Craniopharyngioma endoscopic endonasal approach

Craniopharyngioma endoscopic endonasal approach

The highest priority of current surgical craniopharyngioma treatment is to maximize tumor removal without compromising the patients’ long-term functional outcome. Surgical damage to the hypothalamus may be avoided or at least ameliorated with a precise knowledge regarding the type of adherence for each case.

Endoscopic endonasal approach, has been shown to achieve higher rates of hypothalamic preservation regardless of the degree of involvement by tumor 1) 2).

EES was associated with similar, if not better, extent of resection and significantly less ischemic injury than open surgery. Pseudoaneurysms were only seen in the open surgical group. Weight gain was also less prevalent in the EES cohort and appears be correlated with extent of ischemic injury at time of surgery 3).


Schwartz et al., from the Weill Cornell Brain and Spine Center, compared surgical results for Endoscopic skull base surgery (ESBS) with transcranial surgery (TCS) for several different pathologies over two different time periods (prior to 2012 and 2012-2017) to see how results have evolved over time. Pathologies examined were craniopharyngiomaanterior skull base meningiomaesthesioneuroblastomachordoma, and chondrosarcoma.

ESBS offers clear advantages over TCS for most craniopharyngiomas and chordomas. For well-selected cases of planum sphenoidale and tuberculum sellae meningiomas, ESBS has similar rates of resection with higher rates of visual improvement, and more recent results with lower CSF leaks make the complication rates similar between the two approaches. TCS offers a higher rate of resection with fewer complications for olfactory groove meningiomas. ESBS is preferred for lower-grade esthesioneuroblastomas, but higher-grade tumors often still require a craniofacialapproach. There are few data on chondrosarcomas, but early results show that ESBS appears to offer clear advantages for minimizing morbiditywith similar rates of resection, as long as surgeons are familiar with more complex inferolateral approaches.

ESBS is maturing into a well-established approach that is clearly in the patients’ best interest when applied by experienced surgeons for appropriate pathology. Ongoing critical reevaluation of outcomes is essential for ensuring optimal results 4).

Qiao et al., conducted a systematic review and meta-analysis. They conducted a comprehensive search of PubMed to identify relevant studies. Pituitary, hypothalamus functions and recurrence were used as outcome measures. A total of 39 cohort studies involving 3079 adult patients were included in the comparison. Among these studies, 752 patients across 17 studies underwent endoscopic transsphenoidal resection, and 2327 patients across 23 studies underwent transcranial resection. More patients in the endoscopic group (75.7%) had visual symptoms and endocrine symptoms (60.2%) than did patients in the transcranial group (67.0%, p = 0.038 and 42.0%, p = 0.016). There was no significant difference in hypopituitarism and pan-hypopituitarism after surgery between the two groups: 72.2% and 43.7% of the patients in endoscopic group compared to 80.7% and 48.3% in the transcranial group (p = 0.140 and p = 0.713). We observed same proportions of transient and permanent diabetes insipidusin both groups. Similar recurrence was observed in both groups (p = 0.131). Pooled analysis showed that neither weight gain (p = 0.406) nor memory impairment (p = 0.995) differed between the two groups. Meta-regression analysis revealed that gross total resection contributed to the heterogeneity of recurrence proportion (p < 0.001). They observed similar proportions of endocrine outcomes and recurrence in both endoscopic and transcranial groups. More recurrences were observed in studies with lower proportions of gross total resection 5).


The extended endoscopic transsphenoidal approach has been more recently developed as a potentially surgically aggressive, yet minimal access, alternative.

Komotar et al performed a systematic review of the available published reports after endoscope-assisted endonasal approaches and compared their results with transsphenoidal purely microscope-based or transcranial microscope-based techniques.

The endoscopic endonasal approach is a safe and effective alternative for the treatment of certain craniopharyngiomas. Larger lesions with more lateral extension may be more suitable for an open approach, and further follow-up is needed to assess the long-term efficacy of this minimal access approach 6)

Extended endoscopic transsphenoidal approach have gained interest. Surgeons have advocated for both approaches, and at present there is no consensus whether one approach is superior to the other.

With the widespread use of endoscopes in endonasal surgery, the endoscopic transtuberculum transplanum approach have been proposed as an alternative surgical route for removal of different types of suprasellar tumors, including solid craniopharyngiomas in patients with normal pituitary function and small sella.

As part of a minimally disruptive treatment paradigm, the extended endoscopic transsphenoidal approach has the potential to improve rates of resection, improve postoperative visual recovery, and minimize surgical morbidity 7).

The endoscopic endonasal approach has become a valid surgical technique for the management of craniopharyngiomas. It provides an excellent corridor to infra- and supradiaphragmatic midline craniopharyngiomas, including the management of lesions extending into the third ventricle chamber. Even though indications for this approach are rigorously lesion based, the data confirm its effectiveness in a large patient series 8).

The endoscopic endonasal approach offers advantages in the management of craniopharyngiomas that historically have been approached via the transsphenoidal approach (i.e., purely intrasellar or intra-suprasellar infradiaphragmatic, preferably cystic lesions in patients with panhypopituitarism).

Use of the extended endoscopic endonasal approach overcomes the limits of the transsphenoidal route to the sella enabling the management of different purely suprasellar and retrosellar cystic/solid craniopharyngiomas, regardless of the sellar size or pituitary function 9).

They provide acceptable results comparable to those for traditional craniotomies. Endoscopic endonasal surgery is not limited to adults and actually shows higher resection rates in the pediatric population 10).

Case series

References

1)

Tan TSE, Patel L, Gopal-Kothandapani JS, Ehtisham S, Ikazoboh EC, Hayward R, et al: The neuroendocrine sequelae of paediatric craniopharyngioma: a 40-year meta-data analysis of 185 cases from three UK centres. Eur J Endocrinol 176:359–369, 2017
2)

Yokoi H, Kodama S, Kogashiwa Y, Matsumoto Y, Ohkura Y, Nakagawa T, et al: An endoscopic endonasal approach for early-stage olfactory neuroblastoma: an evaluation of 2 cases with minireview of literature. Case Rep Otolaryngol 2015:541026, 2015
3)

Madsen PJ, Buch VP, Douglas JE, Parasher AK, Lerner DK, Alexander E, Workman AD, Palmer JN, Lang SS, Kennedy BC, Vossough A, Adappa ND, Storm PB. Endoscopic endonasal resection versus open surgery for pediatric craniopharyngioma: comparison of outcomes and complications. J Neurosurg Pediatr. 2019 Jun 7:1-10. doi: 10.3171/2019.4.PEDS18612. [Epub ahead of print] PubMed PMID: 31174192.
4)

Schwartz TH, Morgenstern PF, Anand VK. Lessons learned in the evolution of endoscopic skull base surgery. J Neurosurg. 2019 Feb 1;130(2):337-346. doi: 10.3171/2018.10.JNS182154. Review. PubMed PMID: 30717035.
5)

Qiao N. Endocrine outcomes of endoscopic versus transcranial resection of craniopharyngiomas: A system review and meta-analysis. Clin Neurol Neurosurg. 2018 Apr 7;169:107-115. doi: 10.1016/j.clineuro.2018.04.009. [Epub ahead of print] Review. PubMed PMID: 29655011.
6)

Komotar RJ, Starke RM, Raper DM, Anand VK, Schwartz TH. Endoscopic endonasal compared with microscopic transsphenoidal and open transcranial resection of craniopharyngiomas. World Neurosurg. 2012 Feb;77(2):329-41. doi: 10.1016/j.wneu.2011.07.011. Epub 2011 Nov 1. Review. PubMed PMID: 22501020.
7)

Zacharia BE, Amine M, Anand V, Schwartz TH. Endoscopic Endonasal Management of Craniopharyngioma. Otolaryngol Clin North Am. 2016 Feb;49(1):201-12. doi: 10.1016/j.otc.2015.09.013. Review. PubMed PMID: 26614838.
8)

Cavallo LM, Frank G, Cappabianca P, Solari D, Mazzatenta D, Villa A, Zoli M, D’Enza AI, Esposito F, Pasquini E. The endoscopic endonasal approach for the management of craniopharyngiomas: a series of 103 patients. J Neurosurg. 2014 May 2. [Epub ahead of print] PubMed PMID: 24785324.
9)

Cavallo LM, Solari D, Esposito F, Villa A, Minniti G, Cappabianca P. The Role of the Endoscopic Endonasal Route in the Management of Craniopharyngiomas. World Neurosurg. 2014 Dec;82(6S):S32-S40. doi: 10.1016/j.wneu.2014.07.023. Review. PubMed PMID: 25496633.
10)

Koutourousiou M, Gardner PA, Fernandez-Miranda JC, Tyler-Kabara EC, Wang EW, Snyderman CH. Endoscopic endonasal surgery for craniopharyngiomas: surgical outcome in 64 patients. J Neurosurg. 2013 Nov;119(5):1194-207. doi: 10.3171/2013.6.JNS122259. Epub 2013 Aug 2. PubMed PMID: 23909243.

Transradial artery approach

Transradial artery approach

Radial artery approach is based on the desire to diminish the incidence rate of haemorrhagic complications in the zone of the puncture and to avoid the necessity of a long-term bed rest in femoral artery approach. The findings obtained in numerous studies of coronary stenting and in a series of works on stenting of carotid arteries have demonstrated that the transradial approach reduces the risk of haemorrhage and local vascular complications.


It is important to be aware Aberrant right subclavian artery (ARSA) before surgical approaches to upper thoracic vertebrae in order to avoid complications and effect proper treatment. In patients with a known ARSA, a right transradial approach for aortography or cerebral angiographyshould be changed to a left radial artery or transfemoral artery approach 1).


Neurointerventionalists attempting the transradial approach can expect to achieve moderate early success and a low complication rate 2).

They can overcome the right transradial learning curve and achieve high success rates and low crossover rates after performing 30-50 cases 3).


A study from Shchanitsyn et al., was aimed at comparative analysis of the transradial versus transfemoral approach used in carotid stenting. They retrospectively analysed the results of transradial and transfemoral stenting of carotid artery in a total of 168 patients. The operations had been performed in two centres over the period from 2012 to 2017. They evaluated the clinical and angiographic data, technical aspects of the operations, as well as the outcomes and complications. In particular, they compared such complications as stroketransient ischemic attack, myocardial infarction and local complications of the approach. They carried out a univariate analysis of the risk for the development of complications depending on the method of the approach. Stenting of carotid arteries had been performed in 75 patients through the radial artery approach and in 93 patients via the femoral one. Comparing the two groups, the main clinical and angiographic data appeared to have no statistically significant differences. Various techniques of catheterization had been used depending upon anatomical peculiarities. The success of the procedure was achieved in 100% of cases, with the frequency of conversion amounting to 4% for the radial approach and to 1% for the femoral one (p=0.087). Amongst complications encountered, disabling stroke was revealed in two (1.2%) patients and minor stroke in four (2.4%). The groups did not differ by the incidence of neurological complications. Within 30 postoperative days neither lethal outcomes nor myocardial infarction were registered. Neither were there haemorrhagic events or other approach-related complications, however in the transradial-approach group, seven (9.3%) patients were found to have developed asymptomatic occlusions of the radial artery. The duration of the operation, the radiation load, and the length of hospital stay had no statistically significant differences depending on the approach used. Hence, the transradial approach is an effective and safe method in stenting of carotid arteries. In patients with high risk of haemorrhagic complications from the side of the vascular approach and with difficult anatomy of the aortic arch and its branches, hampering catheterization of the carotid artery via the femoral approach, the radial artery may be considered as an advantageous site of access 4).

References

1)

Choi Y, Chung SB, Kim MS. Prevalence and Anatomy of Aberrant Right Subclavian Artery Evaluated by Computed Tomographic Angiography at a Single Institution in Korea. J Korean Neurosurg Soc. 2019 Mar;62(2):175-182. doi: 10.3340/jkns.2018.0048. Epub 2019 Feb 27. PubMed PMID: 30840972; PubMed Central PMCID: PMC6411572.
2)

Zussman BM, Tonetti DA, Stone J, Brown M, Desai SM, Gross BA, Jadhav A, Jovin TG, Jankowitz BT. A prospective study of the transradial approach for diagnostic cerebral arteriography. J Neurointerv Surg. 2019 Mar 6. pii: neurintsurg-2018-014686. doi: 10.1136/neurintsurg-2018-014686. [Epub ahead of print] PubMed PMID: 30842303.
3)

Zussman BM, Tonetti DA, Stone J, Brown M, Desai SM, Gross BA, Jadhav A, Jovin TG, Jankowitz BT. Maturing institutional experience with the transradial approach for diagnostic cerebral arteriography: overcoming the learning curve. J Neurointerv Surg. 2019 Apr 27. pii: neurintsurg-2019-014920. doi: 10.1136/neurintsurg-2019-014920. [Epub ahead of print] PubMed PMID: 31030189.
4)

Shchanitsyn IN, Sharafutdinov MR, Iakubov RA, Larin IV. [Transradial approach in carotid stenting]. Angiol Sosud Khir. 2018;24(2):114-122. Russian. PubMed PMID: 29924782.

Extreme lateral supracerebellar infratentorial approach

Extreme lateral supracerebellar infratentorial approach

Since the first report of application of the extreme lateral supracerebellar infratentorial (ELSI) approach in resecting the posterolateral pontomesencephalic junction (PMJ) region lesions in 2000, few articles concerning the ELSI approach have been published. A review of Chen et al., provided an intimate introduction of the ELSI approach, and evaluated it in facets of patient position, skin incision, craniectomy, draining veins, retraction against the cerebellum, exposure limits, patient healing, as well as advantages and limitations compared with other approaches. The ELSI approach is proposed to be a very young and promising approach to access the lesions of posterolateral PMJ region and the posterolateral tentorial gap. Besides, it has several advantages such as having a shorter surgical pathway, causing less surgical complications, labor-saving, etc. 1).

The extreme lateral supracerebellar infratentorial approach differs from the midline and paramedian supracerebellar infratentorial variants in the area of exposure, patient positioning, and location of the craniotomy. The technique is effective for approaching the posterolateral mesencephalon2).

The extreme-lateral corridor widens the exposure of the paramedian approach to include the anterolateral brainstem surface, offering a complete view of the cisternal space surrounding the middle incisural space 3). It provided visualization of the ambient and tentorial segments of the trochlear nerve 4).

It was initially proposed to treat lesions of the posterolateral surface of the pons principally cavernomas. The versatility of the approach allowed its use for other pathologies like gliomas, aneurysms, epidermoids, and meningiomas 5).

All the extreme-lateral supracerebellar infratentorial (SCIT) approaches warrant a safe route to the quadrigeminal plate. Among the different variants, the median approach had the smallest median surgical area exposure but presented superior results to access the intercollicular safe entry zone 6).

Lesions located at the lateral midbrain surface are better approached through the lateral mesencephalic sulcus (LMS). The goal of a study was to compare the surgical exposure to the LMS provided by the subtemporal approach and the paramedian and extreme-lateral variants of the supracerebellar infratentorial approach.

These 3 approaches were used in 10 cadaveric heads.

Cavalcanti et al., performed measurements of predetermined points by using a neuronavigation system. Areas of microsurgical exposure and angles of the approaches were determined. Statistical analysis was performed to identify significant differences in the respective exposures.

The surgical exposure was similar for the different approaches-369.8 ± 70.1 mm2 for the ST; 341.2 ± 71.2 mm2 for the SCIT paramedian variant; and 312.0 ± 79.3 mm2 for the SCIT extreme-lateral variant (p = 0.13). However, the vertical angular exposure was 16.3° ± 3.6° for the ST, 19.4° ± 3.4° for the SCIT paramedian variant, and 25.1° ± 3.3° for the SCIT extreme-lateral variant craniotomy (p < 0.001). The horizontal angular exposure was 45.2° ± 6.3° for the ST, 35.6° ± 2.9° for the SCIT paramedian variant, and 45.5° ± 6.6° for the SCIT extreme-lateral variant opening, presenting no difference between the ST and extreme-lateral variant (p = 0.92), but both were superior to the paramedian variant (p < 0.001). Data are expressed as the mean ± SD.

The extreme-lateral SCIT approach had the smaller area of surgical exposure; however, these differences were not statistically significant. The extreme-lateral SCIT approach presented a wider vertical and horizontal angle to the LMS compared to the other craniotomies. Also, it provides a 90° trajectory to the sulcus that facilitates the intraoperative microsurgical technique 7).


Five cavernous malformations, two juvenile pilocytic astrocytomas, and one peripheral superior cerebellar artery aneurysm located in this region were approached in eight patients. In this extreme lateral approach, the sigmoid sinus is unroofed more superiorly and the bone flap includes not only a posterior fossa craniotomy but also a portion that extends just above the transverse sinus. The dural opening is based along the transverse and sigmoid sinuses. After the cerebrospinal fluid has been drained, the lateral aspect of the brainstem is approached via the cerebellar surface. A proximal tentorial incision offers additional rostral exposure where needed.

Seven patients in this series underwent successful resection of their lesion. The remaining patient’s aneurysm was clipped successfully with no major complications.

The extreme lateral supracerebellar infratentorial approach differs from the midline and paramedian supracerebellar infratentorial variants in the area of exposure, patient positioning, and location of the craniotomy. The technique is effective for approaching the posterolateral mesencephalon8).


The extreme lateral infratentorial supracerebellar approach to treat pathologies located in the ambient cistern and posterior incisural space is a technically feasible route in selected cases. In this cadaveric study, we demonstrate the benefits of endoscope-assisted microsurgical maneuvers using the extreme lateral supracerebellar infratentorial approach.

An endoscope-assisted infratentorial supracerebellar approach was performed in six formalin-fixed cadaveric heads using standard microneurosurgical methods. Dissections were performed in a stepwise fashion, comparing the exposure afforded by the microsurgical route alone to the endoscope-assisted route, using 0- and 30-degree angled lenses. Relationships among the target and the surroundings neurovascular structures were described.

Endoscope-assisted maneuvers for the extreme lateral supracerebellar approach provide an improved operative view and have the potential to reduce parenchymal trauma and neurovascular injuries. The endoscopic techniques bring the surgeon to the anatomy, enhancing illumination and surgical visualization.

Direct visualization of the posterior and posterolateral incisural space avoids retraction of the occipital lobe and damage to the deep venous complex. The extreme lateral infratentorial supracerebellar corridor is effective for approaching the posterolateral mesencephalic junction and the posterior incisural space in selected cases. Endoscope-assisted microsurgery can improve visualization and minimize parenchymal retraction, which should enhance surgical control 9).


For endoscopic-controlled approaches, the extreme lateral approach provides the largest surgical freedom when accessing the ipsilateral superior colliculus (P < 0.0001), the lateral approach provides the largest surgical freedom to the pineal gland (P < 0.0001), and the paramedian craniotomy provides the largest surgical freedom when accessing the splenium (P < 0.0001). The extreme lateral approach to the pineal gland provided the largest horizontal angle of attack (P < 0.0001), and the extreme lateral approach to the ipsilateral superior colliculus provided the largest vertical angle of attack (P < 0.001). The microscope provides marginally increased surgical freedom and a better angle of attack to specific anatomical targets in the paramedian and extreme lateral approach compared with those provided by the endoscope, but these differences are negligible during intraoperative application.

Presurgical planning and a detailed understanding of the important neurovascular structures in the pineal region are paramount to safe and successful surgical execution. Our current cadaveric study indicates that the medial-to-lateral location of craniotomy can maximize access to pineal region targets. Furthermore, the endoscope is a viable alternative to the microscope for identifying pathology of the posterior incisura. These differences in surgical freedom and angle of attack to the pineal region may be useful to consider when planning minimal-access approaches 10).

Videos

A video illustrates the case of a 52-year-old man with a history of multiple bleeds from a lateral midbrain cerebral cavernous malformation, who presented with sudden-onset headache, gait instability, and left-sided motor and sensory disturbances. This lesion was eccentric to the right side and was located in the dorsolateral brainstem. Therefore, the lesion was approached via a right-sided extreme lateral supracerebellar infratentorial (exSCIT) craniotomy with monitoring of the cranial nerves. This video demonstrates the utility of the exSCIT for resection of dorsolateral brainstem lesions and how this approach gives the surgeon ready access to the supracerebellar space, and cerebellopontine angle cistern. The lateral mesencephalic safe entry zone can be accessed from this approach; it is identified by the intersection of branches of the superior cerebellar artery and the fourth cranial nerve with the vein of the lateral mesencephalic sulcus. The technique of piecemeal resection of the lesion from the brainstem is presented. Careful patient selection and respect for normal anatomy are of paramount importance in obtaining excellent outcomes in operations within or adjacent to the brainstem. The link to the video can be found at: https://youtu.be/aIw-O2Ryleg 11).

Case series

Five cavernous malformations, two juvenile pilocytic astrocytomas, and one peripheral superior cerebellar artery aneurysm located in this region were approached in eight patients. In this extreme lateral approach, the sigmoid sinus is unroofed more superiorly and the bone flap includes not only a posterior fossa craniotomy but also a portion that extends just above the transverse sinus. The dural opening is based along the transverse and sigmoid sinuses. After the cerebrospinal fluid has been drained, the lateral aspect of the brainstem is approached via the cerebellar surface. A proximal tentorial incision offers additional rostral exposure where needed.

Seven patients in this series underwent successful resection of their lesion. The remaining patient’s aneurysm was clipped successfully with no major complications 12).

References

1)

Chen X, Feng YG, Tang WZ, Li HT, Li ZJ. A young and booming approach: the extreme lateral supracerebellar infratentorial approach. Neurosci Bull. 2010 Dec;26(6):479-85. doi: 10.1007/s12264-010-1036-7. Review. PubMed PMID: 21113199; PubMed Central PMCID: PMC5560335.
2) , 8)

Vishteh AG, David CA, Marciano FF, Coscarella E, Spetzler RF. Extreme lateral supracerebellar infratentorial approach to the posterolateral mesencephalon: technique and clinical experience. Neurosurgery. 2000 Feb;46(2):384-8; discussion 388-9. PubMed PMID: 10690727.
3)

Ammirati M, Bernardo A, Musumeci A, Bricolo A. Comparison of different infratentorial-supracerebellar approaches to the posterior and middle incisural space: a cadaveric study. J Neurosurg. 2002 Oct;97(4):922-8. PubMed PMID: 12405382.
4)

Ammirati M, Musumeci A, Bernardo A, Bricolo A. The microsurgical anatomy of the cisternal segment of the trochlear nerve, as seen through different neurosurgical operative windows. Acta Neurochir (Wien). 2002 Dec;144(12):1323-7. PubMed PMID: 12478346.
5)

Giammattei L, Borsotti F, Daniel RT. Extreme lateral supracerebellar infratentorial approach: how I do it. Acta Neurochir (Wien). 2019 Apr 1. doi: 10.1007/s00701-019-03886-5. [Epub ahead of print] PubMed PMID: 30937609.
6)

Cavalcanti DD, Morais BA, Figueiredo EG, Spetzler RF, Preul MC. Supracerebellar Infratentorial Variant Approaches to the Intercollicular Safe Entry Zone. World Neurosurg. 2019 Feb;122:e1285-e1290. doi: 10.1016/j.wneu.2018.11.033. Epub 2018 Nov 14. PubMed PMID: 30447444.
7)

Cavalcanti DD, Morais BA, Figueiredo EG, Spetzler RF, Preul MC. Surgical approaches for the lateral mesencephalic sulcus. J Neurosurg. 2019 Apr 12:1-6. doi: 10.3171/2019.1.JNS182036. [Epub ahead of print] PubMed PMID: 30978690.
9)

Rehder R, Luiz da Costa MP, Al-Mefty O, Cohen AR. Endoscope-Assisted Microsurgical Approach to the Posterior and Posterolateral Incisural Space. World Neurosurg. 2016 Jul;91:210-7. doi: 10.1016/j.wneu.2016.04.017. Epub 2016 Apr 16. PubMed PMID: 27090972.
10)

Zaidi HA, Elhadi AM, Lei T, Preul MC, Little AS, Nakaji P. Minimally Invasive Endoscopic Supracerebellar-Infratentorial Surgery of the Pineal Region: Anatomical Comparison of Four Variant Approaches. World Neurosurg. 2015 Aug;84(2):257-66. doi: 10.1016/j.wneu.2015.03.009. Epub 2015 Mar 28. PubMed PMID: 25827042.
11)

Kalani MYS, Couldwell WT. Extreme Lateral Supracerebellar Infratentorial Approach to the Lateral Midbrain. J Neurol Surg B Skull Base. 2018 Dec;79(Suppl 5):S415-S417. doi: 10.1055/s-0038-1669981. Epub 2018 Sep 25. PubMed PMID: 30456047; PubMed Central PMCID: PMC6240419.
12)

Vishteh AG, David CA, Marciano FF, Coscarella E, Spetzler RF. Extreme lateral supracerebellar infratentorial approach to the posterolateral mesencephalon: technique and clinical experience. Neurosurgery. 2000 Feb;46(2):384-8; discussion 388-9. PubMed PMID: 10690727.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: