Anterior percutaneous endoscopic cervical discectomy

Anterior percutaneous endoscopic cervical discectomy

Since the early 2000s, increasingly practical PECD techniques have been introduced because of advancements in working channel endoscope and surgical instrument technology 1) 2) 3) 4).

Anterior percutaneous endoscopic cervical discectomy (PECD) is an effective minimally invasive surgery for soft cervical disc herniation in properly selected cases 5) 6).

The PECD prototype is fluoroscopically guided percutaneous cervical disc decompression without endoscopic visualization, such as automated nucleotomy 7) 8).

Randomized controlled trials

Ahn et al. compared the surgical results of PECD and ACDF. Data from patients treated with single-level PECD (n = 51) or ACDF (n = 64) were analyzed. Patients were prospectively entered into the clinical database and their records were retrospectively reviewed. Perioperative data and clinical outcomes were evaluated using the visual analogue scale (VAS), Neck Disability Index (NDI), and modified Macnab criteriaVAS and NDI results significantly improved in both groups. The rates of excellent or good results were 88.24% and 90.63% in the PECD and ACDF group, respectively. The revision rates were 3.92% and 1.56% in the PECD and ACDF group, respectively. Operative time, hospital stay, and time to return to work were reduced in the PECD group compared to the ACDF group (p < 0.001). The five-year outcomes of PECD were comparable to those of conventional ACDF. PECD provided the typical benefits of minimally invasive surgery and may be an effective alternative for treating soft cervical disc herniation 9).


A total of 103 patients with ACDF or FACD were followed up for two years. In addition to general parameters specific measuring instruments were used. Postoperatively 85.9% of the patients no longer had arm pain, and 10.1% had occasional pain. There were no significant clinical differences between the decompression with or without fusion. The full-endoscopic technique afforded advantages in operation technique, rehabilitation and soft tissue injury. The recorded results show that FACD is a sufficient and safe alternative to conventional procedures when the indication criteria are fulfilled. At the same time, it offers the advantages of a minimally invasive intervention 10).

References

1)

Chiu, J.C.; Clifford, T.J.; Greenspan, M.; Richley, R.C.; Lohman, G.; Sison, R.B. Percutaneous microdecompressive endoscopic cervical discectomy with laser thermodiskoplasty. Mt. Sinai. J. Med. 2000, 67, 278–282.
2)

Ahn, Y.; Lee, S.H.; Lee, S.C.; Shin, S.W.; Chung, S.E. Factors predicting excellent outcome of percutaneous cervical discectomy: analysis of 111 consecutive cases. Neuroradiology 2004, 46, 378–384.
3)

Ahn, Y.; Lee, S.H.; Shin, S.W. Percutaneous endoscopic cervical discectomy: clinical outcome and radiographic changes. Photomed. Laser Surg. 2005, 23, 362–368.
4)

Ahn, Y.; Lee, S.H.; Chung, S.E.; Park, H.S.; Shin, S.W. Percutaneous endoscopic cervical discectomy for discogenic cervical headache due to soft disc herniation. Neuroradiology 2005, 47, 924–930
5)

Lee, J.H.; Lee, S.H. Clinical and radiographic changes after percutaneous endoscopic cervical discectomy: a long‐term follow‐up. Photomed. Laser. Surg. 2014, 32, 663–668.
6)

Ahn, Y. Percutaneous endoscopic cervical discectomy using working channel endoscopes. Expert. Rev. Med. Devices 2016, 13, 601–610.
7)

Courtheoux, F.; Theron, J. Automated percutaneous nucleotomy in the treatment of cervicobrachial neuralgia due to disc herniation. J. Neuroradiol. 1992, 19, 211–216.
8)

Bonaldi, G.; Minonzio, G.; Belloni, G.; Dorizzi, A.; Fachinetti, P.; Marra, A.; Goddi, A. Percutaneous cervical diskectomy: preliminary experience. Neuroradiology 1994, 36, 483–486.
9)

Ahn Y, Keum HJ, Shin SH. Percutaneous Endoscopic Cervical Discectomy Versus Anterior Cervical Discectomy and Fusion: A Comparative Cohort Study with a Five-Year Follow-Up. J Clin Med. 2020 Jan 29;9(2). pii: E371. doi: 10.3390/jcm9020371. PubMed PMID: 32013206.
10)

Ruetten S, Komp M, Merk H, Godolias G. Full-endoscopic anterior decompression versus conventional anterior decompression and fusion in cervical disc herniations. Int Orthop. 2009 Dec;33(6):1677-82. doi: 10.1007/s00264-008-0684-y. Epub 2008 Nov 18. PubMed PMID: 19015851; PubMed Central PMCID: PMC2899164.

Factors Related to the Primary Discectomy in Recurrent Lumbar Disc Herniation

Factors Related to the Primary Discectomy in Recurrent Lumbar Disc Herniation

The degree of disc removal did not influence the outcome or complication rate in Fountas et al., clinical series 1)

For Carragee et al., the more aggressive removal of remaining intervertebral disc material may decrease the risk of reherniation, but the overall outcome was less satisfactory, especially during the first year after surgery 2).

McGirt et al., found that larger annulus defects and smaller percentage of disc removed during primary surgery, rather than absolute volume as reported in previous studies, were associated with an increased risk of recurrent lumbar disc herniation while more aggressive removal contributed to accelerated disc height loss 3).

systematic review of the literature suggests that conservative discectomy may result in shorter operative time, quicker return to work, and a decreased incidence of long-term recurrent low back pain but with an increased incidence of recurrent disc herniation. Prospective randomized trails are needed to firmly assess this possible benefit. 4).

The question remains how to balance the desire for maintaining disc height with minimizing the risk for reherniation 5).

References

 
1) 
Fountas KN, Kapsalaki EZ, Feltes CH, et al. Correlation of the amount of disc removed in a lumbar microdiscectomy with long-term outcome. Spine (Phila Pa 1976). 2004;29:2521–2526.
2) 
Carragee EJ, Spinnickie AO, Alamin TF, Paragioudakis S. A prospective controlled study of limited versus subtotal posterior discectomy: short-term outcomes in patients with herniated lumber intervertebral discs and large posterior anular defect. Spine (Phila Pa 1976). 2006;31:653–657.
3) 
McGirt MJ, Eustacchio S, Varga P, et al. A prospective cohort study of close interval computed tomography and magnetic resonance imaging after primary lumbar discectomy: factors associated with recurrent disc herniation and disc height loss. Spine (Phila Pa 1976). 2009;34:2044–2051.
4) 
Walters WC, 3rd, McGirt MJ. An evidence-based review of the literature on the consequences of conservative versus aggressive discectomy for the treatment of primary disc herniation with radiculopathy. Spine J. 2009;9:240–257.
5) 
Shepard N, Cho W. Recurrent Lumbar Disc Herniation: A Review. Global Spine J. 2019 Apr;9(2):202-209. doi: 10.1177/2192568217745063. Epub 2017 Dec 18. Review. PubMed PMID: 30984501; PubMed Central PMCID: PMC6448208.

Intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion

Intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion

Although Intraoperative neurophysiological monitoring has been shown to decrease the risk of neurological injury in deformity surgery, its utility in anterior cervical spine surgery (ACSS) remains controversial 1) 2) 3) 4) 5) 6)7) 8).

Proponents of intraoperative neurophysiological monitoring for ACSS claim that it improves patient safety and functional outcome whereas opponents refute this claim by citing increased cost and the lack of correlation between intraoperative neurophysiological monitoring abnormalities and postoperative neurological deficits especially with anterior cervical discectomy and fusions (ACDFs) 9) 10) 11) 12).


In a systematic review and meta-analysis from 2017, the risk of neurological injury after ACSS was low although procedures involving a corpectomy may carry a higher risk. For ACDFs, there is no difference in the risk of neurological injury with or without ION use. Unimodal ION has a higher specificity than multimodal ION and may minimize “subclinical” intraoperative alerts in ACSS 13)


A analysis of over 140,000 cases from the National Inpatient Sample data set, found that the use of intraoperative neurophysiological monitoringfor anterior cervical discectomy and fusion was not associated with a reduced rate of neurological complication14).

References

1)

Dawson EG, Sherman JE, Kanim LE, et al. Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine. 1991;16:S361–4.
2)

Diab M, Smith AR, Kuklo TR. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine. 2007;32:2759–63.
3)

Eggspuehler A, Sutter MA, Grob D, et al. Multimodal intraoperative monitoring during surgery of spinal deformities in 217 patients. Eur Spine J. 2007;16:S188–96.
4)

Forbes HJ, Allen PW, Waller CS, et al. Spinal cord monitoring in scoliosis surgery. Experience with 1168 cases. J Bone Joint Surg Br. 1991;73:487–91.
5)

Kamerlink JR, Errico T, Xavier S, et al. Major intraoperative neurologic monitoring deficits in consecutive pediatric and adult spinal deformity patients at one institution. Spine. 2010;35:240–5.
6)

Nuwer MR, Emerson RG, Galloway G, et al. Evidence-based guideline update: intraoperative spinal monitoring with somato-sensory and transcranial electrical motor evoked potentials*. J Clin Neurophysiol. 2012;29:101–8.
7)

Resnick DK, Choudhri TF, Dailey AT, et al. Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 15: electrophysiological monitoring and lumbar fusion. J Neurosurg Spine. 2005;2:725–32.
8)

Zhuang Q, Wang S, Zhang J, et al. How to make the best use of intraoperative motor evoked potential monitoring? Experience in 1162 consecutive spinal deformity surgical procedures. Spine. 2014;39:E1425–32.
9)

Engler GL, Spielholz NJ, Bernhard WN, et al. Somatosensory evoked potentials during Harrington instrumentation for scoliosis. J Bone Joint Surg Am. 1978;60:528–32.
10)

Epstein NE, Danto J, Nardi D. Evaluation of intraoperative somatosensory-evoked potential monitoring during 100 cervical operations. Spine. 1993;18:737–47.
11)

Taunt CJ, Jr, Sidhu KS, Andrew SA. Somatosensory evoked potential monitoring during anterior cervical discectomy and fusion. Spine. 2005;30:1970–2.
12)

Traynelis VC, Abode-Iyamah KO, Leick KM, et al. Cervical decompression and reconstruction without intraoperative neurophysiological monitoring. J Neurosurg Spine. 2012;16:107–13.
13)

Ajiboye RM, Zoller SD, Sharma A, Mosich GM, Drysch A, Li J, Reza T, Pourtaheri S. Intraoperative Neuromonitoring for Anterior Cervical Spine Surgery: What Is the Evidence? Spine (Phila Pa 1976). 2017 Mar 15;42(6):385-393. doi: 10.1097/BRS.0000000000001767. Review. PubMed PMID: 27390917; PubMed Central PMCID: PMC5552368.
14)

Badhiwala JH, Nassiri F, Witiw CD, Mansouri A, Almenawer SA, da Costa L, Fehlings MG, Wilson JR. Investigating the utility of intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion: analysis of over 140,000 cases from the National (Nationwide) Inpatient Sample data set. J Neurosurg Spine. 2019 Mar 29:1-11. doi: 10.3171/2019.1.SPINE181110. [Epub ahead of print] PubMed PMID: 30925481.
WhatsApp WhatsApp us
%d bloggers like this: