Moyamoya disease classification

Moyamoya disease classification

The ischemic and hemorrhagic subtypes are difficult to diagnose prior to disease onset.

The intralateral and perilateral ventricular arteries on the original axial Time of flight magnetic resonance angiography images might suggest the hemorrhagic type of moyamoya disease prior to onset 1).

Unilateral and bilateral moyamoya disease (MMD).

Quasi Moyamoya disease

Asymptomatic Moyamoya Disease

Ischemic-type Moyamoya Disease

Suzuki and Kodoma classified the severity of moyamoya disease by progression of an occlusive process and the eventual appearance of collaterals based on serial cerebral angiographic evaluations and staged them, known as ‘Suzuki stages of Moyamoya disease’ which are mentioned under staging.

see Suzuki staging.


Traditional moyamoya disease (MMD) classification relies on morphological digital subtraction angiography (DSA) assessment, which do not reflect hemodynamic status, clinical symptoms, or surgical treatment outcome.

The Berlin MMD grading system is able to stratify preoperative hemispheric symptomatology. Furthermore, it correlated with postoperative new ischemic changes on MRI, and showed a strong trend in predicting clinical postoperative stroke. 2)


Ladner et al performed digital subtraction angiography and noninvasive structural and hemodynamic MRI, and they outline a new classification system for patients with moyamoya that they have named Prior Infarcts, Reactivity, and Angiography in Moyamoya Disease (PIRAMD).

Healthy control volunteers (n = 11; age 46 ± 12 years [mean ± SD]) and patients (n = 25; 42 ± 13.5 years) with angiographically confirmed moyamoya provided informed consent and underwent structural (T1-weighted, T2-weighted, FLAIR, MR angiography) and hemodynamic (T2*- and cerebral blood flow-weighted) 3-T MRI. Cerebrovascular reactivity (CVR) in the internal carotid artery territory was assessed using susceptibility-weighted MRI during a hypercapnic stimulus. Only hemispheres without prior revascularization were assessed. Each hemisphere was considered symptomatic if localizing signs were present on neurological examination and/or there was a history of transient ischemic attack with symptoms referable to that hemisphere. The PIRAMD factor weighting versus symptomatology was optimized using binary logistic regression and receiver operating characteristic curve analysis with bootstrapping. The PIRAMD finding was scored from 0 to 10. For each hemisphere, 1 point was assigned for prior infarct, 3 points for reduced CVR, 3 points for a modified Suzuki Score ≥ Grade II, and 3 points for flow impairment in ≥ 2 of 7 predefined vascular territories. Hemispheres were divided into 3 severity grades based on total PIRAMD score, as follows: Grade 1, 0-5 points; Grade 2, 6-9 points; and Grade 3, 10 points.

In 28 of 46 (60.9%) hemispheres the findings met clinical symptomatic criteria. With decreased CVR, the odds ratio of having a symptomatic hemisphere was 13 (95% CI 1.1-22.6, p = 0.002). The area under the curve for individual PIRAMD factors was 0.67-0.72, and for the PIRAMD grade it was 0.845. There were 0/8 (0%), 10/18 (55.6%), and 18/20 (90%) symptomatic PIRAMD Grade 1, 2, and 3 hemispheres, respectively.

A scoring system for total impairment is proposed that uses noninvasive MRI parameters. This scoring system correlates with symptomatology and may provide a measure of hemodynamic severity in moyamoya, which could be used for guiding management decisions and evaluating intervention response 3).


In 2014 Hung et al. proposed a quantitative method using color-coded parametric quantitative DSA (QDSA) to improve prediction of the severity of MMD. The Td significantly correlated with conventional angiographic grading and with the status of hemodynamic impairment in patients with MMD. QDSA and Td measurements can provide a simple and quantitative angiographic grading system for patients with MMD. 4).


1)

Ishikawa M, Terao S, Kagami H, Inaba M, Naritaka H. Intralateral and Perilateral Ventricular Arteries on Original Axial Magnetic Resonance Angiography in Adult Moyamoya Disease. Eur Neurol. 2021 Mar 29:1-5. doi: 10.1159/000514429. Epub ahead of print. PMID: 33780954.
2)

Teo M, Furtado S, Kaneko OF, Azad TD, Madhugiri V, Do HM, Steinberg GK. Validation and Application for the Berlin Grading System of Moyamoya Disease in Adult Patients. Neurosurgery. 2020 Feb 1;86(2):203-212. doi: 10.1093/neuros/nyz025. PMID: 30864668.
3)

Ladner TR, Donahue MJ, Arteaga DF, Faraco CC, Roach BA, Davis LT, Jordan LC, Froehler MT, Strother MK. Prior Infarcts, Reactivity, and Angiography in Moyamoya Disease (PIRAMD): a scoring system for moyamoya severity based on multimodal hemodynamic imaging. J Neurosurg. 2016 Mar 11:1-9. [Epub ahead of print] PubMed PMID: 26967789.
4)

Hung SC, Liang ML, Lin CF, Lin CJ, Guo WY, Chang FC, Wong TT, Chang CY. New grading of moyamoya disease using color-coded parametric quantitative digital subtraction angiography. J Chin Med Assoc. 2014 Aug;77(8):437-42. doi: 10.1016/j.jcma.2014.05.007. Epub 2014 Jul 12. PMID: 25028291.

Asleep subthalamic deep brain stimulation for Parkinson’s disease

Asleep subthalamic deep brain stimulation for Parkinson’s disease

Recent advances in methods used for deep brain stimulation (DBS) include subthalamic nucleus electrode implantation in the “asleep” patient without the traditional use of microelectrode recordings or intraoperative test stimulation.

Meta-Analysis

2019

Liu et al. systematically reviewed the literature to compare the efficacy and safety of awake and asleep deep brain stimulation surgery. They identified cohort studies from the Cochrane libraryMEDLINE, and EMBASE (January 1970 to August 2019) by using Review Manager 5.3 software to conduct a meta-analysis following the PRISMA guidelines. Fourteen cohort studies involving 1,523 patients were included. The meta-analysis results showed that there were no significant differences between the GA and LA groups in UPDRSIII score improvement (standard mean difference [SMD] 0.06; 95% CI -0.16 to 0.28; p = 0.60), postoperative LEDD requirement (SMD -0.17; 95% CI -0.44 to 0.12; p = 0.23), or operation time (SMD 0.18; 95% CI -0.31 to 0.67; p = 0.47). Additionally, there was no significant difference in the incidence of adverse events (OR 0.98; 95% CI 0.53-1.80; p = 0.94), including postoperative speech disturbance and intracranial hemorrhage. However, the volume of intracranial air was significantly lower in the GA group than that in the LA group. In a subgroup analysis, there was no significant difference in clinical efficacy between the microelectrode recording (MER) and non-MER groups. We demonstrated equivalent clinical outcomes of DBS surgery between GA and LA in terms of improvement of symptoms and the incidence of adverse events. Key Messages: MER might not be necessary for DBS implantation. For patients who cannot tolerate DBS surgery while being awake, GA should be an appropriate alternative 1).

Case series

A retrospective review of clinical outcomes of 152 consecutive patients. Their outcomes at 1 yr postimplantation are reported; these include Unified Parkinson’s Disease Rating Scale (UPDRS) assessment, Mobility Tinetti TestPDQ-39 quality of life assessment, Mattis Dementia Rating ScaleBeck Depression Inventory, and Beck Anxiety Inventory. They also report on a new parietal trajectory for electrode implantation.

UPDRS III improved from 39 to 20.5 (47%, P < .001). The total UPDRS score improved from 67.6 to 36.4 (46%, P < .001). UPDRS II scores improved from 18.9 to 10.5 (44%, P < .001) and UPDRS IV scores improved from 7.1 to 3.6 (49%, P < .001). There was a significant reduction in levodopa equivalent daily dose after surgery (mean: 35%, P < .001). PDQ-39 summary index improved by a mean of 7.1 points. There was no significant difference found in clinical outcomes between the frontal and parietal approaches.

“Asleep” robot-assisted DBS of the subthalamic nucleus demonstrates comparable outcomes with traditional techniques in the treatment of Parkinson’s disease. 2).


The objective of a study of Senemmar et al. was to investigate whether asleep deep brain stimulation surgery of the subthalamic nucleus (STN) improves therapeutic window (TW) for both directional (dDBS) and omnidirectional (oDBS) stimulation in a large single-center population.

A total of 104 consecutive patients with Parkinson’s disease (PD) undergoing STN-DBS surgery (80 asleep and 24 awake) were compared regarding TW, therapeutic thresholdside effect threshold, improvement of Unified PD Rating Scale motor score (UPDRS-III) and degree of levodopa equivalent daily dose (LEDD) reduction.

Asleep DBS surgery led to significantly wider TW compared to awake surgery for both dDBS and oDBS. However, dDBS further increased TW compared to oDBS in the asleep group only and not in the awake group. Clinical efficacy in terms of UPDRS-III improvement and LEDD reduction did not differ between groups.

The study provides first evidence for improvement of therapeutic window by asleep surgery compared to awake surgery, which can be strengthened further by dDBS. These results support the notion of preferring asleep over awake surgery but needs to be confirmed by prospective trial3).


Clinical outcome studies have shown that “asleep” DBS lead placement, performed using intraoperative imaging with stereotactic accuracy as the surgical endpoint, has motor outcomes comparable to traditional “awake” DBS using microelectrode recording (MER), but with shorter case times and improved speech fluency 4).


Ninety-six patients were retrospectively matched pairwise (48 asleep and 48 awake) and compared regarding improvement of Unified PD Rating Scale Motor Score (UPDRS-III), cognitive function, Levodopa-equivalent-daily-dose (LEDD), stimulation amplitudes, side effects, surgery duration, and complication rates. Routine testing took place at three months and one year postoperatively.

Results: Chronic DBS effects (UPDRS-III without medication and with stimulation on [OFF/ON]) significantly improved UPDRS-III only after awake surgery at three months and in both groups one year postoperatively. Acute effects (percentage UPDRS-III reduction after activation of stimulation) were also significantly better after awake surgery at three months but not at one year compared to asleep surgery. UPDRS-III subitems “freezing” and “speech” were significantly worse after asleep surgery at three months and one year, respectively. LEDD was significantly lower after awake surgery only one week postoperatively. The other measures did not differ between groups.

Overall motor function improved faster in the awake surgery group, but the difference ceased after one year. However, axial subitems were worse in the asleep surgery group suggesting that worsening of axial symptoms was risked improving overall motor function. Awake surgery still seems advantageous for STN-DBS in PD, although asleep surgery may be considered with lower threshold in patients not suitable for awake surgery 5).

References

1)

Liu Z, He S, Li L. General Anesthesia versus Local Anesthesia for Deep Brain Stimulation in Parkinson’s Disease: A Meta-Analysis. Stereotact Funct Neurosurg. 2019;97(5-6):381-390. doi:10.1159/000505079
2)

Moran CH, Pietrzyk M, Sarangmat N, Gerard CS, Barua N, Ashida R, Whone A, Szewczyk-Krolikowski K, Mooney L, Gill SS. Clinical Outcome of “Asleep” Deep Brain Stimulation for Parkinson Disease Using Robot-Assisted Delivery and Anatomic Targeting of the Subthalamic Nucleus: A Series of 152 Patients. Neurosurgery. 2020 Sep 28:nyaa367. doi: 10.1093/neuros/nyaa367. Epub ahead of print. PMID: 32985669.
3)

Senemmar F, Hartmann CJ, Slotty PJ, Vesper J, Schnitzler A, Groiss SJ. Asleep Surgery May Improve the Therapeutic Window for Deep Brain Stimulation of the Subthalamic Nucleus [published online ahead of print, 2020 Jul 13]. Neuromodulation. 2020;10.1111/ner.13237. doi:10.1111/ner.13237
4)

Mirzadeh Z, Chen T, Chapple KM, Lambert M, Karis JP, Dhall R, Ponce FA. Procedural Variables Influencing Stereotactic Accuracy and Efficiency in Deep Brain Stimulation Surgery. Oper Neurosurg (Hagerstown). 2018 Oct 18. doi: 10.1093/ons/opy291. [Epub ahead of print] PubMed PMID: 30339204.
5)

Blasberg F, Wojtecki L, Elben S, Slotty PJ, Vesper J, Schnitzler A, Groiss SJ. Comparison of Awake vs. Asleep Surgery for Subthalamic Deep Brain Stimulation in Parkinson’s Disease. Neuromodulation. 2018 Aug;21(6):541-547. doi: 10.1111/ner.12766. Epub 2018 Mar 13. PubMed PMID: 29532

Subthalamic deep brain stimulation for Parkinson’s disease outcome

Subthalamic deep brain stimulation for Parkinson’s disease outcome

The surgical and clinical outcomes of asleep DBS for Parkinson’s disease are comparable to those of awake DBS 1).


Suboptimal targeting within the STN can give rise to intolerable sensorimotor side effects, such as dysarthria, contractions and paresthesias 2) 3) 4). eye movement perturbations, and psychiatric symptoms 5) 6) 7), limiting the management of motor symptoms. The small size of the STN motor territory and the consequences of spreading current to immediately adjacent structures obligate precise targeting. Neurosurgeons therefore rely on a combination of imaging, electrophysiology, kinesthetic responses, and stimulation testing to accurately place the DBS lead into the sensorimotor domain of STN 8) 9) 10).

Deep Brain Stimulation has been associated with post-operative neuropsychology changes, especially in verbal memory.

Deep brain stimulation (DBS) of subthalamic nucleus (STN) is widely accepted to treat advanced Parkinson disease (PD). However, published studies were mainly conducted in Western centers 11).

High frequency subthalamic nucleus (STN) deep brain stimulation (DBS) improves the cardinal motor signs of Parkinson’s disease (PD) and attenuates STN alpha/beta band neural synchrony in a voltage-dependent manner. While there is a growing interest in the behavioral effects of lower frequency (60 Hz) DBS, little is known about its effect on STN neural synchrony.

Low-frequency stimulation of the subthalamic nucleus via the optimal contacts is effective in improving overall motor function of patients with Parkinson Disease 12). In Parkinson’s disease significantly improved important aspects of QoL as measured by PDQ-39. The improvements were maintained at 2 years follow-up except for social support and communication. Sobstyl et al., demonstrated a positive correlation between changes in the off condition of motor UPDRS scores and Unified Dyskinesia Rating Scale in several PDQ-39 dimensions, whereas fluctuation UPDRS scores were negatively correlated with PDQ-39 mobility scores 13).

The degree of clinical improvement achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement.

A study reports on the evaluation of intraoperative MRI (iMRI) for adjusting deviated electrodes to the accurate anatomical position during DBS surgery and acute intracranial changes 14).


Although dementia is a contraindication in deep brain stimulation for Parkinson’s disease, the concept is supported by little scientific evidence. Moreover, it is unclear whether PD with mild cognitive impairment (PD-MCI) or domain-specific cognitive impairments affect the outcome of DBS in non-demented PD patients.

Baseline cognitive levels of patients with PD who underwent DBS were classified into PD with dementia (PDD) (n = 15), PD-MCI (n = 210), and normal cognition (PD-NC) (n = 79). The impact of the cognitive level on key DBS outcome measures [mortality, nursing home admission, progression to Hoehn&Yahr (HY) stage 5 and progression to PDD] were analyzed using Cox regression models. Park et al. also investigated whether impairment of a specific cognitive domain could predict these outcomes in non-demented patients.

Results: Patients with PDD showed a substantially higher risk of nursing home admission and progression to HY stage 5 compared with patients with PD-MCI [hazard ratio (HR) 4.20, P = .002; HR = 5.29, P < .001] and PD-NC (HR 7.50, P < .001; HR = 7.93, P < .001). MCI did not alter the prognosis in patients without dementia, but those with visuospatial impairment showed poorer outcomes for nursing home admission (P = .015), progression to HY stage 5 (P = .027) and PDD (P = .006).

Conclusions: Cognitive profiles may stratify the pre-operative risk and predict long-term outcomes of DBS in PD 15).

References

1)

Wang J, Ponce FA, Tao J, Yu HM, Liu JY, Wang YJ, Luan GM, Ou SW. Comparison of Awake and Asleep Deep Brain Stimulation for Parkinson’s Disease: A Detailed Analysis Through Literature Review. Neuromodulation. 2019 Dec 12. doi: 10.1111/ner.13061. [Epub ahead of print] Review. PubMed PMID: 31830772.
2) , 9)

Benabid AL, Chabardes S, Mitrofanis J, Pollak P: Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81, 2009
3) , 10)

Groiss SJ, Wojtecki L, Südmeyer M, Schnitzler A: Deep brain stimulation in Parkinson’s disease. Ther Adv Neurol Disorder 2:20–28, 2009
4)

Zhang S, Zhou P, Jiang S, Wang W, Li P: Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease: a report of 12 cases. Medicine (Baltimore) 95:e5575, 2016
5)

Kulisevsky J, Berthier ML, Gironell A, Pascual-Sedano B, Molet J, Parés P: Mania following deep brain stimulation for Parkinson’s disease. Neurology 59:1421–1424, 2002
6)

Mallet L, Schüpbach M, N’Diaye K, Remy P, Bardinet E, Czernecki V, et al: Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A 104:10661–10666, 2007
7)

Raucher-Chéné D, Charrel CL, de Maindreville AD, Limosin F: Manic episode with psychotic symptoms in a patient with Parkinson’s disease treated by subthalamic nucleus stimulation: improvement on switching the target. J Neurol Sci 273:116–117, 2008
8)

Abosch A, Timmermann L, Bartley S, Rietkerk HG, Whiting D, Connolly PJ, et al: An international survey of deep brain stimulation procedural steps. Stereotact Funct Neurosurg 91:1–11, 2013
11)

Chiou SM, Lin YC, Huang HM. One-year Outcome of Bilateral Subthalamic Stimulation in Parkinson Disease: An Eastern Experience. World Neurosurg. 2015 Jun 10. pii: S1878-8750(15)00709-3. doi: 0.1016/j.wneu.2015.06.002. [Epub ahead of print] PubMed PMID: 26072454.
12)

Khoo HM, Kishima H, Hosomi K, Maruo T, Tani N, Oshino S, Shimokawa T, Yokoe M, Mochizuki H, Saitoh Y, Yoshimine T. Low-frequency subthalamic nucleus stimulation in Parkinson’s disease: A randomized clinical trial. Mov Disord. 2014 Jan 21. doi: 10.1002/mds.25810. [Epub ahead of print] PubMed PMID: 24449169.
13)

Sobstyl M, Ząbek M, Górecki W, Mossakowski Z. Quality of life in advanced Parkinson’s disease after bilateral subthalamic stimulation: 2 years follow-up study. Clin Neurol Neurosurg. 2014 Sep;124:161-5. doi: 10.1016/j.clineuro.2014.06.019. Epub 2014 Jun 23. PubMed PMID: 25051167.
14)

Cui Z, Pan L, Song H, Xu X, Xu B, Yu X, Ling Z. Intraoperative MRI for optimizing electrode placement for deep brain stimulation of the subthalamic nucleus in Parkinson disease. J Neurosurg. 2016 Jan;124(1):62-9. doi: 10.3171/2015.1.JNS141534. Epub 2015 Aug 14. PubMed PMID: 26274983.
15)

Park KW, Jo S, Kim MS, et al. Cognitive profile as a predictor of the long-term outcome after deep brain stimulation in Parkinson’s disease [published online ahead of print, 2020 Jul 28]. J Neurol Sci. 2020;417:117063. doi:10.1016/j.jns.2020.117063
WhatsApp WhatsApp us
%d bloggers like this: