Cervical spondylotic myelopathy surgery outcome

Cervical spondylotic myelopathy surgery outcome

see Machine learning for degenerative cervical myelopathy.

Whilst decompressive surgery can halt disease progression, existing spinal cord damage is often permanent, leaving patients with lifelong disability.

Early surgery improves the likelihood of recovery, yet the average time from onset of symptoms to correct diagnosis is over 2 years. The majority of delays occur initially, before and within primary care, mainly due to a lack of recognition. Symptom checkers are widely used by patients before medical consultation and can be useful for preliminary triage and diagnosis. Lack of recognition of Degenerative Cervical Myelopathy (DCM) by symptom checkers may contribute to the delay in diagnosis.

The impact of the changes in myelopathic signs following cervical decompression surgery and their relationship to functional outcome measures remains unclear.

Surgery is associated with a significant quality of life improvement. The intervention is cost effective and, from the perspective of the hospital payer, should be supported 1).

Surgical decompression for CSM is safe and results in improved functional status and quality of life in patients around the world, irrespective of differences in medical systems and socio-cultural determinants of health 2).

The successful management of CSM depends upon an early and accurate diagnosis, an objective assessment of impairment and disability, and an ability to predict outcome. In this field, quantitative measures are increasingly used by clinicians to grade functional and neurological status and to provide decision-making support 3).


In addition, objective assessment tools allow clinicians to quantify myelopathy severity, predict outcome, and evaluate surgical benefits by tracking improvements throughout follow-up 4) 5) 6).

Several outcome measures assess functional impairment and quality of life in patients with cervical myelopathy 7) 8) 9) 10) 11).

A validated “gold standard,” however, has not been established, preventing the development of quantitative guidelines for CSM management 12).

In this field, one of the most widely accepted tool for assessing functional status is the modified Japanese Orthopaedic Association scale (mJOA).

Some studies have found that resolution of T2 hyperintensity in subjects with CSM who undergo ventral decompressive surgery correlates with improved functional outcomes. Other studies have found little correlation with postoperative outcome 13) 14).

References

1)

Witiw CD, Tetreault LA, Smieliauskas F, Kopjar B, Massicotte EM, Fehlings MG. Surgery for degenerative cervical myelopathy: a patient centered quality of life and health economic evaluation. Spine J. 2016 Oct 25. pii: S1529-9430(16)31022-1. doi: 10.1016/j.spinee.2016.10.015. [Epub ahead of print] PubMed PMID: 27793760.
2)

Fehlings MG, Ibrahim A, Tetreault L, Albanese V, Alvarado M, Arnold P, Barbagallo G, Bartels R, Bolger C, Defino H, Kale S, Massicotte E, Moraes O, Scerrati M, Tan G, Tanaka M, Toyone T, Yukawa Y, Zhou Q, Zileli M, Kopjar B. A Global Perspective on the Outcomes of Surgical Decompression in Patients with Cervical Spondylotic Myelopathy: Results from the Prospective Multicenter AOSpine International Study on 479 patients. Spine (Phila Pa 1976). 2015 May 27. [Epub ahead of print] PubMed PMID: 26020847.
3) , 12)

Singh A, Tetreault L, Casey A, et al. A summary of assessment tools for patients suffering from cervical spondylotic myelopathy: a systematic review on validity, reliability, and responsiveness [published online ahead of print September 5, 2013]. Eur Spine J. doi:10.1007/s00586-013-2935-x.
4)

Laing RJ. Measuring outcome in neurosurgery. Br J Neurosurg 2000;14:181–4.
5)

Holly LT, Matz PG, Anderson PA, et al. Clinical prognostic indicators of surgical outcome in cervical spondylotic myelopathy. J Neurosurg Spine 2009;11:112–8.
6)

Kalsi-Ryan S, Singh A, Massicotte EM, et al. Ancillary outcome measures for assessment of individuals with cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2013;38:S111–22.
7)

Singh A, Crockard HA. Quantitative assessment of cervical spondylotic myelopathy by a simple walking test. Lancet 1999;354:370–3.
8)

Nurick S. The natural history and the results of surgical treatment of the spinal cord disorder associated with cervical spondylosis. Brain 1972;95:101–8.
9)

Olindo S, Signate A, Richech A, et al. Quantitative assessment of hand disability by the nine-hole-peg test (9-HPT) in cervical spondylotic myelopathy. J Neurol Neurosurg Psychiatry 2008;79:965–7.
10)

Hosono N, Sakaura H, Mukai Y, et al. A simple performance test for quantifying the severity of cervical myelopathy [erratum in: J Bone Joint Surg Br 2008;90:1534]. J Bone Joint Surg Br 2008;90:1210–3.
11)

Casey AT, Bland JM, Crockard HA. Development of a functional scoring system for rheumatoid arthritis patients with cervical myelopathy. Ann Rheum Dis 1996;55:901–6.
13)

Sarkar S, Turel MK, Jacob KS, Chacko AG. The evolution of T2-weighted intramedullary signal changes following ventral decompressive surgery for cervical spondylotic myelopathy. J Neurosurg Spine. 2014;21(4):538-546.
14)

Vedantam A, Rajshekhar V. Change in morphology of intramedullary T2- weighted increased signal intensity after anterior decompressive surgery for cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2014;39(18):1458-1462.

Intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion

Intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion

Although Intraoperative neurophysiological monitoring has been shown to decrease the risk of neurological injury in deformity surgery, its utility in anterior cervical spine surgery (ACSS) remains controversial 1) 2) 3) 4) 5) 6)7) 8).

Proponents of intraoperative neurophysiological monitoring for ACSS claim that it improves patient safety and functional outcome whereas opponents refute this claim by citing increased cost and the lack of correlation between intraoperative neurophysiological monitoring abnormalities and postoperative neurological deficits especially with anterior cervical discectomy and fusions (ACDFs) 9) 10) 11) 12).


In a systematic review and meta-analysis from 2017, the risk of neurological injury after ACSS was low although procedures involving a corpectomy may carry a higher risk. For ACDFs, there is no difference in the risk of neurological injury with or without ION use. Unimodal ION has a higher specificity than multimodal ION and may minimize “subclinical” intraoperative alerts in ACSS 13)


A analysis of over 140,000 cases from the National Inpatient Sample data set, found that the use of intraoperative neurophysiological monitoringfor anterior cervical discectomy and fusion was not associated with a reduced rate of neurological complication14).

References

1)

Dawson EG, Sherman JE, Kanim LE, et al. Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine. 1991;16:S361–4.
2)

Diab M, Smith AR, Kuklo TR. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine. 2007;32:2759–63.
3)

Eggspuehler A, Sutter MA, Grob D, et al. Multimodal intraoperative monitoring during surgery of spinal deformities in 217 patients. Eur Spine J. 2007;16:S188–96.
4)

Forbes HJ, Allen PW, Waller CS, et al. Spinal cord monitoring in scoliosis surgery. Experience with 1168 cases. J Bone Joint Surg Br. 1991;73:487–91.
5)

Kamerlink JR, Errico T, Xavier S, et al. Major intraoperative neurologic monitoring deficits in consecutive pediatric and adult spinal deformity patients at one institution. Spine. 2010;35:240–5.
6)

Nuwer MR, Emerson RG, Galloway G, et al. Evidence-based guideline update: intraoperative spinal monitoring with somato-sensory and transcranial electrical motor evoked potentials*. J Clin Neurophysiol. 2012;29:101–8.
7)

Resnick DK, Choudhri TF, Dailey AT, et al. Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 15: electrophysiological monitoring and lumbar fusion. J Neurosurg Spine. 2005;2:725–32.
8)

Zhuang Q, Wang S, Zhang J, et al. How to make the best use of intraoperative motor evoked potential monitoring? Experience in 1162 consecutive spinal deformity surgical procedures. Spine. 2014;39:E1425–32.
9)

Engler GL, Spielholz NJ, Bernhard WN, et al. Somatosensory evoked potentials during Harrington instrumentation for scoliosis. J Bone Joint Surg Am. 1978;60:528–32.
10)

Epstein NE, Danto J, Nardi D. Evaluation of intraoperative somatosensory-evoked potential monitoring during 100 cervical operations. Spine. 1993;18:737–47.
11)

Taunt CJ, Jr, Sidhu KS, Andrew SA. Somatosensory evoked potential monitoring during anterior cervical discectomy and fusion. Spine. 2005;30:1970–2.
12)

Traynelis VC, Abode-Iyamah KO, Leick KM, et al. Cervical decompression and reconstruction without intraoperative neurophysiological monitoring. J Neurosurg Spine. 2012;16:107–13.
13)

Ajiboye RM, Zoller SD, Sharma A, Mosich GM, Drysch A, Li J, Reza T, Pourtaheri S. Intraoperative Neuromonitoring for Anterior Cervical Spine Surgery: What Is the Evidence? Spine (Phila Pa 1976). 2017 Mar 15;42(6):385-393. doi: 10.1097/BRS.0000000000001767. Review. PubMed PMID: 27390917; PubMed Central PMCID: PMC5552368.
14)

Badhiwala JH, Nassiri F, Witiw CD, Mansouri A, Almenawer SA, da Costa L, Fehlings MG, Wilson JR. Investigating the utility of intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion: analysis of over 140,000 cases from the National (Nationwide) Inpatient Sample data set. J Neurosurg Spine. 2019 Mar 29:1-11. doi: 10.3171/2019.1.SPINE181110. [Epub ahead of print] PubMed PMID: 30925481.

Anterior cervical disc arthroplasty versus anterior cervical discectomy and fusion

Anterior cervical disc arthroplasty versus anterior cervical discectomy and fusion

Anterior cervical disc arthroplasty has been shown in a number of prospective clinical studies to be a viable treatment alternative to anterior cervical discectomy and fusion (ACDF) for symptomatic cervical degenerative disc disease. In addition to preserving motion, some evidence suggests that this technique may result in a lower incidence of subsequent surgical intervention than treatment with fusion.

One reason for this trend is the observation that in clinical studies, patients with a history of cervical arthrodesis seem to have a higher incidence of adjacent segment degeneration 1)2) 3).

Furthermore, in biomechanical investigations, most authors have reported an increase in the segmental range of motion (ROM) and the intradiscal pressure (IDP) in the levels proximal and distal to a simulated mono- or bisegmental arthrodesis 4) 5) 6) 7) 8) 9) 10) 11) 12) 13).


MacDowall et al., from Sweden performed a randomized controlled trial with 153 patients (mean age 47 years) undergoing surgery for cervical radiculopathy. Eighty-three patients received an Artificial disc replacement (ADR) and 70 patients underwent fusion surgery. Outcomes after 5 years were assessed using patient-reported outcome measures using the Neck Disability Index (NDI) score as the primary outcomemotion preservation and heterotopic ossification by radiographyadjacent segment pathology (ASP) by MRI; and secondary surgical procedures.

Scores on the NDI were approximately halved in both groups: the mean score after 5 years was 36 (95% confidence interval [CI] 31-41) in the ADR group and 32 (95% CI 27-38) in the fusion group (p = 0.48). There were no other significant differences between the groups in six other patient-related outcome measures. Fifty-four percent of the patients in the ADR group preserved motion at the operated cervical level and 25% of the ADRs were spontaneously fused. Seventeen ADR patients (21%) and 7 fusion patients (10%) underwent secondary surgery (p = 0.11), with 5 patients in each group due to clinical ASP.

In patients with cervical degenerative disc disease and radiculopathy decompression as well as Artificial disc replacement, surgery did not result in better clinical or radiological outcomes after 5 years compared with anterior cervical discectomy and fusion. Clinical trial registration no.: 44347115 (ISRCTN) 14).


One hundred-nine patients with one level cervical disc herniation, were randomized to one of the following treatments: Anterior cervical disc arthroplasty (ACDA), Anterior cervical discectomy and fusion (ACDF) with intervertebral cageAnterior cervical discectomy (ACD) without fusion. Clinical and radiological outcome was measured by NDIVisual Analogue Scale (VAS) neck pain, VAS arm painSF-36EQ-5D, patients’ self-reported perceived recovery, radiographic cervical curvature, and adjacent segment degeneration (ASD) parameters at baseline and until two years after surgery. BBraun Medical paid €298.837 to cover the costs for research nurses.

The NDI declined from 41 to 47 points at baseline to 19±15 in the ACD group, 19± 18 in the ACDF group, and 20±22 in the ACDA group after surgery (p=0.929). VAS arm and neck pain declined to half its baseline value and decreased below the critical value of 40 mm. Quality of life, measured by the EQ-5D, increased in all three groups. ASD parameters were comparable in all three groups as well. No statistical differences were demonstrated between the treatment groups.

The hypothesis that ACDA would lead to superior clinical outcome in comparison to ACDF or ACD could not be confirmed during a two-year follow-up time period. Single level ACD without implanting an intervertebral device may be a reasonable alternative to ACDF or ACDA 15).


Findlay et al., from London and Edinburgh, researched for cervical total disc replacement versus anterior cervical discectomy and fusion.

Databases including MedlineEmbase, and Scopus were searched. Inclusion criteria involved prospective randomized control trials (RCTs) reporting the surgical treatment of patients with symptomatic degenerative cervical disc disease. Two independent investigators extracted the data. The strength of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) criteria. The primary outcome measures were overall and neurological success, and these were included in the meta-analysis. Standardized patient-reported outcomes, including the incidence of further surgery and adjacent segment disease, were summarized and discussed.

A total of 22 papers published from 14 randomized control trials (RCTs) were included, representing 3160 patients with follow-up of up to ten years. Meta-analysis indicated that TDR is superior to ACDF at two years and between four and seven years. In the short-term, patients who underwent TDR had better patient-reported outcomes than those who underwent ACDF, but at two years this was typically not significant. Results between four and seven years showed significant differences in Neck Disability Index (NDI), 36-Item Short-Form Health Survey (SF-36) physical component scores, dysphagia, and satisfaction, all favouring TDR. Most trials found significantly less adjacent segment disease after TDR at both two years (short-term) and between four and seven years (medium- to long-term).

TDR is as effective as ACDF and superior for some outcomes. Disc replacement reduces the risk of adjacent segment disease. Continued uncertainty remains about degeneration of the prosthesis. Long-term surveillance of patients who undergo TDR may allow its routine use 16).


Although cervical disc arthroplasty (CDA) at C3-4 was infrequent, the improved clinical outcomes of CDA were similar at C3-4 to that in the other subaxial levels of the cervical spine at the approximately 5-year follow-ups. In this Asian population, who had a propensity to have ossification of the posterior longitudinal ligament, there was more heterotopic ossification (HO) formation in patients who received CDA at the C3-4 level than in other subaxial levels of the cervical spine. While the type of artificial discs could have confounded the issue, future studies with more patients are required to corroborate the phenomenon 17).


The hypothesis that ACDA would lead to superior clinical outcome in comparison to ACDF or anterior cervical discectomy (ACD) could not be confirmed during a two-year follow-up time period. Single level ACD without implanting an intervertebral device may be a reasonable alternative to ACDF or ACDA 18).

Cost-effectiveness

A study is the first to report the comparative cost-effectiveness of cervical total disc replacement (cTDR) vs anterior cervical discectomy and fusion(ACDF) for 2-level degenerative disc disease at 5 years. Ament et al conclude that, because of the negative incremental cost-effective ratio (ICER), cTDR is the dominant modality 19)

Patients who underwent CTDR for single-level degenerative disease had lower readmission rates, lower reoperation rates, and reduced index and total costs than those treated with ACDF. Cervical disc arthroplasty (CDA) was effective in reducing the monthly cost of care compared with ACDF20).

Based on a modeling evaluation, CTDR was found to be more effective and less costly over a 7-year time horizon for patients with single-level symptomatic degenerative disc disease. These results are robust across a range of scenarios and perspectives and are intended to support value-based decision making 21).

The incremental cost-effectiveness ratio of CTDR compared with traditional ACDF is lower than the commonly accepted threshold of $50,000 per QALY. This remains true with varying input parameters in a robust sensitivity analysis, reaffirming the stability of the model and the sustainability of this intervention 22).

At the same time, while generating clinical results comparable to spinal fusion, TDR incurred significantly lower costs. Therefore, both from the medical and from the financial point of view, TDR is a viable choice in the treatment of DDP 23).

Results of the sensitivity analysis indicated that CDR must remain functional for at least 14 years to establish greater cost-effectiveness than ACDF. Since the current literature has yet to demonstrate with certainty the actual durability and long-term functionality of CDR, future long-term studies are required to validate the present analysis 24).


Although cervical total disc replacement (TDR) has shown equivalence or superiority to anterior cervical discectomy and fusion (ACDF), potential problems include nonphysiological motion (hypermobility), accelerated degeneration of the facet joints, particulate wear, and compromise of the mechanical integrity of the endplate during device fixation.

There is no definitive evidence that TDR has better intermediate-term results than anterior cervical discectomy and fusion (ACDF) 25).


3D motion analysis data comparing patients after ACDF and AD replacement in ten patients who underwent C5-6 ACDF and 7 who underwent C5-6 AD replacement were enrolled. Using biplanar fluoroscopy and a model-based track technique (accurate up to 0.6 mm and 0.6°), motion analysis of axial rotation and flexion-extension of the neck was performed. Three nonoperative segments (C3-4, C4-5, and C6-7) were assessed for both intervertebral rotation (coronal, sagittal, and axial planes) and facet shear (anteroposterior and mediolateral). Results There was no difference in total neck motion comparing ACDF and AD replacement for neck extension (43.3° ± 10.2° vs 44.3° ± 12.6°, p = 0.866) and rotation (36.0° ± 6.5° vs 38.2° ± 9.3°, p = 0.576). For extension, when measured as a percentage of total neck motion, there was a greater amount of rotation at the nonoperated segments in the ACDF group than in the AD group (p = 0.003). When comparing specific motion segments, greater normalized rotation was seen in the ACDF group at C3-4 (33.2% ± 4.9% vs 26.8% ± 6.6%, p = 0.036) and C6-7 (28.5% ± 6.7% vs 20.5% ± 5.5%, p = 0.009) but not at C4-5 (33.5% ± 6.4% vs 31.8% ± 4.0%, p = 0.562). For neck rotation, greater rotation was observed at the nonoperative segments in the ACDF group than in the AD group (p = 0.024), but the differences between individual segments did not reach significance (p ≥ 0.146). Increased mediolateral facet shear was seen on neck extension with ACDF versus AD replacement (p = 0.008). Comparing each segment, C3-4 (0.9 ± 0.5 mm vs 0.4 ± 0.1 mm, p = 0.039) and C4-5 (1.0 ± 0.4 mm vs 0.5 ± 0.2 mm, p = 0.022) showed increased shear while C6-7 (1.0 ± 0.4 mm vs 1.0 ± 0.5 mm, p = 0.767) did not.

This study illustrates increased motion at nonoperative segments in patients who have undergone ACDF compared with those who have undergone AD replacement. Further studies will be required to examine whether these changes contribute to adjacent-segment disease 26).

The data from a investigational device exemption (IDE) study through 48 months signify a number of clinically relevant benefits for total disc replacement (TDR) over anterior cervical discectomy and fusion (ACDF). Patients experienced improved clinical outcomes with TDR—including improvement in pain and function outcomes and superiority in overall primary endpoint success. Additionally, incidences of adjacent segment degeneration and subsequent surgeries were reduced with TDR. Perhaps future studies and also longer-term followup of this patient cohort may continue to establish 2-level cervical TDR as a superior surgical option for symptomatic degenerative disc disease 27).

References

1)

Goffin J, Geusens E, Vantomme N, Quintens E, Waerzeggers Y, Depreitere B, et al. Long-term follow-up after interbody fusion of the cervical spine. J Spinal Disord Tech. 2004;17:79–85. doi: 10.1097/00024720-200404000-00001.
2)

Gore DR, Sepic SB. Anterior discectomy and fusion for painful cervical disc disease: a report of 50 patients with an average follow-up of 21 years. Spine. 1998;23:2047–2051. doi: 10.1097/00007632-199810010-00002.
3)

Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman H. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg. 1999;81-A:519–528.
4)

Chang U-K, Kim DH, Lee MC, Willenberg R, Kim S-H, Lim J. Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion. J Neurosurg Spine. 2007;7:33–39. doi: 10.3171/SPI-07/07/033.
5)

Chang U-K, Kim DH, Lee MC, Willenberg R, Kim S-H, Lim J. Range of motion change after cervical arthroplasty with ProDisc-C and Prestige artificial discs compared with anterior cervical discectomy and fusion. J Neurosurg Spine. 2007;7:40–46. doi: 10.3171/SPI-07/07/040.
6)

DiAngelo DJ, Foley KT, Morrow BR, Schwab JS, Song J, German JW, et al. In vitro biomechanics of cervical disc arthroplasty with the ProDisc-C total disc implant. Neurosurg Focus. 2004;17(E7):44–54. doi: 10.3171/foc.2004.17.3.7.
7)

DiAngelo DJ, Robertson JT, Metcalf NH, McVay BJ, Davis RC. Biomechanical testing of an artificial cervical joint and an anterior plate. J Spinal Disord Tech. 2003;16:314–323. doi: 10.1097/00024720-200308000-00002.
8)

Dmitriev AE, Cunningham BW, Hu N, Sell G, Vigna F, McAfee PC. Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty. An in vitro human cadaveric model. Spine. 2005;30:1165–1172. doi: 10.1097/01.brs.0000162441.23824.95.
9)

Eck JC, Humphreys SC, Lim T-H, Jeong ST, Kim JG, Hodges SD, et al. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine. 2002;27:2431–2434. doi: 10.1097/00007632-200211150-00003.
10)

Fuller DA, Kirkpatrick JS, Emery SE. A kinematic study of the cervical spine before and after segmental arthrodesis. Spine. 1998;23:1649–1656. doi: 10.1097/00007632-199808010-00006.
11)

Park D-H, Ramakrishnan P, Cho T-H, Lorenz E, Eck JC, Humphreys SC, et al. Effect of lower two-level anterior cervical fusion on the superior adjacent level. J Neurosurg Spine. 2007;7:336–340. doi: 10.3171/SPI-07/09/336.
12)

Pospiech J, Stolke D, Wilke HJ, Claes LE. Intradiscal pressure recordings in the cervical spine. Neurosurgery. 1999;44:379–384. doi: 10.1097/00006123-199902000-00078.
13)

Ragab AA, Escarcega AJ, Zdeblick TA. A quantitative analysis of strain at adjacent segments after segmental immobilization of the cervical spine. J Spinal Disord Tech. 2006;19:407–410. doi: 10.1097/00024720-200608000-00006.
14)

MacDowall A, Canto Moreira N, Marques C, Skeppholm M, Lindhagen L, Robinson Y, Löfgren H, Michaëlsson K, Olerud C. Artificial disc replacement versus fusion in patients with cervical degenerative disc disease and radiculopathy: a randomized controlled trial with 5-year outcomes. J Neurosurg Spine. 2019 Jan 11:1-9. doi: 10.3171/2018.9.SPINE18659. [Epub ahead of print] PubMed PMID: 30641852.
15) , 18)

Vleggeert-Lankamp CLA, Janssen TMH, van Zwet E, Goedmakers CMW, Bosscher L, Peul W, Arts MP. The NECK trial: Effectiveness of anterior cervical discectomy with or without interbody fusion and arthroplasty in the treatment of cervical disc herniation; a double-blinded randomised controlled trial. Spine J. 2018 Dec 21. pii: S1529-9430(18)31322-6. doi: 10.1016/j.spinee.2018.12.013. [Epub ahead of print] PubMed PMID: 30583108.
16)

Findlay C, Ayis S, Demetriades AK. Total disc replacement versus anterior cervical discectomy and fusion. Bone Joint J. 2018 Aug;100-B(8):991-1001. doi: 10.1302/0301-620X.100B8.BJJ-2018-0120.R1. PubMed PMID: 30062947.
17)

Chang PY, Chang HK, Wu JC, Huang WC, Fay LY, Tu TH, Wu CL, Cheng H. Differences between C3-4 and other subaxial levels of cervical disc arthroplasty: more heterotopic ossification at the 5-year follow-up. J Neurosurg Spine. 2016 May;24(5):752-9. doi: 10.3171/2015.10.SPINE141217. Epub 2016 Jan 29. PubMed PMID: 26824584.
19)

Ament JD, Yang Z, Nunley P, Stone MB, Lee D, Kim KD. Cost Utility Analysis of the Cervical Artificial Disc vs Fusion for the Treatment of 2-Level Symptomatic Degenerative Disc Disease: 5-Year Follow-up. Neurosurgery. 2016 Jul;79(1):135-45. doi: 10.1227/NEU.0000000000001208. PubMed PMID: 26855020; PubMed Central PMCID: PMC4900425.
20)

Radcliff K, Zigler J, Zigler J. Costs of Cervical Disc Replacement Versus Anterior Cervical Discectomy and Fusion for Treatment of Single-Level Cervical Disc Disease: An Analysis of the Blue Health Intelligence Database for Acute and Long-term Costs and Complications. Spine (Phila Pa 1976). 2015 Apr 15;40(8):521-9. doi: 10.1097/BRS.0000000000000822. PubMed PMID: 25868092.
21)

Radcliff K, Lerner J, Yang C, Bernard T, Zigler JE. Seven-year cost-effectiveness of ProDisc-C total disc replacement: results from investigational device exemption and post-approval studies. J Neurosurg Spine. 2016 May;24(5):760-8. doi: 10.3171/2015.10.SPINE15505. Epub 2016 Jan 29. PubMed PMID: 26824587.
22)

Ament JD, Yang Z, Nunley P, Stone MB, Kim KD. Cost-effectiveness of cervical total disc replacement vs fusion for the treatment of 2-level symptomatic degenerative disc disease. JAMA Surg. 2014 Dec;149(12):1231-9. doi: 10.1001/jamasurg.2014.716. Erratum in: JAMA Surg. 2014 Dec;149(12):1295. PubMed PMID: 25321869.
23)

Wiedenhöfer B, Nacke J, Stephan M, Richter W, Carstens C, Eichler M. Is Total Disc Replacement a Cost Effective Treatment for Cervical Degenerative Disc Disease? J Spinal Disord Tech. 2014 Oct 10. [Epub ahead of print] PubMed PMID: 25310395.
24)

Qureshi SA, McAnany S, Goz V, Koehler SM, Hecht AC. Cost-effectiveness analysis: comparing single-level cervical disc replacement and single-level anterior cervical discectomy and fusion: clinical article. J Neurosurg Spine. 2013 Nov;19(5):546-54. doi: 10.3171/2013.8.SPINE12623. Epub 2013 Sep 6. PubMed PMID: 24010896.
25)

Li Z, Yu S, Zhao Y, Hou S, Fu Q, Li F, Hou T, Zhong H. Clinical and radiologic comparison of dynamic cervical implant arthroplasty versus anterior cervical discectomy and fusion for the treatment of cervical degenerative disc disease. J Clin Neurosci. 2013 Nov 4. pii: S0967-5868(13)00585-7. doi:10.1016/j.jocn.2013.09.007. [Epub ahead of print] PubMed PMID: 24411326.
26)

McDonald CP, Chang V, McDonald M, Ramo N, Bey MJ, Bartol S. Three-dimensional motion analysis of the cervical spine for comparison of anterior cervical decompression and fusion versus artificial disc replacement in 17 patients. J Neurosurg Spine. 2013 Dec 20. [Epub ahead of print] PubMed PMID: 24359000.
27)

Davis RJ, Nunley PD, Kim KD, Hisey MS, Jackson RJ, Bae HW, Hoffman GA, Gaede SE, Danielson GO 3rd, Gordon C, Stone MB. Two-level total disc replacement with Mobi-C cervical artificial disc versus anterior discectomy and fusion: a prospective, randomized, controlled multicenter clinical trial with 4-year follow-up results. J Neurosurg Spine. 2015 Jan;22(1):15-25. doi: 10.3171/2014.7.SPINE13953. PubMed PMID: 25380538.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: