Brain edema after cranioplasty

Brain edema after cranioplasty

Some authors have reported a rare unexplained complication of sudden death in association with massive brain edema immediately after cranioplasty.

Causes of cerebral edema and hemorrhage immediately after cranioplasty include reperfusion, reduction of automatic adjustment function, sinking skin flap syndrome, negative pressure due to s.c. drain, venous stasis, vascular damage following restoration of midline shift, and allergic reaction1).

Once the computed tomography scan shows malignant cerebral swelling, the patient is expected to have a poor prognosis 2) 3).

It is hypothesized that intracranial hypotension (IH) caused stagnation of venous flow. Neurosurgeons should be aware that fatal venous congestion induced by IH may occur after cranioplasty. To avoid this, tight dural closure should be obtained, and avoidance of the use of subcutaneous drains should be considered 4).


Zhang et al., reported one fatal case and analyze the possible mechanism of this complication.

The patient was a 40-year-old man who had a severe right basal ganglia hemorrhage and underwent DC ∼ 2 months before. One day before scheduled cranioplasty, a External lumbar cerebrospinal fluid drainage was placed. The cranioplasty itself was uneventful. However, he gradually fell into a coma, and his right pupil was moderately dilated 20 hours after the surgery. A brain computed tomography (CT) scan indicated massive right cerebral edema with compressed right midbrain. The patient did not regain consciousness, and he remained quadriplegic.

It is necessary to increase awareness of complications of cranioplasty in high-risk patients. The lessons learned from this case include avoiding excessive drainage of cerebrospinal fluid. Patients with low-density lesions in the brain need to be treated with caution. Once the CT scan shows massive cerebral swelling, the patient has a poor prognosis 5).


A 51-year-old man who was a victim of traumatic brain injury underwent emergency clot removal and decompression craniectomy. His neurologic condition improved with subsequent rehabilitation therapy, and he had left sinking skin flap syndrome where the skull was defective. Six months after the initial surgery, he underwent a cranioplasty; however, he did not recover from the uneventful anesthesia. A vacuum suction drain showed 300 mL of flow outflow had drained when his pupils dilated and fixed. An immediate computed tomography scan showed ipsilateral diffuse cerebral swelling with diffuse cerebral hemorrhage. Despite all approaches that were considered, the cerebral swelling continued to worsen until death 6).


Two cases of critical brain swelling after otherwise uneventful cranioplasty. Both cases had subarachnoid hemorrhage and extremely similar clinical courses. They underwent decompressive craniotomy and clipping in the acute phase and had cranioplasty in the chronic phase, resulting in serious cerebral swelling and death. Deep venous sinus thrombosis was revealed in the autopsy for one case. Although no venous occlusion was identified in the other case, radiological findings suggested venous congestion. In both cases, intraoperative cerebrospinal fluid leakage was massive and was prolonged by a drain 7).


A 64-year-old man was admitted with the diagnosis of cerebral hemorrhage, and emergency surgery for hemorrhage removal and decompressive craniotomy were performed. One month after surgery, cranioplasty was performed using a titanium mesh plate. Sixteen hours after the surgery, the patient became comatose with bilateral dilated pupils followed by blood pressure lowering. Computed tomography of the brain showed bilateral massive cerebral edema. The titanium mesh plate was immediately removed, however, the patient’s neurological condition did not recover and he died 7 days after the surgery. We speculated that the negative pressure difference and increase in cerebral blood flow after cranioplasty may have attributed to the fatal cerebral swelling 8).


A 84-year-old man with subarachnoid hemorrhage underwent craniotomy and clipping with external decompression. Perfusion magnetic resonance imaging showed subclinical sinking skin flap syndrome, and he underwent cranioplasty on postoperative day 58. No problems occurred during the operation, but cerebral edema and hemorrhage were recognized on immediate postoperative computed tomography. Edema continued to progress, but edema and bleeding eventually improved without additional surgery.

Neurological symptoms improved to presurgical baseline and stabilized 9).


A 50-year-old female was admitted with sudden onset of stuporous consciousness. A brain computed tomography (CT) revealed a subarachnoid hemorrhage with intracranial hemorrhage and subdural hematoma. Emergency decompressive craniectomy and aneurysmal neck clipping were performed. Following recovery, the decision was made to proceed with an autologous cranioplasty. The cranioplasty procedure was free of complications. An epidural drain was placed and connected to a suction system during skin closure to avoid epidural blood accumulation. However, following the procedure, the patient had a seizure in the recovery room. An emergency brain CT scan revealed widespread cerebral edema, and the catheter drain was clamped. The increased intracranial pressure and cerebral edema were controlled with osmotic diuretics, corticosteroids, and antiepileptic drugs. The edema slowly subsided, but new low-density areas were noted in the brain on follow-up CT 1 week later. They speculated that placing the epidural drain on active suction may have caused an acute decrease in intracranial pressure and subsequent rapid expansion of the brain, which impaired autoregulation and led to reperfusion injury 10).


Sviri reported on 4 patients who underwent cranioplasty after DC between January 2005 and August 2010 and died because of massive cerebral edema immediately after uneventful surgery and anesthesia. All 4 of the new cases reported involved young male patients who underwent decompressive hemicraniectomy after traumatic brain injury. They developed massive cerebral swelling immediately after uneventful cranioplasty (3 patients) or after removal of an epidural hematoma several hours after surgery (1 patient). All 4 patients had a large skull defect and significantly sunken craniotomy site, and all were treated with a closed vacuum suction system that was placed under the scalp and kept open at the end of the cranioplasty procedure. After surgery, the patients’ pupils became fixed and dilated, and brain CT scans showed massive brain edema. Despite emergency DC, the patients did not recover, and all 4 died. A MEDLINE search showed 8 similar cases that were reported previously. Fatal cerebral swelling after uneventful cranioplasty is a distinct clinical entity, although it is unpredictable. It is postulated that a negative pressure difference from the elimination of atmospheric pressure that had been chronically applied on the injured sinking brain in combination with the negative pressure applied by the closed subgaleal suction drain may lead to a massive brain shift toward the cranioplasty site and initiate a fatal vasomotor reaction 11).

References

1) , 9)

Kato A, Morishima H, Nagashima G. Unexpected complications immediately after cranioplasty. Acute Med Surg. 2017 Feb 22;4(3):316-321. doi: 10.1002/ams2.260. eCollection 2017 Jul. PubMed PMID: 29123881; PubMed Central PMCID: PMC5674471.
2) , 6)

Shen L, Zhou Y, Xu J, Su Z. Malignant Cerebral Swelling After Cranioplasty: Case Report and Literature Review. World Neurosurg. 2018 Feb;110:4-10. doi: 10.1016/j.wneu.2017.10.102. Epub 2017 Oct 28. Review. PubMed PMID: 29101073.
3) , 5)

Zhang X, Pan B, Ye Z, Li Z, Mo F, Wang X. Massive Brain Swelling after Cranioplasty: A Case Report. J Neurol Surg A Cent Eur Neurosurg. 2019 May 10. doi: 10.1055/s-0039-1688726. [Epub ahead of print] PubMed PMID: 31075809.
4)

Nomura M, Ota T, Ishizawa M, Yoshida S, Hara T. Intracranial Hypotension-associated Cerebral Swelling following Cranioplasty: Report of Two Cases. Asian J Neurosurg. 2017 Oct-Dec;12(4):794-796. doi: 10.4103/1793-5482.185070. PubMed PMID: 29114315; PubMed Central PMCID: PMC5652127.
7)

Nomura M, Ota T, Ishizawa M, Yoshida S, Hara T. Intracranial Hypotension-associated Cerebral Swelling following Cranioplasty: Report of Two Cases. Asian J Neurosurg. 2017 Oct-Dec;12(4):794-796. doi: 10.4103/1793-5482.185070. PubMed PMID: 29114315; PubMed Central PMCID: PMC5652127.
8)

Kaneshiro Y, Murata K, Yamauchi S, Urano Y. Fatal cerebral swelling immediately after cranioplasty: A case report. Surg Neurol Int. 2017 Jul 25;8:156. doi: 10.4103/sni.sni_137_17. eCollection 2017. PubMed PMID: 28808605; PubMed Central PMCID: PMC5535512.
10)

Lee GS, Park SQ, Kim R, Cho SJ. Unexpected Severe Cerebral Edema after Cranioplasty : Case Report and Literature Review. J Korean Neurosurg Soc. 2015 Jul;58(1):76-8. doi: 10.3340/jkns.2015.58.1.76. Epub 2015 Jul 31. PubMed PMID: 26279818; PubMed Central PMCID: PMC4534744.
11)

Sviri GE. Massive cerebral swelling immediately after cranioplasty, a fatal and unpredictable complication: report of 4 cases. J Neurosurg. 2015 Jun 19:1-6. [Epub ahead of print] PubMed PMID: 26090828.

Supratentorial Epidural Hematoma after Posterior Fossa Surgery

Supratentorial Epidural Hematoma after Posterior Fossa Surgery

Non-traumatic, non-arterial origin delayed Epidural Hematoma after posterior fossa surgery is extremely rare. Moreover, the pathogenesis of its supratentorial extension is obscure.

The possible causes include sudden decompression of ventricular pressure in the supratentorial compartment, rupture of cortical veins in the sitting positioncoagulopathy, hemodynamic fluctuations during surgery, and position-related ischemia 1).

The lowering of the ventricular pressure by the ventricular tapduring the operation may play significant role in the formation of the extradural hematoma.

The younger age of the cases and the long history of increased intracranial pressure were stressed in the literature2).

Wolfsberger et al., stressed the importance of early postoperative CT scan and optimal management of ventricular pressure and coagulation status to detect and prevent this possibly life-threatening complication 3).

Avci et al., from Mersin, reported a case during removal of a huge Posterior fossa dermoid cyst 4).

Pandey et al., from Bangalore reported in 2008 a large bifrontal extradural hematoma following posterior fossa surgery for a vermian medulloblastoma5).

Tsugane et al., reported five cases of the supratentorial extradural hematomas secondary to the posterior fossa craniectomy.

The site of the hematoma was far from the operative field and two cases showed acute course and three were rather mild. The symptoms of this complication were the unsuspected sensorium disturbance, anisocoria and the non-functioning ventricular drainage. Two cases died of this complication and two were severely disabled 6).

Multiple Supratentorial Epidural Hematomas

Tyagi et al., from Bangalore published Multiple Remote Sequential Supratentorial Epidural Hematoma7).

Wolfsberger et al., from Vienna published a 31-year-old female who presented with a history of chronic hydrocephalus due to fourth-ventricular plexus papilloma. Following resection of the posterior fossa tumor with intraoperative placement of a ventricular drainage, she consecutively developed four supratentorial epidural haematomas at different locations, all necessitating evacuation. The clinical manifestations ranged from subtle neurological deficits to signs of tentorial herniation; the ultimate outcome was complete recovery. Rapid tapering of CSF pressure after long-standing hydrocephalus and clotting disorders could be implicated as causative factors. They stressed the importance of early postoperative CT scan and optimal management of ventricular pressure and coagulation status to detect and prevent this possibly life-threatening complication 8).

References

1) , 5)

Pandey P, Madhugiri VS, Sattur MG, Devi B I. Remote supratentorial extradural hematoma following posterior fossa surgery. Childs Nerv Syst. 2008 Jul;24(7):851-4. doi: 10.1007/s00381-007-0573-5. Epub 2008 Jan 31. PubMed PMID: 18236051.
2) , 6)

Tsugane R, Sugita K, Sato O. [Supratentorial extradural hematomas following posterior fossa craniectomy (author’s transl)]. No Shinkei Geka. 1976 Apr;4(4):401-3. Japanese. PubMed PMID: 944882.
3) , 8)

Wolfsberger S, Gruber A, Czech T. Multiple supratentorial epidural haematomas after posterior fossa surgery. Neurosurg Rev. 2004 Apr;27(2):128-32. Epub 2003 Dec 2. PubMed PMID: 14652780.
4)

Avci E, Dagtekin A, Baysal Z, Karabag H. Intraoperative supratentorial epidural haematoma during removal of a huge posterior fossa dermoid cyst. Neurol Neurochir Pol. 2010 Nov-Dec;44(6):609-13. PubMed PMID: 21225525.
7)

Tyagi G, Bhat DI, Indira Devi B, Shukla D. “Multiple Remote Sequential Supratentorial Epidural Hematomas – An Unusual and Rare Complication Following Posterior Fossa Surgery”. World Neurosurg. 2019 May 6. pii: S1878-8750(19)31225-2. doi: 10.1016/j.wneu.2019.04.228. [Epub ahead of print] PubMed PMID: 31071445.

Epilepsy after cranioplasty

Epilepsy after cranioplasty

Among the several cranioplasty complicationsepilepsy is a common complication with an incidence of 14.8-33.0% 1) 2).

Antiepileptic drugs can effectively reduce the occurrence of seizure3).

Systematic review

Seizures are a recognised complication of cranioplasty but its incidence and risk factors in TBI patients are unclear. Accurate prognostication can help direct prophylactic and treatment strategies for seizures. In a systematic review, Spencer et al., aimed to evaluate current literature on these factors. A PROSPERO-registered systematic review was performed in accordance with PRISMA guidelines. Data was synthesised qualitatively and quantitatively in meta-analysis where appropriate. A total of 8 relevant studies were identified, reporting 919 cranioplasty patients. Random-effects meta-analysis reveals a pooled incidence of post-cranioplasty seizures (PCS) of 5.1% (95% CI 2.6-8.2%). Identified risk factors from a single study included increasing age (OR 6.1, p = 0.006), contusion at cranioplasty location (OR 4.8, p = 0.015), and use of monopolar diathermy at cranioplasty (OR 3.5, p = 0.04). There is an association between an extended DC-cranioplasty interval and PCS risk although it did not reach statistical significance (p = 0.062). Predictive factors for PCS are poorly investigated in the TBI population to date. Heterogeneity of included studies preclude meta-analysis of risk factors. Further studies are required to define the true incidence of PCS in TBI and its predictors, and trials are needed to inform management of these patients. 4).

Case series

Two hundred and thirty-eight patients who received cranioplasty following craniectomy between January 2012 and December 2014 were included in a study. The risk factors of the patients with early and late post-cranioplasty seizures were compared to those with no post-cranioplasty seizures.

Seizures (73/238, 30.3%) were the most common complication after cranioplasty. Of these 73 patients, 17 (7.1%) had early post-cranioplasty seizures and 56 (23.5%) had late post-cranioplasty seizures. Early post-cranioplasty seizures were related to a longer interval between craniectomy and cranioplasty (P = 0.006), artificial materials (P < 0.001), and patients with late post-craniectomy seizures (P = 0.001). Late post-cranioplasty seizures were related to the presence of neurological deficits (P = 0.042). After stepwise logistic regression analysis, a longer interval between craniectomy and cranioplasty (P = 0.012; OR: 1.004, 95% CI: 1.001-1.007) and late post-craniectomy seizures (P = 0.033; OR: 4.335, 95% CI: 1.127-16.675) were independently associated with early post-cranioplasty seizures.

Delayed cranioplasty procedures and seizures before cranioplasty were significantly associated with early post-cranioplasty seizures. Further studies are warranted to investigate whether early surgery after craniectomy can reduce the risk of early post-cranioplasty seizures 5).


A retrospective study, covering the period between January 2008 and July 2015, compared postcranioplasty seizures (PCS) in postcranioplasty patients. Postcranioplasty seizures risk factors included diabetes mellitus, hypertension, time between DC and cranioplasty, duraplasty material, cranioplasty contusion location, electrocautery method, PCS type, and infection. Multivariate logistic regression analysis was performed and confidence intervals (CIs) were calculated (95% CI).

Of 270 patients, 32 exhibited initial PCS onset postcranioplasty with 11.9% incidence (32/270). Patients fell into immediate (within 24 hours), early (from 1 to 7 days), and late (after 7 days) PCS groups with frequencies of 12, 5, and 15 patients, respectively. Generalized, partial, and mixed seizure types were observed in 13, 13, and 6 patients, respectively. Multivariate logistic regression analysis showed increased risk with increasing age (>50 years). Cranioplasty contusion location, precranioplasty deficits, duraplasty material, and monopolar electrocautery were predictive of PCS onset (P < 0.05). Increased DC to cranioplasty interval increased risk but was not statistically significant (P = 0.062).

Understanding risk factors for PCS will benefit the management of cranioplasty patients 6).

References

1)

L. Lee, J. Ker, B.L. Quah, N. Chou, D. Choy, T.T. Yeo, A retrospective analysis and review of an institution’s experience with the complications of cranioplasty, Br. J. Neurosurg. 27 (2013) 629e635.
2)

A. Pechmann, C. Anastasopoulos, R. Korinthenberg, V. van Velthoven-Wurster, J. Kirschner, Decompressive craniectomy after severe traumatic brain injury in children: complications and outcome, Neuropediatrics 46 (2015) 5e12.
3)

Chen F, Duan Y, Li Y, Han W, Shi W, Zhang W, Huang Y. Use of an antiepileptic drug to control epileptic seizures associated with cranioplasty: A Randomised Controlled Trial. Int J Surg. 2017 Feb 18. pii: S1743-9191(17)30140-1. doi: 10.1016/j.ijsu.2017.02.017. [Epub ahead of print] PubMed PMID: 28223259.
4)

Spencer R, Manivannan S, Sharouf F, Bhatti MI, Zaben M. Risk factors for the development of seizures after cranioplasty in patients that sustained traumatic brain injury: A systematic review. Seizure. 2019 Mar 21;69:11-16. doi: 10.1016/j.seizure.2019.03.014. [Epub ahead of print] Review. PubMed PMID: 30952091.
5)

Shih FY, Lin CC, Wang HC, Ho JT, Lin CH, Lu YT, Chen WF, Tsai MH. Risk factors for seizures after cranioplasty. Seizure. 2019 Mar;66:15-21. doi: 10.1016/j.seizure.2018.12.016. Epub 2018 Dec 19. PubMed PMID: 30772643.
6)

Wang H, Zhang K, Cao H, Zhang X, Li Y, Wei Q, Zhang D, Jia Q, Bie L. Seizure After Cranioplasty: Incidence and Risk Factors. J Craniofac Surg. 2017 Sep;28(6):e560-e564. doi: 10.1097/SCS.0000000000003863. PubMed PMID: 28796104.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: