Pediatric Epilepsy Surgery Preoperative Assessment and Surgical Treatment

Pediatric Epilepsy Surgery Preoperative Assessment and Surgical Treatment

by Oguz Cataltepe (Author), George Jallo (Author)

List Price: $209.99

Buy

The definitive guide to surgical management of epilepsy in pediatric patients

This fully revised and updated second edition of Pediatric Epilepsy Surgery, edited by internationally renowned pediatric neurosurgeons and epilepsy surgery experts Oğuz Çataltepe and George Jallo, fills a void in the literature, encompassing the full spectrum of topics related to the surgical treatment of intractable epilepsy and seizures in children. The prodigiously illustrated book and its accompanying videos feature contributions from distinguished specialists in several different countries across a wide range of disciplines.

From epidemiology, genetics, pathology, preoperative electrophysiological assessment and neuroimaging to state-of-the-art surgical approaches, this remarkable resource covers the full depth and breadth of surgical management of pediatric epilepsy. Topics include awake anesthesia, intracranial stimulation and mapping techniques, temporal and extratemporal epilepsy surgery techniques, insular, multilobar and hemispheric surgery approaches, and diverse disconnection, neuromodulation, and ablative procedures. Insights are provided on postoperative issues including seizure control, neuropsychological and psychosocial outcomes, surgical failure and re-operation, and much more.

Key Features

A review of topographic anatomy of the cerebral cortex and white matter with numerous illustrations provides enhanced understanding of eloquent anatomy. Discussion of cutting-edge techniques such as stereo-electroencephalography, multi-modality imaging and tractography, endoscopic and laser ablation approaches in hypothalamic hamartomas, peri-insular quadrantotomy, and various hemispherotomy approaches. Overview of common cortical stimulation and mapping techniques including magnetic and electrical stimulation modalities, functional MRI, and the WADA test. 13 videos demonstrate seizure semiology, stimulation, awake surgery, hemispherotomy, amygdalohippocampectomy, and endoscopic corpus callosotomy. This state-of-the-art resource is a must-have for epilepsy surgeons and epileptologists. It will also greatly benefit neurosurgeons, neurologists, clinical neuropsychologists, electrophysiologists, neuroradiologists, residents, fellows, and medical students involved in the assessment and surgical management of epilepsy in pediatric patients.

This book includes complimentary access to a digital copy on https://medone.thieme.com.

Epilepsy after cranioplasty

Epilepsy after cranioplasty

Among the several cranioplasty complicationsepilepsy is a common complication with an incidence of 14.8-33.0% 1) 2).

Antiepileptic drugs can effectively reduce the occurrence of seizure3).

Systematic review

Seizures are a recognised complication of cranioplasty but its incidence and risk factors in TBI patients are unclear. Accurate prognostication can help direct prophylactic and treatment strategies for seizures. In a systematic review, Spencer et al., aimed to evaluate current literature on these factors. A PROSPERO-registered systematic review was performed in accordance with PRISMA guidelines. Data was synthesised qualitatively and quantitatively in meta-analysis where appropriate. A total of 8 relevant studies were identified, reporting 919 cranioplasty patients. Random-effects meta-analysis reveals a pooled incidence of post-cranioplasty seizures (PCS) of 5.1% (95% CI 2.6-8.2%). Identified risk factors from a single study included increasing age (OR 6.1, p = 0.006), contusion at cranioplasty location (OR 4.8, p = 0.015), and use of monopolar diathermy at cranioplasty (OR 3.5, p = 0.04). There is an association between an extended DC-cranioplasty interval and PCS risk although it did not reach statistical significance (p = 0.062). Predictive factors for PCS are poorly investigated in the TBI population to date. Heterogeneity of included studies preclude meta-analysis of risk factors. Further studies are required to define the true incidence of PCS in TBI and its predictors, and trials are needed to inform management of these patients. 4).

Case series

Two hundred and thirty-eight patients who received cranioplasty following craniectomy between January 2012 and December 2014 were included in a study. The risk factors of the patients with early and late post-cranioplasty seizures were compared to those with no post-cranioplasty seizures.

Seizures (73/238, 30.3%) were the most common complication after cranioplasty. Of these 73 patients, 17 (7.1%) had early post-cranioplasty seizures and 56 (23.5%) had late post-cranioplasty seizures. Early post-cranioplasty seizures were related to a longer interval between craniectomy and cranioplasty (P = 0.006), artificial materials (P < 0.001), and patients with late post-craniectomy seizures (P = 0.001). Late post-cranioplasty seizures were related to the presence of neurological deficits (P = 0.042). After stepwise logistic regression analysis, a longer interval between craniectomy and cranioplasty (P = 0.012; OR: 1.004, 95% CI: 1.001-1.007) and late post-craniectomy seizures (P = 0.033; OR: 4.335, 95% CI: 1.127-16.675) were independently associated with early post-cranioplasty seizures.

Delayed cranioplasty procedures and seizures before cranioplasty were significantly associated with early post-cranioplasty seizures. Further studies are warranted to investigate whether early surgery after craniectomy can reduce the risk of early post-cranioplasty seizures 5).


A retrospective study, covering the period between January 2008 and July 2015, compared postcranioplasty seizures (PCS) in postcranioplasty patients. Postcranioplasty seizures risk factors included diabetes mellitus, hypertension, time between DC and cranioplasty, duraplasty material, cranioplasty contusion location, electrocautery method, PCS type, and infection. Multivariate logistic regression analysis was performed and confidence intervals (CIs) were calculated (95% CI).

Of 270 patients, 32 exhibited initial PCS onset postcranioplasty with 11.9% incidence (32/270). Patients fell into immediate (within 24 hours), early (from 1 to 7 days), and late (after 7 days) PCS groups with frequencies of 12, 5, and 15 patients, respectively. Generalized, partial, and mixed seizure types were observed in 13, 13, and 6 patients, respectively. Multivariate logistic regression analysis showed increased risk with increasing age (>50 years). Cranioplasty contusion location, precranioplasty deficits, duraplasty material, and monopolar electrocautery were predictive of PCS onset (P < 0.05). Increased DC to cranioplasty interval increased risk but was not statistically significant (P = 0.062).

Understanding risk factors for PCS will benefit the management of cranioplasty patients 6).

References

1)

L. Lee, J. Ker, B.L. Quah, N. Chou, D. Choy, T.T. Yeo, A retrospective analysis and review of an institution’s experience with the complications of cranioplasty, Br. J. Neurosurg. 27 (2013) 629e635.
2)

A. Pechmann, C. Anastasopoulos, R. Korinthenberg, V. van Velthoven-Wurster, J. Kirschner, Decompressive craniectomy after severe traumatic brain injury in children: complications and outcome, Neuropediatrics 46 (2015) 5e12.
3)

Chen F, Duan Y, Li Y, Han W, Shi W, Zhang W, Huang Y. Use of an antiepileptic drug to control epileptic seizures associated with cranioplasty: A Randomised Controlled Trial. Int J Surg. 2017 Feb 18. pii: S1743-9191(17)30140-1. doi: 10.1016/j.ijsu.2017.02.017. [Epub ahead of print] PubMed PMID: 28223259.
4)

Spencer R, Manivannan S, Sharouf F, Bhatti MI, Zaben M. Risk factors for the development of seizures after cranioplasty in patients that sustained traumatic brain injury: A systematic review. Seizure. 2019 Mar 21;69:11-16. doi: 10.1016/j.seizure.2019.03.014. [Epub ahead of print] Review. PubMed PMID: 30952091.
5)

Shih FY, Lin CC, Wang HC, Ho JT, Lin CH, Lu YT, Chen WF, Tsai MH. Risk factors for seizures after cranioplasty. Seizure. 2019 Mar;66:15-21. doi: 10.1016/j.seizure.2018.12.016. Epub 2018 Dec 19. PubMed PMID: 30772643.
6)

Wang H, Zhang K, Cao H, Zhang X, Li Y, Wei Q, Zhang D, Jia Q, Bie L. Seizure After Cranioplasty: Incidence and Risk Factors. J Craniofac Surg. 2017 Sep;28(6):e560-e564. doi: 10.1097/SCS.0000000000003863. PubMed PMID: 28796104.

Innovations and Safety in Epilepsy Surgery

Innovations and Safety in Epilepsy Surgery

August 31 — September 1

Vienna, Austria

Programme

It is a satellite meeting to the 13th European Congress on Epileptology, which is held in Vienna from 26th – 30th August 2018. (https://epilepsyvienna2018.org)

Christian Dorfer

Medical University of Vienna,

Department of Neurosurgery

Thomas Czech

Medical University of Vienna,

Department of Neurosurgery

Bertil Rydenhag

University of Gothenburg,

Department of Clinical Neuroscience at Institute of Neuroscience and Physiology

Arthur Cukiert
Neurology and Neurosurgery Clinic Sao Paolo,
Clinica Neurologica Cukiert

WhatsApp WhatsApp us
%d bloggers like this: