circulation anomalies 4).


A rare case of successful cranioplasty using a modified split calvarial graft technique in a patient with cleidocranial dysplasia 5).


1)

Azevedo Almeida LC, Faraj de Lima FB, Matushita H, Valença MM, Ferreira Castro TL, de Mendonça RN. Cleidocranial dysplasia, a rare skeletal disorder with failure of the cranial closure: case-based update. Childs Nerv Syst. 2020 Dec;36(12):2913-2918. doi: 10.1007/s00381-020-04831-z. Epub 2020 Jul 30. PMID: 32734401.
2)

Blionas A, Friehs GM, Zerris VA. Hypophosphatasia and cleidocranial dysplasia-a case report and review of the literature: the role of the neurosurgeon. Childs Nerv Syst. 2021 Jun 15. doi: 10.1007/s00381-021-05261-1. Epub ahead of print. PMID: 34131769.
3)

Nagasaka S, Suzuki K, Saito T, Tanaka K, Yamamoto J. Posterior fossa subdural hematoma in a neonate with cleidocranial dysostosis after a spontaneous vaginal delivery: a case report. Childs Nerv Syst. 2021 Feb;37(2):683-686. doi: 10.1007/s00381-020-04689-1. Epub 2020 Jun 5. PMID: 32504170.
4)

Omoto K, Takeshima Y, Nishimura F, Nakagawa I, Motoyama Y, Park YS, Nakase H. Additional Assessment of Developed Occipital Sinus Using Intraoperative Indocyanine Green Videoangiography for a Safe Foramen Magnum Decompression-Technical Case Report. Oper Neurosurg (Hagerstown). 2020 Oct 15;19(5):E533-E537. doi: 10.1093/ons/opaa125. PMID: 32421802.
5)

Jung YT, Cho JI, Lee SP. Cranioplasty Using a Modified Split Calvarial Graft Technique in Cleidocranial Dysplasia. J Korean Neurosurg Soc. 2015 Jul;58(1):79-82. doi: 10.3340/jkns.2015.58.1.79. Epub 2015 Jul 31. PMID: 26279819; PMCID: PMC4534745.
WhatsApp WhatsApp us
%d bloggers like this: