Cervical spondylotic myelopathy surgery outcome

Cervical spondylotic myelopathy surgery outcome

see Machine learning for degenerative cervical myelopathy.

Whilst decompressive surgery can halt disease progression, existing spinal cord damage is often permanent, leaving patients with lifelong disability.

Early surgery improves the likelihood of recovery, yet the average time from onset of symptoms to correct diagnosis is over 2 years. The majority of delays occur initially, before and within primary care, mainly due to a lack of recognition. Symptom checkers are widely used by patients before medical consultation and can be useful for preliminary triage and diagnosis. Lack of recognition of Degenerative Cervical Myelopathy (DCM) by symptom checkers may contribute to the delay in diagnosis.

The impact of the changes in myelopathic signs following cervical decompression surgery and their relationship to functional outcome measures remains unclear.

Surgery is associated with a significant quality of life improvement. The intervention is cost effective and, from the perspective of the hospital payer, should be supported 1).

Surgical decompression for CSM is safe and results in improved functional status and quality of life in patients around the world, irrespective of differences in medical systems and socio-cultural determinants of health 2).

The successful management of CSM depends upon an early and accurate diagnosis, an objective assessment of impairment and disability, and an ability to predict outcome. In this field, quantitative measures are increasingly used by clinicians to grade functional and neurological status and to provide decision-making support 3).


In addition, objective assessment tools allow clinicians to quantify myelopathy severity, predict outcome, and evaluate surgical benefits by tracking improvements throughout follow-up 4) 5) 6).

Several outcome measures assess functional impairment and quality of life in patients with cervical myelopathy 7) 8) 9) 10) 11).

A validated “gold standard,” however, has not been established, preventing the development of quantitative guidelines for CSM management 12).

In this field, one of the most widely accepted tool for assessing functional status is the modified Japanese Orthopaedic Association scale (mJOA).

Some studies have found that resolution of T2 hyperintensity in subjects with CSM who undergo ventral decompressive surgery correlates with improved functional outcomes. Other studies have found little correlation with postoperative outcome 13) 14).

References

1)

Witiw CD, Tetreault LA, Smieliauskas F, Kopjar B, Massicotte EM, Fehlings MG. Surgery for degenerative cervical myelopathy: a patient centered quality of life and health economic evaluation. Spine J. 2016 Oct 25. pii: S1529-9430(16)31022-1. doi: 10.1016/j.spinee.2016.10.015. [Epub ahead of print] PubMed PMID: 27793760.
2)

Fehlings MG, Ibrahim A, Tetreault L, Albanese V, Alvarado M, Arnold P, Barbagallo G, Bartels R, Bolger C, Defino H, Kale S, Massicotte E, Moraes O, Scerrati M, Tan G, Tanaka M, Toyone T, Yukawa Y, Zhou Q, Zileli M, Kopjar B. A Global Perspective on the Outcomes of Surgical Decompression in Patients with Cervical Spondylotic Myelopathy: Results from the Prospective Multicenter AOSpine International Study on 479 patients. Spine (Phila Pa 1976). 2015 May 27. [Epub ahead of print] PubMed PMID: 26020847.
3) , 12)

Singh A, Tetreault L, Casey A, et al. A summary of assessment tools for patients suffering from cervical spondylotic myelopathy: a systematic review on validity, reliability, and responsiveness [published online ahead of print September 5, 2013]. Eur Spine J. doi:10.1007/s00586-013-2935-x.
4)

Laing RJ. Measuring outcome in neurosurgery. Br J Neurosurg 2000;14:181–4.
5)

Holly LT, Matz PG, Anderson PA, et al. Clinical prognostic indicators of surgical outcome in cervical spondylotic myelopathy. J Neurosurg Spine 2009;11:112–8.
6)

Kalsi-Ryan S, Singh A, Massicotte EM, et al. Ancillary outcome measures for assessment of individuals with cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2013;38:S111–22.
7)

Singh A, Crockard HA. Quantitative assessment of cervical spondylotic myelopathy by a simple walking test. Lancet 1999;354:370–3.
8)

Nurick S. The natural history and the results of surgical treatment of the spinal cord disorder associated with cervical spondylosis. Brain 1972;95:101–8.
9)

Olindo S, Signate A, Richech A, et al. Quantitative assessment of hand disability by the nine-hole-peg test (9-HPT) in cervical spondylotic myelopathy. J Neurol Neurosurg Psychiatry 2008;79:965–7.
10)

Hosono N, Sakaura H, Mukai Y, et al. A simple performance test for quantifying the severity of cervical myelopathy [erratum in: J Bone Joint Surg Br 2008;90:1534]. J Bone Joint Surg Br 2008;90:1210–3.
11)

Casey AT, Bland JM, Crockard HA. Development of a functional scoring system for rheumatoid arthritis patients with cervical myelopathy. Ann Rheum Dis 1996;55:901–6.
13)

Sarkar S, Turel MK, Jacob KS, Chacko AG. The evolution of T2-weighted intramedullary signal changes following ventral decompressive surgery for cervical spondylotic myelopathy. J Neurosurg Spine. 2014;21(4):538-546.
14)

Vedantam A, Rajshekhar V. Change in morphology of intramedullary T2- weighted increased signal intensity after anterior decompressive surgery for cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2014;39(18):1458-1462.

Primary intraosseous meningioma classification

Primary intraosseous meningioma classification

Lang et al. 1) classified primary intraosseous meningioma into 3 types in order to prevent any confusion: purely extra-calvarial (type I), purely calvarial (type II), and calvarial with extracalvarial extension (type III).

Intraosseous lipomatous meningioma 2)

Osteolytic intraosseous meningiomas are the rarest and very few cases have been reported. Given that many of these may develop signs of malignancy, early histological confirmation is important in order to ensure appropriate treatment.

Type III intraosseous meningioma

Type III intraosseous meningioma is a very rare type of meningioma with extracranial extension.

Su et al., reported a case of type IIIC intraosseous meningioma with invasion of the superior sagittal sinus and skull periosteum. A 67-year-old woman was admitted due to a mass on the left frontoparietal region for 4 years. Magnetic resonance imaging showed a skull tumor with invasion of the superior sagittal sinus. After partial resection of the tumor, pathological and immunohistochemistry revealed that the epithelial meningioma derived from skull involved the skull periosteum. There was no enlargement of residual parasagittal tumor after 1 year of follow-up. The intraosseous meningioma in the present case was a rare benign tumor with good prognosis after surgery 3).


A 78-year-old female with a slowly growing hard mass in the left parietal bone was admitted. Neurological findings were normal. Plain skull radiograph showed a 6 x 6 cm hyperostotic lesion in the left parietal bone. Bone window CT scan showed thickening and hyperostosis in the same area. MRI using Gd-DTPA showed heterogeneous enhancement of the intraosseous mass, and homogenous enhancement of the dura matter. And angiogram showed a tumor stain fed by the bilateral superficial temporal artery and the It-occipital artery. The tumor and the underlying dura mater were totally removed. Preoperative diagnosis was an osteogenic tumor, but histological examination revealed a transitional meningioma. We discussed the development and the classification of an ectopic meningioma and the mechanism of hyperostosis. We should be aware of the existence of intraosseous menigiomas mimicking osteogenic tumors 4).

References

1)

Lang FF, Macdonald OK, Fuller GN, DeMonte F: Primary extradural meningiomas: A report on nine cases and review of literature from the era of computerized tomography scanning. J Neurosurg 93(6):940-950, 2000
2)

Kim L, Huang C, Morey AL, Winder MJ. Intraosseous lipomatous meningioma. Case Rep Neurol Med. 2015;2015:482140. doi: 10.1155/2015/482140. Epub 2015 Jan 26. PubMed PMID: 25688309; PubMed Central PMCID: PMC4321083.
3)

Su J, Ba Y, Liang S, Liu H. Type III Intraosseous Meningioma Invading Superior Sagittal Sinus and Skull Periosteum. J Craniofac Surg. 2019 Mar 27. doi: 10.1097/SCS.0000000000005525. [Epub ahead of print] PubMed PMID: 30939563.
4)

Nanto M, Tsuji N, Miki J, Tanaka S, Uematsu Y, Itakura T. [A case of intraosseous meningioma with extracranial progression having difficulty in making a preoperative diagnosis]. No Shinkei Geka. 2005 Jan;33(1):51-6. Japanese. PubMed PMID: 15678869.

Trigeminal neuralgia pathogenesis

Trigeminal neuralgia pathogenesis

Neurovascular contact in trigeminal neuralgia

see Neurovascular contact in trigeminal neuralgia.

see Tumor associated trigeminal neuralgia.

Other anatomical abnormalities have been considered, including differences of trigeminal nerve (TN) volume.

No correlation between volumetry and clinical data was detected 1).

see Multiple sclerosis related trigeminal neuralgia.

The incidence rates of posterior fossa tumor-induced TN range from 2.1–11.6% percent; in the literature; these cases mainly comprise meningiomas (14–54% percnt;), epidermoid tumors (8–64% percent;), and vestibular schwannomas (7–31% percnt;) 2) 3) 4) 5).


It appears that aggressive bony edges may contribute-at least indirectly-to the neuralgia. This should be considered for surgical indication and conduct of surgery when patients undergo MVD 6).

Posterior fossa volume

Abarca et al. data support the theory that a small volume of the posterior fossa cisterns containing the trigeminal nerve may increase the incidence of ITN 7).

Horínek et al. did not find any association between the clinical neurovascular conflict (NVC) and the size of the posterior fossa and its substructures. MRI volumetry may show the atrophy of the affected trigeminal nerve in clinical neuromuscular conflict 8).

Park et al. did not find any volumetric differences (including the cisternal and parenchymal volumes) 9).

Chiari’s malformation and hydrocephalus are rare associates of TN. The pathophysiology of TN in these cases may be due to neurovascular conflict, related to raised intracranial pressure from the hydrocephalus and/or the small posterior fossa volume in these patients. Drainage of associated hydrocephalus may be an effective surgical treatment 10).

Pontomesencephalic cistern

High-resolution magnetic resonance imaging scans are able to demonstrate significant volumetric differences of the pontomesencephalic cistern in patients with unilateral TN. A smaller cistern may be correlated with the occurrence of a neurovascular compression, and these findings support the neurovascular compression theory in idiopathic TN 11).

Park et al. confirmed that small pontomesencephalic cistern volumes were more frequent in patients with TN 12).

Uric acid in trigeminal neuralgia

References

1)

Urgosik D, Keller J, Svehlik V, Pingle M, Horinek D. Trigeminal nerve asymmetry in classic trigeminal neuralgia – pretreatment volumetry and clinical evaluation in patients irradiated by Leksell Gamma Knife. Neuro Endocrinol Lett. 2014 Jul 20;35(4). [Epub ahead of print] PubMed PMID: 25038607.
2)

Barker FG, 2nd, Jannetta PJ, Babu RP, Pomonis S, Bissonette DJ, Jho HD. Long-term outcome after operation for trigeminal neuralgia in patients with posterior fossa tumors. J Neurosurg. 1996;84:818–825.
3)

Jamjoom AB, Jamjoom ZA, al-Fehaily M, el-Watidy S, al-Moallem M, Nain Ur R. Trigeminal neuralgia related to cerebellopontine angle tumors. Neurosurg Rev. 1996;19:237–241.
4)

Nomura T, Ikezaki K, Matsushima T, Fukui M. Trigeminal neuralgia: differentiation between intracranial mass lesions and ordinary vascular compression as causative lesions. Neurosurg Rev. 1994;17:51–57.
5)

Shulev Y, Trashin A, Gordienko K. Secondary trigeminal neuralgia in cerebellopontine angle tumors. Skull Base. 2011;21:287–294
6)

Brinzeu A, Dumot C, Sindou M. Role of the petrous ridge and angulation of the trigeminal nerve in the pathogenesis of trigeminal neuralgia, with implications for microvascular decompression. Acta Neurochir (Wien). 2018 Jan 20. doi: 10.1007/s00701-018-3468-1. [Epub ahead of print] PubMed PMID: 29353407.
7)

Abarca-Olivas J, Feliu-Rey E, Sempere AP, Sanchez-Payá J, Baño-Ruiz E, Caminero-Canas MA, Nieto-Navarro J, Botella-Asunción C. [Volumetric measurement of the posterior fossa and its components using magnetic resonance imaging in idiopathic trigeminal neuralgia]. Rev Neurol. 2010 Nov 1;51(9):520-4. Spanish. PubMed PMID: 20979031.
8)

Horínek D, Brezová V, Nimsky C, Belsan T, Martinkovic L, Masopust V, Vrána J, Kozler P, Plas J, Krýsl D, Varjassyová A, Ghaly Y, Benes V. The MRI volumetry of the posterior fossa and its substructures in trigeminal neuralgia: a validated study. Acta Neurochir (Wien). 2009 Jun;151(6):669-75. doi: 10.1007/s00701-009-0283-8. Epub 2009 Apr 7. PubMed PMID: 19350204.
9) , 12)

Park YS, Ha SM. Does a small posterior fossa increase nerve vascular conflict in trigeminal neuralgia? Acta Radiol. 2014 Dec 8. pii: 0284185114561914. [Epub ahead of print] PubMed PMID: 25487716.
10)

Gnanalingham K, Joshi SM, Lopez B, Ellamushi H, Hamlyn P. Trigeminal neuralgia secondary to Chiari’s malformation–treatment with ventriculoperitoneal shunt. Surg Neurol. 2005 Jun;63(6):586-8; discussion 588-9. Review. PubMed PMID:
11)

Rasche D, Kress B, Stippich C, Nennig E, Sartor K, Tronnier VM. Volumetric measurement of the pontomesencephalic cistern in patients with trigeminal neuralgia and healthy controls. Neurosurgery. 2006 Sep;59(3):614-20; discussion 614-20. PubMed PMID: 16955043.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: