Percutaneous Transforaminal Endoscopic Lumbar Discectomy

Percutaneous Transforaminal Endoscopic Lumbar Discectomy

Transforaminal lumbar endoscopic discectomy (TLED) is a minimally invasive surgery for removing lumbar disc herniations. This technique was initially reserved for herniations in the foraminal or extraforaminal region.

It seems to be a promising technique to effectively treat LDH. The reported complication rate of PTED is low, as is the percentage of patients requiring additional surgery due to recurrent LDH. Due to its steep learning curve, however, PTED should be further investigated before widespread implementation. Open microdiscectomy remains the current standard therapy for the surgical decompression of LDH. High-quality randomized controlled trials are needed to generate Class I evidence on the efficacy and cost-effectiveness of PTED 1).

A technique for percutaneous nonvisualized indirect spinal canal decompression—percutaneous nucleotomy— through a posterolateral approach was described by Parviz Kambin in 1973 2) and Hijikata et al. in 19753).

Kambin described using a Craig cannula and Hijikata a 2.6-mm cannula. The technical challenge of achieving sufficient removal of nucleus pulposus material through a needle was addressed by Kambin and coworkers in 1986 and 1987 with the introduction of working cannulas possessing diameters up to 5 mm and flexible forceps 4) 5).

The next step in the advancement of the percutaneous discectomy technique was the addition of the endoscope. The first endoscopic views of a herniated nucleus pulposus were published by Kambin et al. in 1988 6) and the first reported introduction of a modified arthroscope into the intervertebral disc space was reported by Forst and Hausman in 1983 7)

Schreiber et al. 8) and Suezawa et al. 9) published their bilateral approach for a percutaneous nucleotomy under endoscopic control and described injecting indigo carmine into the disc space to stain the abnormal nucleus pulposus and anular fissures.

Percutaneous endoscopic discectomy certainly must receive a great portion of the credit for advancing endoscopic spine surgery, but it also must likely take responsibility for endoscopic spine surgery’s slow rate of acceptance as a feasible technique by most orthopedic and neurosurgical spine specialists. The surgical goal of percutaneous endoscopic discectomy is to indirectly decompress the neural elements by selectively removing the nucleus pulposus from the posterior one-third of the disc space. From its origin, the technique showed promising results: Kambin and Gellman reported a 72% success rate in 136 patients with their percutaneous technique in 1983, but it has been difficult to quantify the impact of such results because they were not matched with nonoperative controls 10)


It has several advantages over open lumbar discectomy, including less paravertebral muscle injury, preservation of bony structure, and rapid recovery, and has gained popularity for removal of herniated disc (HD) material over the past few years since Kambin 11) introduced the percutaneous posterolateral approach in 1983.

Even sequestered disc material – regardless of its size and level – that slipped into the spinal channel can be removed with the minimal invasive method.

Large, uncontained, lumbar disc herniations can be sufficiently removed with remarkable long-term outcome. Although the neurological outcome is the same, the morbidity is significantly less than open discectomy. Maximum benefit can be gained if we adhere to strict selection criteria. The optimum indication is single- or multi-level radiculopathy secondary to a single-level, large, uncontained, lumbar disc herniation 12).

Proper surgical indications and good working channel position are important for successful PELD. PELD techniques should be specifically designed to remove the disc fragments in various types of disc herniation 13).

Immediate pain relief in 95% of the cases – study info needed

Direct access to herniated disc/sequester

The disc-annulus and the ligament remain intact

No general anesthesia, only a sparing local anesthetic necessary

Outpatient treatment

Shorter rehabilitation -study info needed

Faster return to profession and everyday life – study info needed

Small incision (only one stitch) = hardly any scarring.

For adjacent segment degeneration (ASD) and recurrent lumbar disc herniation, PELD had more advantages over open lumbar surgery in terms of reduced blood loss, shorter hospital stay, operating time, fewer complications, and less postoperative discomfort 14).

It can be performed under local anesthesia and requires only an 8-mm skin incision.

PTED performed under local anesthesia and conscious sedation is safe and effective to treat sciatica and yields high satisfaction rates from surgeons, anesthesiologists, and patients 15)

Reoperation rates of PELD have been reported from 2.3% to 15% 16) 17) 18) 19) 20).

According to a nationwide cohort study, there is no significant difference in the reoperation rates between open discectomy (13.7%) and endoscopic discectomy (12.4%) 21).

PELD may not be an applicable option for all ages.

Kim et al. selected 15,817 patients who underwent open discectomy (n = 12,816) or PELD (n = 3,001) in 2003 from Korean Health Insurance Review & Assessment Service (HIRA) database. All patients in the cohort were followed until December 31, 2008, and the minimum follow-up period was 5 years. A time to event survival analysis was performed. Primary end-point was any type of second lumbar spine surgery during the follow-up period. Minimum P-value approach and two-fold cross validation approach were utilized to determine an age cut-off point.

The optimal age cut-off point was determined as 57 years. PELD for elder patients (≥ 57 years) had a higher reoperation risk during postoperative 3.4 years (Hazard ratio [HR] at 1 yr, 1.75; 2 yr, 1.57; 3 yr, 1.41). However, re-operation risk was not higher after PELD for patients of < 57 years from 1.9 years than open diskectomy (HR at 2 yr, 0.86; 3 yr, 0.78; 4 yr, 0.70; 5 yr, 0.63).

In the present study, they showed that an age cut-off point of PELD for optimal reoperation rate may be 57 years with national-wide population based data. Reoperation rate seems to be not higher for patients younger than 57 years after PELD than open diskectomy, but applying PELD for elder patients need careful consideration 22).

Percutaneous Transforaminal Endoscopic Lumbar Discectomy Case series.

Full-endoscopic Transforaminal lumbar endoscopic discectomy is based on a puncture technique using a guide needle to reach the target area of the foramen via a percutaneous posterolateral/lateral approach. It may correlate with specific approach-related complications, as exiting nerve root injury.

Panagiotopoulos et al., report the first case of pseudoaneurysm of the lumbar segmental artery secondary to a transforaminal full-endoscopic surgery in the treatment of a lumbar disc herniation. A 39-year-old man underwent left L4-L5 full-endoscopic transforaminal lumbar discectomy for a herniated disc. Three hours after surgery, he experienced acute progressive abdominal pain. An abdomen CT scan showed contrast extravasation in the left paraspinal compartment at L4 vertebral body level. The selective left lumbar angiogram revealed a pseudoaneurysm of a side branch of the left lumbar segmental artery, which was treated by endovascular coiling. The patient made a rapid postoperative recovery without further complications and was discharged 4 days later. This report identifies a rare complication of transforaminal full-endoscopic surgery in the treatment of a herniated lumbar disc. This is the first case of pseudoaneurysm formation of the lumbar artery following a full-endoscopic transforaminal lumbar discectomy 23).


1)

Gadjradj PS, van Tulder MW, Dirven CM, Peul WC, Sanjay Harhangi B. Clinical outcomes after percutaneous transforaminal endoscopic discectomy for lumbar disc herniation: a prospective case series. Neurosurg Focus. 2016 Feb;40(2):E3. doi: 10.3171/2015.10.FOCUS15484. PubMed PMID: 26828884.
2)

Kambin P: Arthroscopic Microdiscectomy: Minimal Intervention Spinal Surgery Baltimore, MD, Urban & Schwarzenberg, 1990
3)

Hijikata S, Yamagishi M, Nakayma T: Percutaneous discectomy: a new treatment method for lumbar disc herniation. J Todenhosp 5:5–13, 1975
4)

Kambin P, Brager MD: Percutaneous posterolateral discectomy. Anatomy and mechanism. Clin Orthop Relat Res 223145–154, 1987
5)

Kambin P, Sampson S: Posterolateral percutaneous suction-excision of herniated lumbar intervertebral discs. Report of interim results. Clin Orthop Relat Res 20737–43, 1986
6)

Kambin P, Nixon JE, Chait A, Schaffer JL: Annular protrusion: pathophysiology and roentgenographic appearance. Spine (Phila Pa 1976) 13:671–675, 1988
7)

Forst R, Hausmann B: Nucleoscopy—a new examination technique. Arch Orthop Trauma Surg 101:219–221, 1983
8)

Schreiber A, Suezawa Y, Leu H: Does percutaneous nucleotomy with discoscopy replace conventional discectomy? Eight years of experience and results in treatment of herniated lumbar disc. Clin Orthop Relat Res 23835–42, 1989
9)

Suezawa Y, Jacob HA: Percutaneous nucleotomy. An alternative to spinal surgery. Arch Orthop Trauma Surg 105:287–295, 1986
10)

Kambin P, Gellman H: Percutaneous lateral discectomy of the lumbar spine: a preliminary report. Clin Orthop Relat Res 174127–132, 1983
11)

Kambin P, Gellman H. Percutaneous lateral discectomy of the lumbar spine: a preliminary report. Clin Orthop. 1983;174:127–132.
12)

Hussein M, Abdeldayem A, Mattar MM. Surgical technique and effectiveness of microendoscopic discectomy for large uncontained lumbar disc herniations: a prospective, randomized, controlled study with 8 years of follow-up. Eur Spine J. 2014 Sep;23(9):1992-9. doi: 10.1007/s00586-014-3296-9. Epub 2014 Apr 16. PubMed PMID: 24736930.
13)

Choi KC, Lee JH, Kim JS, Sabal LA, Lee S, Kim H, Lee SH. Unsuccessful percutaneous endoscopic lumbar discectomy: a single-center experience of 10 228 cases. Neurosurgery. 2015 Apr;76(4):372-81. doi: 10.1227/NEU.0000000000000628. PubMed PMID: 25599214.
14)

Chen HC, Lee CH, Wei L, Lui TN, Lin TJ. Comparison of Percutaneous Endoscopic Lumbar Discectomy and Open Lumbar Surgery for Adjacent Segment Degeneration and Recurrent Disc Herniation. Neurol Res Int. 2015;2015:791943. Epub 2015 Mar 10. PubMed PMID: 25861474.
15)

Gadjradj PS, Arjun Sharma JRJ, Harhangi BS. Quality of conscious sedation using dexmedetomidine during full-endoscopic transforaminal discectomy for sciatica: a prospective case series. Acta Neurochir (Wien). 2022 Jan 31. doi: 10.1007/s00701-021-05100-x. Epub ahead of print. PMID: 35098351.
16)

Ahn Y, Lee SH, Park WM, Lee HY, Shin SW, Kang HY. Percutaneous endoscopic lumbar discectomy for recurrent disc herniation: surgical technique, outcome, and prognostic factors of 43 consecutive cases. Spine (Phila Pa 1976). 2004;29(16):E326–E332.
17)

Hoogland T, van den Brekel-Dijkstra K, Schubert M, Miklitz B. Endoscopic transforaminal discectomy for recurrent lumbar disc herniation: a prospective, cohort evaluation of 262 consecutive cases. Spine (Phila Pa 1976). 2008;33(9):973–978.
18)

Kambin P. Arthroscopic microdiscectomy. Arthroscopy. 1992;8(3):287–295.
19)

Ruetten S, Komp M, Godolias G. An extreme lateral access for the surgery of lumbar disc herniations inside the spinal canal using the full-endoscopic uniportal transforaminal approach-technique and prospective results of 463 patients. Spine (Phila Pa 1976). 2005;30(22):2570–2578.
20)

Mayer HM, Brock M. Percutaneous endoscopic discectomy: surgical technique and preliminary results compared to microsurgical discectomy. J Neurosurg. 1993;78(2):216–225.
21)

Kim CH, Chung CK, Park CS, Choi B, Kim MJ, Park BJ. Reoperation rate after surgery for lumbar herniated intervertebral disc disease: nationwide cohort study. Spine (Phila Pa 1976). 2013;38(7):581–590.
22)

Kim CH, Chung CK, Choi Y, Shin S, Kim MJ, Lee J, Park BJ. The selection of open or percutaneous endoscopic lumbar diskectomy according to an age cut-off point: national-wide cohort study. Spine (Phila Pa 1976). 2015 Jul 17. [Epub ahead of print] PubMed PMID: 26192722.
23)

Panagiotopoulos K, Gazzeri R, Bruni A, Agrillo U. Pseudoaneurysm of a segmental lumbar artery following a full-endoscopic transforaminal lumbar discectomy: a rare approach-related complication. Acta Neurochir (Wien). 2019 Mar 16. doi: 10.1007/s00701-019-03876-7. [Epub ahead of print] PubMed PMID: 30879131.

Endoscopic third ventriculostomy and choroid plexus cauterization

Endoscopic third ventriculostomy and choroid plexus cauterization

Endoscopic third ventriculostomy with choroid plexus cauterization (ETV/CPC) offers an alternative to shunt.


While ventriculoperitoneal shunt (VPS) insertion is the standard treatment for myelomeningocele-associated hydrocephalus (MAH), it can be complicated by shunt infection and shunt malfunction. As such, endoscopic third ventriculostomy (ETV), with or without choroid plexus coagulation (CPC), has been proposed as an alternative.

ETV+CPC was associated with a higher success rate than ETV alone for MAH in a meta-analysis of published studies. ETV, with or without CPC, was technically feasible and safe for this patient population 1).


In the twenty-first century, choroid plexus cauterization (CPC) in combination with endoscopic third ventriculostomy (ETV) has emerged as an effective treatment for some infants with hydrocephalus, leading to the favourable condition of ‘shunt independence‘.

Coulter et al. provide a narrative technical review considering the indications, procedural aspects, morbidity and its avoidance, postoperative care and follow-up. The CP has been the target of hydrocephalus treatment for more than a century. Early eminent neurosurgeons including Dandy, Putnam and Scarff performed CPC achieving generally poor results, and so the procedure fell out of favour. In recent years, the addition of CPC to ETV was one of the reasons greater ETV success rates were observed in Africa, compared to developed nations, and its popularity worldwide has since increased. Initial results indicate that when ETV/CPC is performed successfully, shunt independence is more likely than when ETV is undertaken alone. CPC is commonly performed using a flexible endoscope via septostomy and aims to maximally cauterize the CP. Success is more likely in infants aged >1 month, those with hydrocephalus secondary to myelomeningocele and aqueductal obstruction and those with >90% cauterized CP. Failure is more likely in those with post-haemorrhagic hydrocephalus of prematurity (PHHP), particularly those <1 month of corrected age and those with prepontine scarring. High-quality evidence comparing the efficacy of ETV/CPC with shunting is emerging, with data from ongoing and future trials offering additional promise to enhance our understanding of the true utility of ETV/CPC 2).


In the quest to identify the optimal means of cerebrospinal fluid diversion free of shunt dependency, endoscopic third ventriculostomy (ETV) with choroid plexus cauterization (CPC) has been proposed as a promising procedure in select children. Supplementing traditional ETV with obliteration of the choroid plexus has been shown to decrease the likelihood of ultimate shunt dependency by roughly 20%. Originally devised to treat hydrocephalus in infants in sub-Saharan Africa, ETV/CPC has gained eager attention and cautious support in the developed world 3).

Diagnosing treatment failure is dependent on infantile hydrocephalus metrics, including head circumference, fontanel quality, and ventricle size.

Systematic review was performed using four electronic databases and bibliographies of relevant articles, with no language or date restrictions. Cohort studies of participants undergoing ETV/CPC that reported outcome were included using MOOSE guidelines. The outcome was time to repeat CSF diversion or death. Forest plots were created for pooled mean and its 95 % CI of outcome and morbidity.

Of 78 citations, 11 retrospective reviews (with 524 total participants) were eligible. Efficacy was achieved in 63 % participants at follow-up periods between 6 months and 8 years. Adverse events and mortality was reported in 3.7 and 0.4 % of participants, respectively. Publication bias was detected with respect to efficacy and morbidity of the procedure. A large discrepancy in success was identified between ETV/CPC in six studies from sub-Saharan Africa (71 %), compared to three studies from North America (49 %).

The reported success of ETV/CPC for infantile hydrocephalus is higher in sub-Saharan Africa than developed nations. Large long-term prospective multi-center observational studies addressing patient-important outcomes are required to further evaluate the efficacy and safety of this re-emerging procedure 4).

2016

It is not clear to what degree these metrics should be expected to change after ETV/CPC. Using these clinical metrics, Dewan et al., present and analyze the decision making in cases of ETV/CPC failure.

Infantile hydrocephalus metrics, including bulging fontanel, head circumference z-score, and frontal and occipital horn ratio (FOHR), were compared between ETV/CPC failures and successes. Treatment outcome predictive values of metrics individually and in combination were calculated.

Forty-four patients (57% males, median age 1.2 months) underwent ETV/CPC for hydrocephalus; of these patients, 25 (57%) experienced failure at a median time of 51 days postoperatively. Patients experiencing failure were younger than those experiencing successful treatment (0.8 vs 3.9 months, p = 0.01). During outpatient follow-up, bulging anterior fontanel, progressive macrocephaly, and enlarging ventricles each demonstrated a positive predictive value (PPV) of no less than 71%, but a bulging anterior fontanel remained the most predictive indicator of ETV/CPC failure, with a PPV of 100%, negative predictive value of 73%, and sensitivity of 72%. The highest PPVs and specificities existed when the clinical metrics were present in combination, although sensitivities decreased expectedly. Only 48% of failures were diagnosed on the basis all 3 hydrocephalus metrics, while only 37% of successes were negative for all 3 metrics. In the remaining 57% of patients, a diagnosis of success or failure was made in the presence of discordant data.

Successful ETV/CPC for infantile hydrocephalus was evaluated in relation to fontanel status, head growth, and change in ventricular size. In most patients, a designation of failure or success was made in the setting of discordant data 5).

2014

A study retrospectively reviewed medical records of 27 premature infants with intraventricular hemorrhage (IVH) and hydrocephalus treated with ETV and CPC from 2008 to 2011. All patients were evaluated using MRI before the procedure to verify the anatomical feasibility of ETV/CPC. Endoscopic treatment included third ventriculostomy, septostomy, and bilateral CPC. After ETV/CPC, all patients underwent follow-up for a period of 6-40 months (mean 16.2 months). The procedure was considered a failure if the patient subsequently required a shunt. The following factors were analyzed to determine a relationship to patient outcomes: gestational age at birth, corrected age and weight at surgery, timing of surgery after birth, grade of IVH, the status of the prepontine cistern and cerebral aqueduct on MRI, need for a ventricular access device prior to the endoscopic procedure, and scarring of the prepontine cistern noted at surgery.

Seventeen (63%) of 27 patients required a shunt after ETV/CPC, and 10 patients did not require further CSF diversion. Several factors studied were associated with a higher rate of ETV/CPC failure: Grade IV hemorrhage, weight 3 kg or less and age younger than 3 months at the time of surgery, need for reservoir placement, and presence of a normal cerebral aqueduct. Two factors were found to be statistically significant: the patient’s corrected gestational age of less than 0 weeks at surgery and a narrow prepontine cistern on MRI. The majority (83%) of ETV/CPC failures occurred in the first 3 months after the procedure. None of the patients had a complication directly related to the procedure.

Endoscopic third ventriculostomy/CPC is a safe initial procedure for hydrocephalus in premature infants with IVH and hydrocephalus, obviating the need for a shunt in selected patients. Even though the success rate is low (37%), the lower rate of complications in comparison with shunt treatment may justify this procedure in the initial management of hydrocephalus. As several of the studied factors have shown influence on the outcome, patient selection based on these observations might increase the success rate 6).

2005

A total of 710 children underwent ventriculoscopy as candidates for ETV as the primary treatment for hydrocephalus. The ETV was accomplished in 550 children: 266 underwent a combined ETV-CPC procedure and 284 underwent ETV alone. The mean and median ages were 14 and 5 months, respectively, and 443 patients (81%) were younger than 1 year of age. The hydrocephalus was postinfectious (PIH) in 320 patients (58%), nonpostinfectious (NPIH) in 152 (28%), posthemorrhagic in five (1%), and associated with myelomeningocele in 73 (13%). The mean follow up was 19 months for ETV and 9.2 months for ETV-CPC. Overall, the success rate of ETV-CPC (66%) was superior to that of ETV alone (47%) among infants younger than 1 year of age (p < 0.0001). The ETV-CPC combined procedure was superior in patients with a myelomeningocele (76% compared with 35% success, p = 0.0045) and those with NPIH (70% compared with 38% success, p = 0.0025). Although the difference was not significant for PIH (62% compared with 52% success, p = 0.1607), a benefit was not ruled out (power = 0.3). For patients at least 1 year of age, there was no difference between the two procedures (80% success for each, p = 1.0000). The overall surgical mortality rate was 1.3%, and the infection rate was less than 1%.

The ETV-CPC was more successful than ETV alone in infants younger than 1 year of age. In developing countries in which a dependence on shunts is dangerous, ETV-CPC may be the best option for treating hydrocephalus in infants, particularly for those with NPIH and myelomeningocele 7).


1)

Omar AT, Espiritu AI, Spears J. Endoscopic third ventriculostomy with or without choroid plexus coagulation for myelomeningocele-associated hydrocephalus: systematic review and meta-analysis. J Neurosurg Pediatr. 2022 Jan 21:1-9. doi: 10.3171/2021.11.PEDS21505. Epub ahead of print. PMID: 35061994.
2)

Coulter IC, Dewan MC, Tailor J, Ibrahim GM, Kulkarni AV. Endoscopic third ventriculostomy and choroid plexus cauterization (ETV/CPC) for hydrocephalus of infancy: a technical review. Childs Nerv Syst. 2021 May 15. doi: 10.1007/s00381-021-05209-5. Epub ahead of print. PMID: 33991213.
3)

Dewan MC, Naftel RP. The Global Rise of Endoscopic Third Ventriculostomy with Choroid Plexus Cauterization in Pediatric Hydrocephalus. Pediatr Neurosurg. 2016 Dec 22. doi: 10.1159/000452809. [Epub ahead of print] PubMed PMID: 28002814.
4)

Weil AG, Westwick H, Wang S, Alotaibi NM, Elkaim L, Ibrahim GM, Wang AC, Ariani RT, Crevier L, Myers B, Fallah A. Efficacy and safety of endoscopic third ventriculostomy and choroid plexus cauterization for infantile hydrocephalus: a systematic review and meta-analysis. Childs Nerv Syst. 2016 Nov;32(11):2119-2131. PubMed PMID: 27613635.
5)

Dewan MC, Lim J, Morgan CD, Gannon SR, Shannon CN, Wellons JC 3rd, Naftel RP. Endoscopic third ventriculostomy with choroid plexus cauterization outcome: distinguishing success from failure. J Neurosurg Pediatr. 2016 Dec;25(6):655-662. PubMed PMID: 27564786.
6)

Chamiraju P, Bhatia S, Sandberg DI, Ragheb J. Endoscopic third ventriculostomy and choroid plexus cauterization in posthemorrhagic hydrocephalus of prematurity. J Neurosurg Pediatr. 2014 Apr;13(4):433-9. doi: 10.3171/2013.12.PEDS13219. PubMed PMID: 24527862.
7)

Warf BC. Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg. 2005 Dec;103(6 Suppl):475-81. PubMed PMID: 16383244.

Endoscopic transsphenoidal approach

Endoscopic transsphenoidal approach

The endoscopic transsphenoidal approach shown to be as effective as, if not more than, the traditional transseptal microscopic transsphenoidal surgery 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11).


Endoscopic transsphenoidal surgery is associated with higher gross tumor removal and lower incidence of septal perforation in patients with pituitary adenoma. Future large-scale prospective randomized controlled trials are needed to verify these findings 12)


The interest in endoscopic endonasal transsphenoidal surgery for the treatment of sellar and perisellar lesions is growing as a consequence of the results achieved in the past years and of the interest by patients, endocrinologists, and neurosurgeons. Furthermore, the special ability of the endoscope to offer a wider and detailed view of anatomic structures is a major advantage that increases the attention of neurosurgeons who seek less invasive procedures and better results. Most neurosurgeons performing transsphenoidal surgery, however, are not used to endoscopy, and changing from microsurgical to endoscopic technique can be difficult and even discouraging, often because of difficulties in the initial phase of the procedure.

With the purpose of helping minimize some of the difficulties, Cavallo et al., described useful tips and tricks that mainly concern familiarization with the endoscopic equipment, details of the transsphenoidal anatomy, and endoscopic skills. They stressed the steps and details that they judge most important.

They believed that by following these recommendations neurosurgeons can overcome, or even avoid, the difficulties frequently encountered transsphenoidal surgery, allowing them to safely and efficiently perform endonasal transsphenoidal endoscopic procedures 13).

Castle-Kirszbaum et al. described the skeletal, vascular and neural anatomical variations that could be encountered from the nasal phase, through the sphenoid phase, to the sellar phase of the operative exposure. A preoperative checklist is also provided 14)

see Transsphenoidal approach complications

A study assessed the long-term impact of endoscopic skull base surgery on olfaction, sinonasal symptoms, mucociliary clearance time (MCT), and quality of life (QoL). Patients with pituitary adenomas underwent TTEA (n = 38), while patients with other benign parasellar tumours who underwent an EEA with vascularised septal flap reconstruction (n = 17) were enrolled in this prospective study between 2009 and 2012. Sinonasal symptoms (Visual Analogue Scale), subjective olfactometry (Barcelona Smell Test-24, BAST-24), MCT (saccharin test), and QoL (short form SF-36, rhinosinusitis outcome measure/RSOM) were evaluated before, and 12 months after, surgery. At baseline, sinonasal symptoms, MCT, BAST-24, and QoL were similar between groups. Twelve months after surgery, both TTEA and EEA groups experienced smell impairment compared to baseline. Moreover, EEA (but not TTEA) patients reported increased posterior nasal discharge and longer MCTs compared to baseline. No significant changes in olfactometry or QoL were detected in either group 12 months after surgery. Over the long-term, expanded skull base surgery, using EEA, produced more sinonasal symptoms (including loss of smell) and longer MCTs than pituitary surgery (TTEA). EEA showed no long-term impact on smell test or QoL 15).

Endoscopic transsphenoidal approach case series.

Endoscopic transsphenoidal approach Instruments.

All endoscopic transphenoidal pituitary surgeries performed from January 1, 2015, to October 24, 2017, with complete data were evaluated in a retrospective single-institution study. The electronic medical record was reviewed for patient factors, tumor characteristics, and cost variables during each hospital stay. Multivariate linear regression was performed using Stata software.

The analysis included 190 patients and average length of stay was 4.71 days. Average total in-hospital cost was $28,624 (95% confidence interval $25,094-$32,155) with average total direct cost of $19,444 ($17,136-$21,752) and total indirect cost of $9181 ($7592-$10,409). On multivariate regression, post-operative cerebrospinal fluid (CSF) leak was associated with a significant increase in all cost variables, including a total cost increase of $40,981 ($15,474-$66,489, P = .002). Current smoking status was associated with an increased total cost of $20,189 ($6,638-$33,740, P = .004). Self-reported Caucasian ethnicity was associated with a significant decrease in total cost of $6646 (-$12,760 to -$532, P = .033). Post-operative DI was associated with increased costs across all variables that were not statistically significant.

Post-operative CSF leak, current smoking status, and non-Caucasian ethnicity were associated with significantly increased costs. Understanding of cost drivers of endoscopic transphenoidal pituitary surgery is critical for future cost control and value creation initiatives 16).


1)

The endoscopic versus the traditional approach in pituitary surgery. Frank G, Pasquini E, Farneti G, Mazzatenta D, Sciarretta V, Grasso V, Faustini Fustini M. Neuroendocrinology. 2006;83:240–248.
2)

Pure endoscopic endonasal approach for pituitary adenomas: early surgical results in 200 patients and comparison with previous microsurgical series. Dehdashti AR, Ganna A, Karabatsou K, Gentili F. Neurosurgery. 2008;62:1006–1015.
3)

Microscopic versus endoscopic transnasal pituitary surgery. Schaberg MR, Anand VK, Schwartz TH, Cobb W. Curr Opin Otolaryngol Head Neck Surg. 2010;18:8–14.
4)

Endoscopic versus microscopic trans-sphenoidal pituitary surgery: a systematic review and meta-analysis. Goudakos JK, Markou KD, Georgalas C. Clin Otolaryngol. 2011;36:212–220.
5)

Meta-analysis of endoscopic versus sublabial pituitary surgery. DeKlotz TR, Chia SH, Lu W, Makambi KH, Aulisi E, Deeb Z. Laryngoscope. 2012;122:511–518.
6)

Evaluation of trans-sphenoidal surgery in pituitary GH-secreting micro- and macroadenomas: a comparison between microsurgical and endoscopic approach. Lenzi J, Lapadula G, D’Amico T, et al. https://www.minervamedica.it/en/journals/neurosurgical-sciences/article.php?cod=R38Y2015N01A0011. J Neurosurg Sci. 2015;59:11–18.
7)

Endoscopic versus microscopic transsphenoidal surgery in the treatment of pituitary tumors: systematic review and meta-analysis of randomized and non-randomized controlled trials. Bastos RV, Silva CM, Tagliarini JV, Zanini MA, Romero FR, Boguszewski CL, Nunes VD. Arch Endocrinol Metab. 2016;60:411–419.
8)

Endoscopic versus microscopic approach in pituitary surgery. Gao Y, Zheng H, Xu S, Zheng Y, Wang Y, Jiang J, Zhong C. J Craniofac Surg. 2016;27:157–159.
9)

Resection of pituitary tumors: endoscopic versus microscopic. Singh H, Essayed WI, Cohen-Gadol A, Zada G, Schwartz TH. J Neurooncol. 2016;130:309–317.
10)

Endoscopic endonasal versus microsurgical transsphenoidal approach for growth hormone-secreting pituitary adenomas-systematic review and meta-analysis. Phan K, Xu J, Reddy R, Kalakoti P, Nanda A, Fairhall J. http://www.sciencedirect.com/science/article/pii/S1878875016310178. World Neurosurg. 2017;97:398–406.
11) , 12)

Endoscopic versus microscopic transsphenoidal surgery in the treatment of pituitary adenoma: A Systematic review and meta-analysis. Li A, Liu W, Cao P, Zheng Y, Bu Z, Zhou T. http://www.sciencedirect.com/science/article/pii/S1878875017300323. World Neurosurg. 2017;101:236–246.
13)

Cavallo LM, Dal Fabbro M, Jalalod’din H, Messina A, Esposito I, Esposito F, de Divitiis E, Cappabianca P. Endoscopic endonasal transsphenoidal surgery. Before scrubbing in: tips and tricks. Surg Neurol. 2007 Apr;67(4):342-7. Review. PubMed PMID: 17350397.
14)

Castle-Kirszbaum M, Uren B, Goldschlager T. Anatomical Variation for the Endoscopic Endonasal Transsphenoidal Approach. World Neurosurg. 2021 Oct 2:S1878-8750(21)01456-X. doi: 10.1016/j.wneu.2021.09.103. Epub ahead of print. PMID: 34610448.
15)

Rioja E, Bernal-Sprekelsen M, Enriquez K, Enseñat J, Valero R, de Notaris M, Mullol J, Alobid I. Long-term outcomes of endoscopic endonasal approach for skull base surgery: a prospective study. Eur Arch Otorhinolaryngol. 2015 Dec 19. [Epub ahead of print] PubMed PMID: 26688432.
16)

Parasher AK, Lerner DK, Glicksman JT, et al. Drivers of In-Hospital Costs Following Endoscopic Transphenoidal Pituitary Surgery [published online ahead of print, 2020 Aug 24]. Laryngoscope. 2020;10.1002/lary.29041. doi:10.1002/lary.29041
WhatsApp WhatsApp us
%d bloggers like this: