Spinal angiography

Spinal angiography

Similar to angiography of the brain, where a catheter is placed into an artery supplying the brain parenchyma, such as internal carotid or vertebral artery, and contrast material injected to directly visualize brain arteriovenous system, — spinal angiography accomplishes the same goal for arteries which supply the spine and paraspinal regions.

There are usually 31 vertebrae in the body, and most have 1 or 2 individual arteries feeding them. Which means that spinal angiography can be a long procedure, if the entire spine vasculature needs to be visualized.

That is not always the case. However, because of the length of procedure, and because the arteries and veins of the spine tend to me much smaller than of the brain, spinal angiography is usually done under anesthesia. This minimizes movement of the patient, which degrades imaging, and allows for control of breathing and peristalsis (movement of the bowel). The less movement, the better. The procedure is as follows: the patient is placed under anesthesia, a catheter is introduced into the aorta, usually via the artery in the groin called femoral artery, and various catheters are used to individually catheterize spinal arteries, one by one, taking x-ray pictures of each. Depending on the disease process, several or dosens need to be viewed. Once angiography is completed, the catheter is withdrawn, groin access site closed by compression or deployment of special closure devices, and patient woken up. Sometimes, both angiography and actual treatment of the condition in question can be carried out at the same time.

Spinal angiography is more specialized than even brain angiography. Many places which are comfortable with brain angiography may not be as versed in spinal procedures, depending on disease 1).

Contrast-enhanced MR angiography (MRA) has been increasingly used in the evaluation of spinal vascular malformations. Even though MR spinal angiography has several advantages over catheter spinal angiography (DSA), however, spinal DSA must never be omitted before operation, even if the vascular malformation is nicely demonstrated by MR angiography.

Sharma et al. report a case of spinal vascular malformation in which MR angiography provided great images which almost convinced everyone about the type and site of malformation/fistula. The images were so convincing that it was almost decided to skip catheter based angiography, citing reason of disadvantages of catheter based angiography over MR angiography. However, spinal DSA was luckily done which completely changed the type and site of malformation and helped in avoiding failed surgery. They conclude that even though catheter based spinal angiography has disadvantages over MRA, it should never be omitted from the diagnostic protocol 2).


Spinal angiography: rarely indicated for intramedullary spinal cord tumors, except in spinal cord hemangioblastoma (maybe suspected on myelography or MRI by linear serpiginous structures). MRI often obviates this test.

Spinal Angiography for Spinal Vascular Malformation

Spinal Angiography for vertebral hemangioma


Thoracic aortic aneurysm (relative)



Sharma AK, Westesson PL. Preoperative evaluation of spinal vascular malformation by MR angiography: how reliable is the technique: case report and review of literature. Clin Neurol Neurosurg. 2008 May;110(5):521-4. doi: 10.1016/j.clineuro.2008.02.005. Epub 2008 Mar 21. Review. PubMed PMID: 18358597.

Four dimensional computed tomography angiography

Four dimensional computed tomography angiography

Intracranial vascular malformations can be detected with 4D-CTA and clinically evaluated using information related to vascular fluid dynamics. The use of 4D-CTA provides data related to ongoing vascular changes as well as accurate spatial delineation of cerebrovascular pathologies. Overall, 4D-CTA is increasing its role in neuroimaging by providing superior information regarding structural three-dimensional imaging quality and real-time flow 1).

Mizutani et al. retrospectively analyzed 97 veins from 26 patients (16 cases of arteriovenous shunt disease, nine intracranial tumor cases, and one cerebral aneurysm case) who underwent both 4D-CTA and conventional digital subtraction angiography (DSA). Using 4D-CTA, they analyzed the time-density curve with gamma distribution extrapolation and obtained the direction of the flow and flow velocity of each vein. The direction of the flow in 4D-CTA was also collated with that obtained using conventional DSA to verify the experimental method.

The direction of the flow determined by 4D-CTA was consistent with that of conventional DSA in 94.8% of cases. The average venous flow velocity was 64.3 mm/s and 81.8 mm/s, respectively, in the antegrade and retrograde channels affected by arteriovenous shunts.

The current flow analysis using 4D-CTA enabled to evaluate the direction and velocity of intracranial venous flow. Aside from some limitations, the current method is reliable and its potential for application in clinical settings is promising 2).

A total of 44 patients with cerebral aneurysm, treated using clipping surgery, were included in this study. The metal artifact volume was assessed using CTA and the association between the type of clips and its metal artifact volume was analyzed. A VR image and a 4D-CTA were then produced, and the diagnostic accuracy of arteries around the clip or residual aneurysm on these images was evaluated. In the receiver operating characteristic (ROC) curve analysis, the cutoff value for metal artifacts was 2.32 mm3 as determined through a VR image. Patients were divided into two groups. Group 1 included patients with a simple and small clip, and group 2 included patients with multiple, large or fenestrated clips. The metal artifact volume was significantly larger in group 2, and the group incorporated the cutoff value. Post-clipping status on the VR image was significantly superior in group 1 compared with group 2. In group 2, the imaging quality of post-clipping status on 4D-CTA was superior in 92.9% of patients. The metal artifact volume was dependent on the number, size, or configuration of the clip used. In group 2, evaluation using a 4D-CTA eliminated the effect of the metal artifacts 3).

Two patients with intracerebral hemorrhage both showed an assumed spot sign on CTA, suggesting active hemorrhage. Additional 4D-CTA showed true active hemorrhage in one patient and a distal intracranial aneurysm in the other. This aneurysm was initially falsely interpreted as a spot sign on conventional CTA.

This case findings show how 4D-CTA can discern active bleeding from aneurysmal hemorrhage in cases with hemorrhagic stroke. This finding proves the additional value of this relatively new technique, because the detected underlying disorders have different therapeutic consequences in the acute setting 4).

In the diagnostic process of spinal VMs, the position of 4D-CTA is the third choice for noninvasive angiography, after dynamic MRA and three-dimensional CTA. However, the role of 4D-CTA might be decisive in difficult-to-find spinal dural AVFs. We believe that this novel imaging technique can be applied in spinal VMs 5).

Alnemari et al. presented 6 cases that best elucidate the application and technical nuances of 4D-CTA and its advantages over traditional digital subtraction angiography.

Intracranial vascular lesions can be detected with 4D-CTA and clinically evaluated using information related to vascular flow dynamics. The use of 4D-CTA provides data related to ongoing vascular changes as well as accurate spatial delineation of cerebrovascular pathologies. Overall, 4D-CTA is increasing its role in neuroimaging by providing superior information regarding structural three-dimensional imaging quality and real-time flow 6).

Ye et al. reported 16 patients who were diagnosed to have intracranial DAVF by digital subtraction angiography (DSA). The 4D-CTA was performed by Aquilion ONE multi-detector CT scanner (Toshiba Medical Systems, Japan) equipped with 320 × 0.5 mm detector rows. Standard biplane fluoroscopy equipments (Infinix, Toshiba Medical Systems, Japan and ADVANTX LC/LP, GE Medical Systems, Milwaukee, WI, USA) were applied in the diagnosis of intra-arterial DSA. Examinations were performed to evaluate the findings of DSA and 4D-CTA in each patient. The examination results were read by two independent readers in a blind manner. All results were documented on standardized scoring sheets. In all 16 cases, the same diagnosis results of intracranial DAVF were obtained from DSA and 4D-CTA. The results of subtype (Borden and Cognard classification), venous reflux and fistula sites were also accurately exhibited in 4D-CTA. In addition, there was a little discrepancy in identifying smaller and specific arterial branches and in distinguishing fistula type (focal or diffuse) using 4D-CTA. Good-to-excellent agreements were made between 4D-CTA and DSA. Therefore, 4D-CTA could be a feasible tool for the characterization of intracranial DAVF, with respect to determining fistula site and venous drainage 7).

A retrospective review was made to assess the accuracy of 4D-CTA) in diagnosis of arteriovenous malformations (AVM) and dural arteriovenous fistulas (DAVF), with catheter-based digital-subtraction angiogram (DSA) being gold standard. 33 pairs of investigations (DSA and 4D-CTA) were performed primarily for suspicion of AVM/DAVF. Based on blinded reports, sensitivity and specificity for detection of AVM/DAVF were 77% (95% CI: 46-95%) and 100% (95% CI: 83-100%) respectively. Positive predictive value was 100% (95% CI: 69-100%) and negative predictive value 87% (95% CI: 66-97%). 4D-CTA is a practical minimally-invasive technique for evaluating cerebrovascular pathologies. There is good agreement between the findings of 4D-CTA and DSA despite the differences in temporal and spatial resolutions. 4D-CTA may obviate the need for DSA in a subgroup of patients who would otherwise have undergone this invasive investigation, which carries a risk of important complications 8).


1) , 6)

Alnemari A, Mansour TR, Bazerbashi M, Buehler M, Schroeder J, Gaudin D. Dynamic Four-Dimensional Computed Tomography Angiography for Neurovascular Pathologies. World Neurosurg. 2017 Sep;105:1034.e11-1034.e18. doi: 10.1016/j.wneu.2017.06.022. Epub 2017 Jun 12. PubMed PMID: 28619493.

Mizutani K, Arai N, Toda M, Akiyama T, Fujiwara H, Jinzaki M, Yoshida K. A novel flow dynamics study of the intracranial veins using whole brain 4D-CTA. World Neurosurg. 2019 Jul 19. pii: S1878-8750(19)32015-7. doi: 10.1016/j.wneu.2019.07.109. [Epub ahead of print] PubMed PMID: 31330333.

Kimura Y, Mikami T, Miyata K, Suzuki H, Hirano T, Komatsu K, Mikuni N. Vascular assessment after clipping surgery using four-dimensional CT angiography. Neurosurg Rev. 2018 Mar 3. doi: 10.1007/s10143-018-0962-0. [Epub ahead of print] PubMed PMID: 29502322.

de Jong JP, Kluijtmans L, van Amerongen MJ, Prokop M, Boogaarts HD, Meijer FJA. “On the Spot”: The Use of Four-Dimensional Computed Tomography Angiography to Differentiate a True Spot Sign From a Distal Intracranial Aneurysm. World Neurosurg. 2017 Sep;105:1037.e9-1037.e12. doi: 10.1016/j.wneu.2017.06.046. Epub 2017 Jun 16. PubMed PMID: 28625908.

Yamaguchi S, Takemoto K, Takeda M, Kajihara Y, Mitsuhara T, Kolakshyapati M, Mukada K, Kurisu K. The Position and Role of Four-Dimensional Computed Tomography Angiography in the Diagnosis and Treatment of Spinal Arteriovenous Fistulas. World Neurosurg. 2017 Jul;103:611-619. doi: 10.1016/j.wneu.2017.03.100. Epub 2017 Mar 30. PubMed PMID: 28366753.

Ye X, Wang H, Huang Q, Jiang M, Gao X, Zhang J, Zhou S, Lin Z. Four-dimensional computed tomography angiography is valuable in intracranial dural arteriovenous fistula diagnosis and fistula evaluation. Acta Neurol Belg. 2015 Sep;115(3):303-9. doi: 10.1007/s13760-014-0387-7. Epub 2014 Oct 30. PubMed PMID: 25354667.

Biswas S, Chandran A, Radon M, Puthuran M, Bhojak M, Nahser HC, Das K. Accuracy of four-dimensional CT angiography in detection and characterisation of arteriovenous malformations and dural arteriovenous fistulas. Neuroradiol J. 2015 Aug;28(4):376-84. doi: 10.1177/1971400915604526. Epub 2015 Oct 1. PubMed PMID: 26427892; PubMed Central PMCID: PMC4757303.

The role of indocyanine green video-angiography (ICG-VA) in the resection of vascular malformations

The role of indocyanine green video-angiography (ICG-VA) in the resection of vascular malformations has been largely described.

Intraarterial injection was feasible and useful to distinguish feeders from normal artery and to observe changes in flow dynamics. Intra-arterial injection of ICG had better phase contrast than intra-venous injection of ICG and better spatial resolution than digital subtraction angiography. Therefore, this technique can be helpful in arteriovenous malformation (AVM) surgery 1).
The utility of ICG-VA before dural opening (transdural ICG-VA) proved an efficient tool that allows optimising the exposure of the malformation, performing a safe dural opening and identifying dural vascular connections of the lesion 2).
1) Kono K, Uka A, Mori M, Haga S, Hamada Y, Nagata S. Intra-arterial injection of indocyanine green in cerebral arteriovenous malformation surgery. Turk Neurosurg. 2013;23(5):676-9. doi: 10.5137/1019-5149.JTN.6420-12.0. PubMed PMID: 24101318.
2) Della Puppa A, Rustemi O, Gioffrè G, Causin F, Scienza R. Transdural indocyanine green video-angiography of vascular malformations. Acta Neurochir (Wien). 2014 Sep;156(9):1761-7. doi: 10.1007/s00701-014-2164-z. Epub 2014 Jul 19.PubMed PMID: 25034506.
WhatsApp WhatsApp us
%d bloggers like this: