Trans-radial artery approach

Trans-radial artery approach

Radial artery approach is based on the desire to diminish the incidence rate of haemorrhagic complications in the zone of the puncture and to avoid the necessity of a long-term bed rest in femoral artery approach. The findings obtained in numerous studies of coronary stenting and in a series of works on stenting of carotid arteries have demonstrated that the transradial approach reduces the risk of haemorrhage and local vascular complications.


It is important to be aware Aberrant right subclavian artery (ARSA) before surgical approaches to upper thoracic vertebrae in order to avoid complications and effect proper treatment. In patients with a known ARSA, a right transradial approach for aortography or cerebral angiography should be changed to a left radial artery or transfemoral artery approach 1).


Neurointerventionalists attempting the transradial approach can expect to achieve moderate early success and a low complication rate 2).

They can overcome the right transradial learning curve and achieve high success rates and low crossover rates after performing 30-50 cases 3).


The femoral artery is the most common access route for cerebral angiography and neurointerventional procedures. Complications of the transfemoral approach include groin hemorrhages and hematomas, retroperitoneal hematomas, pseudoaneurysms, arteriovenous fistulas, peripheral artery occlusions, femoral nerve injury, and access-site infections. Incidence rates vary among different randomized and nonrandomized trials, and the literature lacks a comprehensive review of this subject.

Oneissi et al. gather data from 16 randomized clinical trials (RCT) and 17 nonrandomized cohort studies regarding femoral access-site complications for a review paper. They also briefly discussed management strategies for these complications based on the most recent literature.

PubMed indexed search for all neuroendovascular clinical trials, retrospective studies, and prospective studies that reported femoral artery access-site complications in neurointerventional procedures.

The overall access-site complication rate in RCTs is 5.13%, while in non-RCTs, the rate is 2.78%. The most common complication in both groups is groin hematoma followed by access-site hemorrhage and femoral artery pseudoaneurysm. On the other hand, wound infection was the least common complication.

The transfemoral approach in neuroendovascular procedures holds risk for several complications. This review will allow further studies to compare access-site complications between the transfemoral approach and other alternative access sites, mainly the trans-radial artery approach, which is gaining a lot of interest nowadays 4).

Case series

Intra-arterial chemotherapy (IAC) has become one of the most important pillars in retinoblastoma (Rb) management. It allows for targeted delivery of chemotherapy by superselective catheterization of the ophthalmic artery, thus, reducing systemic toxicity. As in most neurovascular procedures, IAC has traditionally been performed through transfemoral access. However, recent publications have spurred the use of the trans-radial route for neuroendovascular procedures due to its lower complication rates and higher patient satisfaction. They presents the first case series in the literature on the technique, safety, and feasibility of IAC via the trans-radial route in the pediatric population.

Al Saiegh et al. retrospectively analyzed the prospectively maintained database and present the technique and initial experience from 5 consecutive pediatric patients aged between 3 and 15 years who underwent 10 trans-radial IAC treatments.

All IACs were performed successfully. Two patients had repeat IACs through the same wrist. There were no thromboembolic events or access site complications, such as hand ischemia or hematoma. All patients were discharged home the same day of the procedure.

This case series demonstrates the safety and feasibility of transradial IAC in pediatric patients with Rb. As more experience is gained with the transradial route for neurovascular procedures in adults, it may become the preferred route in some pediatric patients as well 5).


Chen et al. reviewed a prospective institutional database for all patients who underwent a transradial neurointerventional procedure between 2015 and 2019. Index procedures were defined as procedures performed via TRA after which there was a second TRA procedure attempted. Reasons for conversion to a transfemoral approach (TFA) for subsequent procedures were identified.

104 patients underwent 237 procedures (230 TRA, 7 TFA). 97 patients underwent ≥2 TRA procedures, 20 patients >3, four patients >4, three patients >5, and two patients >6 TRA procedures. The success rate was 94.7% (126/133) with 52% (66/126) of successive procedures performed via the same radial access site (snuffbox vs antebrachial) while the alternate radial artery segment was used for access in 48% (60/126) of subsequent procedures. There were seven (5.3%) cases requiring crossover to TFA, six cases for radial artery occlusion (RAO) and one for radial artery narrowing.

Successive TRA is both technically feasible and safe for neuroendovascular procedures in up to six procedures. The low failure rate (5.3%) was primarily due to RAO. Thus, even without clinical consequences, strategies to minimize RAO should be optimized for patients to continue to benefit from TRA in future procedures 6).


A study from Shchanitsyn et al., was aimed at comparative analysis of the transradial versus transfemoral approach used in carotid stenting. They retrospectively analysed the results of transradial and transfemoral stenting of carotid artery in a total of 168 patients. The operations had been performed in two centres over the period from 2012 to 2017. They evaluated the clinical and angiographic data, technical aspects of the operations, as well as the outcomes and complications. In particular, they compared such complications as stroketransient ischemic attack, myocardial infarction and local complications of the approach. They carried out a univariate analysis of the risk for the development of complications depending on the method of the approach. Stenting of carotid arteries had been performed in 75 patients through the radial artery approach and in 93 patients via the femoral one. Comparing the two groups, the main clinical and angiographic data appeared to have no statistically significant differences. Various techniques of catheterization had been used depending upon anatomical peculiarities. The success of the procedure was achieved in 100% of cases, with the frequency of conversion amounting to 4% for the radial approach and to 1% for the femoral one (p=0.087). Amongst complications encountered, disabling stroke was revealed in two (1.2%) patients and minor stroke in four (2.4%). The groups did not differ by the incidence of neurological complications. Within 30 postoperative days neither lethal outcomes nor myocardial infarction were registered. Neither were there haemorrhagic events or other approach-related complications, however in the transradial-approach group, seven (9.3%) patients were found to have developed asymptomatic occlusions of the radial artery. The duration of the operation, the radiation load, and the length of hospital stay had no statistically significant differences depending on the approach used. Hence, the transradial approach is an effective and safe method in stenting of carotid arteries. In patients with high risk of haemorrhagic complications from the side of the vascular approach and with difficult anatomy of the aortic arch and its branches, hampering catheterization of the carotid artery via the femoral approach, the radial artery may be considered as an advantageous site of access 7).

References

1)

Choi Y, Chung SB, Kim MS. Prevalence and Anatomy of Aberrant Right Subclavian Artery Evaluated by Computed Tomographic Angiography at a Single Institution in Korea. J Korean Neurosurg Soc. 2019 Mar;62(2):175-182. doi: 10.3340/jkns.2018.0048. Epub 2019 Feb 27. PubMed PMID: 30840972; PubMed Central PMCID: PMC6411572.
2)

Zussman BM, Tonetti DA, Stone J, Brown M, Desai SM, Gross BA, Jadhav A, Jovin TG, Jankowitz BT. A prospective study of the transradial approach for diagnostic cerebral arteriography. J Neurointerv Surg. 2019 Mar 6. pii: neurintsurg-2018-014686. doi: 10.1136/neurintsurg-2018-014686. [Epub ahead of print] PubMed PMID: 30842303.
3)

Zussman BM, Tonetti DA, Stone J, Brown M, Desai SM, Gross BA, Jadhav A, Jovin TG, Jankowitz BT. Maturing institutional experience with the transradial approach for diagnostic cerebral arteriography: overcoming the learning curve. J Neurointerv Surg. 2019 Apr 27. pii: neurintsurg-2019-014920. doi: 10.1136/neurintsurg-2019-014920. [Epub ahead of print] PubMed PMID: 31030189.
4)

Oneissi M, Sweid A, Tjoumakaris S, Hasan D, Gooch MR, Rosenwasser RH, Jabbour P. Access-Site Complications in Transfemoral Neuroendovascular Procedures: A Systematic Review of Incidence Rates and Management Strategies. Oper Neurosurg (Hagerstown). 2020 May 4. pii: opaa096. doi: 10.1093/ons/opaa096. [Epub ahead of print] PubMed PMID: 32365203.
5)

Al Saiegh F, Chalouhi N, Sweid A, Mazza J, Mouchtouris N, Khanna O, Tjoumakaris S, Gooch R, Shields CL, Rosenwasser R, Jabbour P. Intra-arterial chemotherapy for retinoblastoma via the transradial route: Technique, feasibility, and case series. Clin Neurol Neurosurg. 2020 Apr 6;194:105824. doi: 10.1016/j.clineuro.2020.105824. [Epub ahead of print] PubMed PMID: 32283473.
6)

Chen SH, Brunet MC, Sur S, Yavagal DR, Starke RM, Peterson EC. Feasibility of repeat transradial access for neuroendovascular procedures. J Neurointerv Surg. 2019 Oct 5. pii: neurintsurg-2019-015438. doi: 10.1136/neurintsurg-2019-015438. [Epub ahead of print] PubMed PMID: 31586940.
7)

Shchanitsyn IN, Sharafutdinov MR, Iakubov RA, Larin IV. [Transradial approach in carotid stenting]. Angiol Sosud Khir. 2018;24(2):114-122. Russian. PubMed PMID: 29924782.

Neurophysiology in Neurosurgery: A Modern Approach

Neurophysiology in Neurosurgery: A Modern Approach

by Vedran Deletis (Editor), Jay L. Shils (Editor), Francesco Sala (Editor), Kathleen Seidel (Editor)

List Price: $175.00

Buy

Neurophysiology in Neurosurgery: A Modern Approach, Second Edition provides updates on the original techniques and overall methodology used in neuromonitoring. The purpose of this book is to describe the integration of neuromonitoring with surgical procedures. Each methodology is discussed in detail, along with chapters that describe how those methodologies are applied to multiple neurosurgical procedures and the evidence used to support those uses. The second edition features surgical procedures section, which focuses on specific surgical procedures and the type of monitoring used during these procedures.

The book’s original chapters have been updated and expanded, with the structure modified to ensure the book is beneficial to both physiologists and surgeons. This book is written for neurosurgeons, neurophysiologists, neurologists, anesthesiologists, interventional neuroradiologists, orthopedic surgeons and plastic surgeons.

Provides a valuable educational tool that describes the theoretical and practical aspects of intraoperative monitoring through example Presents in-depth descriptions of the most advanced techniques in intraoperative neurophysiological monitoring, along with guidelines for the management of neuroanesthesia during MEP monitoring Features a surgical procedures section that focuses on specific surgical procedures and the type of monitoring used during these procedures

Imaging in Neurovascular Disease A Case-Based Approach

Imaging in Neurovascular Disease A Case-Based Approach

by Waleed Brinjikji (Author), Timo Krings (Author)

List Price: $149.99

Buy

Unique case-based reference presents high-yield images and expertise focused on vascular neuroradiology

Imaging in Neurovascular Disease: A Case-Based Approach by Waleed Brinjikji and Timo Krings is unique in its approach, detailing diagnostic and interventional neuroradiology cases based on radiologic findings. The book explores the key role vascular imaging can play in treatment decision making, prognostication, and improving the understanding of the pathophysiology of neurovascular diseases.

Spread over 11 chapters, this book covers a full spectrum of neurovascular diseases spanning the age continuum, starting with acute ischemic stroke, concluding with spinal vascular disease. All vascular neuroradiology cases follow a consistent format. After a succinct introduction describing the clinical scenario with relevant case images, the authors present key facts about the disease and the integral role of different neurovascular imaging procedures in disease management. Imaging findings are discussed in depth, with insightful clinical pearls on image-guided procedures and tips on managing potential pitfalls.

Key Highlights

About 600 high-quality noninvasive images, such as MR angiography/MR imaging, CT angiography/CT perfusion, with angiography where applicable, elucidate a spectrum of findings Analysis of the imaging appearance of a diverse array of common to rare neurovascular diseases provides diagnostic and treatment insights Each case concludes with the most important points clinicians need to know, high-yield facts about a specific cerebrovascular disease, and suggested readings for further exploration This unique case-based book is essential reading for radiology, neurology and neurosurgery residents. It will greatly benefit neurovascular disease specialists including radiologists, neurosurgeons and neurologists as well as interested in furthering their knowledge on the use of neuroimaging to guide neurointerventional and neurosurgical procedures to treat cerebrovascular disease.

This book includes complimentary access to a digital copy on https://medone.thieme.com.

WhatsApp WhatsApp us
%d bloggers like this: