Cervical juxtafacet cyst

Cervical juxtafacet cyst

A literature review till 2010 described only 28 symptomatic cervical synovial cyst cases 1)

A literature review till 2013 identified 35 studies with 89 previously reported cases of surgically treated subaxial juxtafacet cysts (JFCs) 2).

Attwell et al. presented an unusual case of acute symptomatology secondary to spontaneous haemorrhage into a cervical facet joint cyst 3)

Sasamori et al. report a case of cervical juxtafacet cyst with extensive rim enhancement on magnetic resonance imaging 4).

see atlantoaxial juxtafacet cyst

Juxtafacet cysts (JFCs) seem to be a degenerative change of the cervical spine rather than a traumatic event. Similar to their counterparts in the lumbar spine, they tend to arise in segments with increased mobility.

Sivakumar et al. have reported on the development of JFCs adjacent to anterior cervical fusion constructs, and consideration of JFCs as a form of adjacent level disease (ALD) has been hypothesized 5).

Moon et al. reported one patient that developed a C5/6 JFC 20 months after C4/5 anterior fusion and C5/6 anterior foraminotomy. In this case, despite progressive subluxation at C5/6 and solid C4/5 fusion demonstrated on flexion films 20 months after the original surgery, the patient underwent partial hemilaminectomy alone for cyst decompression. Outcome was favorable at 4 months follow-up 6)

Trauma

After a cervical spine fracture and, hence, was probably related to trauma. Surgical therapy resulted in a satisfactory recovery 7).

Chronic expansion of the extradural mass may lead to compression of the nerve root, thecal sac, or both, and may follow long periods of axial back pain without neurological deficit 8).

They are rare causes of neurological deficits. Their imaging characteristics, relationship to segmental instability, and potential for inducing acute symptomatic deterioration have only been described in a few case reports and small case series 9).

Less commonly, neurological deterioration has been attributed to rapid cystic growth with hemorrhage 10) 11)

Attwell et al., reported acute symptomatology secondary to spontaneous haemorrhage into a cervical facet joint cyst 12).

Combination with discal herniation and spina bifida occulta was diagnosed with computed tomography (CT) and magnetic resonance imaging (MRI) in one case 13).

Myelopathy

In the series of Christophis all cervico-thoracic or thoracic cysts presented myelopathy 14).

Till 1999 there have been only two previously reported cases of subaxial degenerative synovial cysts of the cervical spine in patients who presented with a clinical picture of spinal cord compression. Cudlip et al. report three additional patients treated for degenerative cervical synovial cysts who presented with myelopathy. In all three patients the cyst was successfully excised and a good clinical outcome achieved 15).

Cho el al. describe a case of an 80-year-old man with a gradual weakness of the lower extremities not linked to any known traumatic episode over the 2 weeks before admission. CT scan and MRI of the spine revealed a cystic formation, measuring about 1 cm in diameter, at C7-T1 at the left posterolateral site at the level of the articular facet. During surgery, the mass appeared to be in the ligamentum flavum at the level of the articular facet and was in contact with the dura mater. After the removal of the mass, there was an immediate and significant improvement of the patient’s symptoms. Histopathologic examination showed the cyst to be composed of nonspecific degenerative fibrous tissue with mild inflammatory change and confirmed the cyst as a synovial cyst. Synovial cyst in the cervical region is a very rare lesion causing myelopathy. Surgical removal of the cyst and decompression of the spinal cord results in good neurological recovery 16).

Brown-Sequard syndrome

Cheng et al. published a rare case of a patient with a ganglion cyst of the lower cervical spine presenting with acute Brown-Sequard syndrome. The patient had no history of trauma. Magnetic resonance imaging of the cervical spine showed a cystic lesion connecting to the synovial joint C6-7 and compressing the posterior aspect of the spinal cord. The patient underwent emergent C6-7 laminectomy with total removal of the cyst. Neurological function recovered completely 4 months after operation 17).

Magnetic resonance imaging reveal an intraspinal extradural cystic lesion in contact with the facet joint. The spinal cord can severely compressed by this lesion which is hypointense on T1-weighted imaging and hyperintense on T2-weighted imaging and short T1 inversion recovery. The cyst wall can strongly enhance after contrast injection 18).

Sasamori et al. report a case of cervical juxtafacet cyst with extensive rim enhancement on gadolinium-diethylenetriamine pentaacid magnetic resonance imaging.

Operative finding revealed the epidural space around the mass filled with abundant venous plexus. Histological examination demonstrated that cyst wall was composed of the well-vascularized fibrous connective tissue with some inflammatory changes. They speculate that extensive rim enhancement of juxtafacet cyst may be attributed not only to the chronic inflammatory changes of cyst wall, but to engorged venous plexus within the widened epidural space 19)

Surgical treatment is effective 20).

Colen and Rengachary report a spontaneous resolution of a cervical synovial cyst 21)

Technique

The head is positioned in Mayfield pins under gentle capital flexion, and the patient was positioned prone on gel rolls. Dissection proceeded in the subperiosteal plane, either unilaterally (e.g., hemilaminectomy) or bilaterally, depending on the goals of the decompression and the extent of spinal canal compromise. During resection of the lesion, the lateral facet and capsule were preserved as much as possible. When deemed necessary for complete decompression or visualization of the lesion, the laminectomy was extended to include a conservative medial facetectomy on the affected side.

The putative medial facet joint is carefully cauterized to minimize risk of cyst regrowth.

Instrumentation and fusion can be performed at the discretion of the operating surgeon. Loss of cervical lordosis, spondylolisthesis, hypermobility, index level neck pain, and iatrogenic instability following decompression are each relative indications for fusion.

Fixation can be accomplished using bilateral lateral mass/pedicle screw and rod constructs. Fusion can be augmented with morselized local autograft, with or without bone allograft.

12 consecutive patients (mean age 63.4 years, range 52-83 years) harboring 14 JFCs treated across 9 years was retrospectively reviewed. Clinical history, neurological status, preoperative imaging, operative findings, pathology, and postoperative outcomes were obtained from medical records. The mean follow up was 9.2 ± 7.8 months.

Most JFCs in this series involved the C7/T1 level. Nine patients reported axial neck pain, 12 patients had radicular symptoms, four patients had myelopathy, and one patient experienced rapid neurological decline attributable to cystic hemorrhage. Cyst expansion without hemorrhage caused subacute deterioration in one patient. All patients experienced sensory and/or motor improvement following surgical decompression. Preoperative axial neck pain improved in eight of nine patients (89 %). Seven out of 12 patients (58 %) underwent fusion either at the time of decompression (six patients) or at a delayed timepoint within the follow-up period (one patient). Prior history of cervical instrumentation, hypermobility on dynamic imaging, and other risk factors for segmental instability were more common in this series than in previous reports 22).

13 patients with synovial or ganglion cysts of the spinal facet joints causing nerve root compression. These cysts were found in both the cervical and the lumbar spine, and the anatomical location of each cyst corresponded to the patient’s signs and symptoms. In no case was there evidence of intervertebral disc abnormality found at operation. The patients ranged from 49 to 77 years of age and included 4 men and 9 women. Radiographic evidence of facet degenerative change and degenerative spondylolisthesis was frequently but not invariably noted. The extradural defects defined with positive contrast myelography or postmyelography computed tomographic scanning were usually posterior or posterolateral to the common dural sac and were misinterpreted as extruded discs in the majority of cases. Treatment consisted of laminectomy and surgical excision of cysts. All patients reported improvement or resolution of their presenting symptoms 23).

Chun et al. described an interesting case of cervical juxtafacet that developed outside the intervertebral foramen, compressing the cervical medial branch and causing neuropathic pain in the posterior inferior neck pain. A 61-year-old woman visited a local pain clinic due to neuropathic pain with a tingling and burning nature (numeric rating scale [NRS]: 5 out of 10) on the left posterior inferior neck area for 4 months. Paresthesia was observed in the left posterior inferior neck area. On cervical radiography, segmental instability was observed at the C3-4 and C4-5 levels. Moreover, on the magnetic resonance imaging (MRI) of the cervical spine, a cyst (size: 1.3 cm × 0.7 cm × 1 cm) was outside the intervertebral foramen, contacting the left C4-5 facet joint and left C5 articular pillar. We thought that compression of the left C5 medial branch by the cyst could cause the patient’s pain. We conducted computed tomography (CT)-guided percutaneous needle aspiration of a cervical juxtafacet cyst. An 18-gauge needle was advanced under the guidance of CT into the largest portion of the cyst through a posterolateral oblique approach. Gelatinous mucoid fluid (approximately 0.5 cc) was aspirated. Immediately after the aspiration, 80% of the patient’s pain was disappeared, and dysesthesia was completely disappeared. At the 1-, 3-, and 6-month follow-ups, the patient reported slight pain (NRS: 1) on the left posterior inferior neck. Cervical juxtafacet cysts can develop outside of the intervertebral foramen and spinal canal. Percutaneous needle aspiration can be a useful therapeutic tool for the treatment of such cysts 24)


Third reported case of a degenerative articular cyst of the upper cervical spine, involving the quadrate ligament of the odontoid process. Magnetic resonance examination reveals typical images. A new, more general terminology is proposed 25).


1)

Costa F, Menghetti C, Cardia A, Fornari M, Ortolina A. Cervical synovial cyst: case report and review of literature. Eur Spine J. 2010 Jul;19 Suppl 2:S100-2. doi: 10.1007/s00586-009-1094-6. Epub 2009 Jul 15. Review. PubMed PMID: 19603197; PubMed Central PMCID: PMC2899642.
2) , 9) , 22)

Uschold T, Panchmatia J, Fusco DJ, Abla AA, Porter RW, Theodore N. Subaxial cervical juxtafacet cysts: single institution surgical experience and literature review. Acta Neurochir (Wien). 2013 Feb;155(2):299-308. doi: 10.1007/s00701-012-1549-0. Epub 2012 Nov 17. Review. PubMed PMID: 23160630.
3) , 12)

Attwell L, Elwell VA, Meir A. Cervical synovial cyst. Br J Neurosurg. 2014 Dec;28(6):813-4. doi: 10.3109/02688697.2014.913782. Epub 2014 May 6. PubMed PMID: 24801806.
4) , 19)

Sasamori T, Hida K, Anzai K, Yano S, Kato Y, Tanaka S, Saito H, Houkin K. A case of cervical juxtafacet cyst with extensive rim enhancement on Gd-DTPA MRI. Clin Imaging. 2014 Mar-Apr;38(2):199-201. doi: 0.1016/j.clinimag.2013.10.002. Epub 2013 Nov 7. PubMed PMID: 24332973.
5)

Sivakumar W, Elder JB, Bilsky MH. Cervical juxtafacet cyst after anterior cervical discectomy and fusion. Neurosurg Focus. 2011 Oct;31(4):E19. doi: 10.3171/2011.8.FOCUS11119. Review. PubMed PMID: 21961863.
6)

Moon HJ, Kim JH, Kim JH, Kwon TH, Chung HS, Park YK. Cervical juxtafacet cyst with myelopathy due to postoperative instability. Case report. Neurol Med Chir (Tokyo). 2010;50(12):1129-31. PubMed PMID: 21206195.
7)

Cartwright MJ, Nehls DG, Carrion CA, Spetzler RF. Synovial cyst of a cervical facet joint: case report. Neurosurgery. 1985 Jun;16(6):850-2. PubMed PMID: 4010912.
8)

Boviatsis EJ, Stavrinou LC, Kouyialis AT, Gavra MM, Stavrinou PC, Themistokleous M, Selviaridis P, Sakas DE (2008) Spinal synovial cysts: pathogenesis, diagnosis and surgical treatment in a series of seven cases and literature review. Eur Spine J 17:831– 837
10)

Akhaddar A, Qamouss O, Belhachmi A, Elasri A, Okacha N, Elmostarchid B, Boucetta M (2008) Cervico-thoracic juxtafacet cyst causing spinal foraminal widening. Joint Bone Spine 75:747–749
11)

Jabre A, Shahbabian S, Keller JT (1987) Synovial cyst of the cervical spine. Neurosurgery 20:316–318
13)

Vastagh I, Palásti A, Nagy H, Veres R, Bálint K, Karlinger K, Várallyay G. Cervical juxtafacet cyst combined with spinal dysraphism. Clin Imaging. 2008 Sep-Oct;32(5):387-9. doi: 10.1016/j.clinimag.2008.02.034. PubMed PMID: 18760727.
14)

Christophis P, Asamoto S, Kuchelmeister K, Schachenmayr W. “Juxtafacet cysts”, a misleading name for cystic formations of mobile spine (CYFMOS). Eur Spine J. 2007 Sep;16(9):1499-505. Epub 2007 Jan 4. PubMed PMID: 17203271; PubMed Central
15)

Cudlip S, Johnston F, Marsh H. Subaxial cervical synovial cyst presenting with myelopathy. Report of three cases. J Neurosurg. 1999 Jan;90(1 Suppl):141-4.Review. PubMed PMID: 10413141.
16)

Cho BY, Zhang HY, Kim HS. Synovial cyst in the cervical region causing severe myelopathy. Yonsei Med J. 2004 Jun 30;45(3):539-42. PubMed PMID: 15227744.
17)

Cheng WY, Shen CC, Wen MC. Ganglion cyst of the cervical spine presenting with Brown-Sequard syndrome. J Clin Neurosci. 2006 Dec;13(10):1041-5. PubMed PMID:17113987.
18)

Cheng YY, Chen CC, Yang MS, Hung HC, Lee SK. Intraspinal extradural ganglion cyst of the cervical spine. J Formos Med Assoc. 2004 Mar;103(3):230-3. PubMed PMID: 15124052.
20)

Krauss WE, Atkinson JL, Miller GM. Juxtafacet cysts of the cervical spine.Neurosurgery. 1998 Dec;43(6):1363-8. Review. PubMed PMID: 9848850.
21)

Colen CB, Rengachary S. Spontaneous resolution of a cervical synovial cyst. Case illustration. J Neurosurg Spine. 2006 Feb;4(2):186. PubMed PMID: 16506489.
23)

Onofrio BM, Mih AD. Synovial cysts of the spine. Neurosurgery. 1988 Apr;22(4):642-7. PubMed PMID: 3374775.
24)

Chun YM, Boudier-Revéret M, Lee SH, Chang MC. Neuropathic Pain due to Compression of Cervical Medial Branch by Cervical Juxtafacet Cyst: A Case Report. Pain Pract. 2022 May 24. doi: 10.1111/papr.13129. Epub ahead of print. PMID: 35607892.
25)

Goffin J, Wilms G, Plets C, Bruneel B, Casselman J. Synovial cyst at the C1-C2 junction. Neurosurgery. 1992 Jun;30(6):914-6. PubMed PMID: 1614595.

Posterior cervical decompression

Posterior cervical decompression

Not typically used for a herniated cervical disc, more common for cervical spinal stenosisOPLL

● without posterior fusion

● with lateral mass fusion

b) keyhole laminotomy: sometimes permits removal of disc fragment

Usually reserved for the following conditions:

multiple cervical discs or osteophytes (anterior cervical discectomy (ACD) is usually used to treat only 2, or possibly 3, levels without) with myelopathy.

where the anterior pathology is superimposed on cervical stenosis, and the latter is more diffuse and/or more significant

in professional speakers or singers where the 4% risk of permanent voice change due to recurrent laryngeal nerve injury with ACD may be unacceptable.


Laminectomy and facetectomy are commonly used surgical procedures for decompressing cervical spinal stenosis. Resection of the posterior structures causes instability and affects the internal stresses of the cervical spinal components. However, the influence of these surgical procedures on the biomechanical responses of the cervical spine has not been studied.

A nonlinear finite element model of the intact C2-C7 was constructed and validated. Ten surgically altered models were created from the intact model and were tested under physiologic loading. Because of the inclusion of five motion segments, it was possible to determine the intersegmental responses and internal cortical shell and disc stresses in the adjacent altered and unaltered spinal components.

Under combined flexion and extension, intersegmental motions at C4-C5 and C5-C6 increased significantly after C5 laminectomy. Subsequent facetectomy performed at C5 and C6 on the laminectomized model only affected the responses at the C5-C6 segment. Overall, slight intersegmental responses of up to 5% were observed at the adjacent levels of C3-C4 and C6-C7. Laminectomy did not cause any significant increase in the intersegmental motions under lateral bending and axial rotation. Extending the surgical procedures to unilateral and bilateral facetectomy only increased the intersegmental motions slightly. Similar increases in the intervertebral disc and the cortical shell stresses were observed. These findings may partially explain the clinical observations of enhanced osteophytes formation.

This study provides a better understanding of the surgically altered cervical spinal biomechanics and may help formulate treatment strategies such as spinal implants 1).


Its a posterior cervical spine surgery, for cervical spinal stenosis. The spine surgeon removes a small section of the lamina to relieve compression on the nerve. The remaining spinal bones are connected back together with titanium metal rods and screws.

The skin incision is in the midline of the back of the neck and is about 3 to 4 inches long. The paraspinal muscles are then elevated from multiple levels. Removal of the lamina. A high-speed burr can be used to make a trough in the lamina on both sides right before it joins the facet joint. The lamina with the spinous process can then be removed as one piece (like a lobster tail). Removal of the lamina and spinous process allows the spinal cord to float backwards and gives it more room.


Cervical laminectomy resulted in the greatest increase in global cervical ROM. Resection of the intraspinous and supraspinous ligaments [ISLs).ISLs at C2-3 and C7-T1 increased segmental ROM at these specific levels to a similar extent that laminectomy increased ROM at each cervical level. This segmental ROM may contribute to pain or postprocedural deformity and highlights the importance of the ISLs at the terminal ends of the cervical open door laminoplasty (ODL) 2).

Cervical laminectomy complications.

Prone, some use pin head holder

a) C-arm

b) high speed drill

  1. implants: cervical lateral mass screws and rods if fusion is being done

4. neuromonitoring: some surgeons used SSEP/MEP: Use of intra-op EP monitoring during a routine surgery for CSM or cervical radiculopathy is not recommended as an indication to alter the surgical plan or administer steroids since this paradigm has not been observed to reduce the incidence of neurologic injury (Level D Class III).

5. consent (in lay terms for the patient—not all-inclusive):

a) procedure: surgery through the back of the neck to remove the bone over the compressed spinal cord and nerves and possibly to place screws and rods to fuse the boned together

b) alternatives: nonsurgical management, surgery from the front of the neck, posterior surgery without fusion, laminoplasty

c) complications: nerve root weakness (C5 nerve root is the most common), may not relieve symptoms, further surgery may be needed, possible seizures with MEPs. If fusion is not done, there is a risk of progressive bone slippage, which would require further surgery.

Posterior cervical decompression and fusion.

Posterior fossa decompression for Chiari type 1 deformity.


1)

Hong-Wan N, Ee-Chon T, Qing-Hang Z. Biomechanical effects of C2-C7 intersegmental stability due to laminectomy with unilateral and bilateral facetectomy. Spine (Phila Pa 1976). 2004 Aug 15;29(16):1737-45; discussion 1746. PubMed PMID: 15303016.
2)

Healy AT, Lubelski D, West JL, Mageswaran P, Colbrunn R, Mroz TE. Biomechanics of open-door laminoplasty with and without preservation of posterior structures. J Neurosurg Spine. 2016 May;24(5):746-51. doi: 10.3171/2015.7.SPINE15229. Epub 2016 Jan 22. PubMed PMID: 26799115.

Anterior cervical discectomy

Anterior cervical discectomy

The most common surgical techniques are cervical discectomy with or without fusing the two adjacent intervertebral bodies. Robinson and Smith 1) 2) 3) 4). introduced the anterior cervical decompression technique without microscope, but with fusion by inserting a bone graft harvested from the iliac crest of the patient.

Hankinson and Wilson 5) improved the procedure with the use of an operating microscope; however, they performed the surgery without leaving a graft behind; the results of both types of surgery were entirely comparable 6) 7) 8).

In time several modifications of these surgical techniques have been made 9) 10) 11).

Surgical decompression for cervical radiculopathy includes:

1.- Anterior cervical discectomy without any prosthesis or fusion: rarely used today.

2.- Anterior cervical discectomy and fusion with interbody fusion: the most common approach.

a.- without anterior cervical plate.

b.- with anterior cervical plate or with zero profile.

3.- with artificial disc: see Cervical disc arthroplasty

4.- Percutaneous

a.- Anterior percutaneous cervical disc chemonucleolysis.

Tissue trauma is significantly reduced with laser and endoscopic surgery techniques. Anterior cervical laser discectomy and Anterior percutaneous endoscopic cervical discectomy are both suitable for the specific indication of soft, symptomatic contained cervical disc herniations. A prospective cohort study indicates that Anterior cervical laser discectomy and Anterior percutaneous endoscopic cervical discectomy are options for cervical decompression surgery when medical comorbidities or preferences by patients and surgeons dictate more minimally invasive strategies 12).

see Anterior cervical discectomy technique

see Anterior cervical discectomy complications.

see Anterior cervical discectomy outcome.

see Anterior cervical discectomy case series.


1)

Aronson N, Filtzer Dl, Bugan M. Anterior cervical fusion by the Smith–Robinson approach. J Neurosurg. 1968;29:397–404.
2)

Robinson RA, Smith GW. Anterolateral cervical disc removal and interbody fusion for cervical disc syndrome. Bull John Hopkins Hosp. 1955;96(Suppl):223–224.
3)

Robinson RA. Anterior and posterior cervical spine fusions. Clin Orthop Relat Res. 1964 Jul-Aug;35:34-62. PubMed PMID: 5889170.
4)

SMITH GW, ROBINSON RA. The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am. 1958 Jun;40-A(3):607-24. PubMed PMID: 13539086.
5)

Hankinson HL, Wilson CB. Use of the operating microscope in anterior cervical discectomy without fusion. J Neurosurg. 1975 Oct;43(4):452-6. PubMed PMID: 1159482.
6)

Abd-Alrahman N, Dokmak AS, Abou-Madawi A. Anterior cervical discectomy (ACD) versus anterior cervical fusion (ACF), clinical and radiological outcome study. Acta Neurochir (Wien). 1999;141(10):1089-92. PubMed PMID: 10550654.
7)

Dowd GC, Wirth FP. Anterior cervical discectomy: is fusion necessary? J Neurosurg. 1999 Jan;90(1 Suppl):8-12. PubMed PMID: 10413119.
8)

Jacobs WC, Anderson PG, Limbeek J, Willems PC, Pavlov P. Single or double-level anterior interbody fusion techniques for cervical degenerative disc disease. Cochrane Database Syst Rev. 2004 Oct 18;(4):CD004958. Review. Update in: Cochrane Database Syst Rev. 2011;(1):CD004958. PubMed PMID: 15495130.
9)

Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA. A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. Spine (Phila Pa 1976). 2003 Jun 15;28(12):1219-24; discussion 1225. PubMed PMID: 12811263.
10)

CLOWARD RB. The anterior approach for removal of ruptured cervical disks. J Neurosurg. 1958 Nov;15(6):602-17. PubMed PMID: 13599052.
11)

Madawi AA, Powell M, Crockard HA. Biocompatible osteoconductive polymer versus iliac graft. A prospective comparative study for the evaluation of fusion pattern after anterior cervical discectomy. Spine (Phila Pa 1976). 1996 Sep 15;21(18):2123-9; discussion 2129-30. PubMed PMID: 8893437.
12)

Hellinger S, Knight M, Telfeian AE, Lewandrowski KU. Patient selection criteria for percutaneous anterior cervical laser versus endoscopic discectomy. Lasers Surg Med. 2022 Jan 6. doi: 10.1002/lsm.23514. Epub ahead of print. PMID: 34989414.
WhatsApp WhatsApp us
%d bloggers like this: