Epilepsy surgery

Epilepsy surgery

see also Pediatric Epilepsy Surgery.

Technology

Dorfer et al. emphasized the role of the technological progress in changing the landscape of epilepsy surgery and provides a critical appraisal of robotic applications, laser interstitial thermal therapyintraoperative imaging, wireless recording, new neuromodulation techniques, and high-intensity focused ultrasound. Specifically, (a) it relativizes the current hype in using robots for stereoelectroencephalography (SEEG) to increase the accuracy of depth electrode placement and save operating time; (b) discusses the drawback of laser interstitial thermal therapy (LITT) when it comes to the need for adequate histopathologic specimen and the fact that the concept of stereotactic disconnection is not new; © addresses the ratio between the benefits and expenditure of using intraoperative magnetic resonance imaging (MRI), that is, the high technical and personnel expertise needed that might restrict its use to centers with a high caseload, including those unrelated to epilepsy; (d) soberly reviews the advantages, disadvantages, and future potentials of neuromodulation techniques with special emphasis on the differences between closed and open-loop systems; and (e) provides a critical outlook on the clinical implications of focused ultrasound, wireless recording, and multipurpose electrodes that are already on the horizon. This outlook shows that although current ultrasonic systems do have some limitations in delivering acoustic energy, the further advance of this technique may lead to novel treatment paradigms. Furthermore, it highlights that new data streams from multipurpose electrodes and wireless transmission of intracranial recordings will become available soon once some critical developments will be achieved such as electrode fidelity, data processing, and storage, heat conduction as well as rechargeable technology. A better understanding of modern epilepsy surgery will help to demystify epilepsy surgery for the patients and the treating physicians and thereby reduce the surgical treatment gap 1).

Indications

Epilepsy surgery indications.

Pre-surgical evaluation

Epilepsy surgery pre-surgical evaluation.

Techniques

Resective epilepsy surgery.

Hemispherectomy.

Magnetic resonance guided laser induced thermal therapy for epilepsy.

Temporal lobe epilepsy surgery

Vagus nerve stimulation for drug resistant epilepsy.

Neuromodulation

Several palliative neuromodulation treatment modalities are currently available for adjunctive use in the treatment of medically intractable epilepsy. Over the past decades, a variety of different central and peripheral nervous system sites have been identified, clinically and experimentally, as potential targets for chronic, nonresponsive therapeutic neurostimulation. Currently, the main modalities in clinical use, from most invasive to least invasive, are anterior thalamus deep brain stimulation, vagus nerve stimulation, and trigeminal nerve stimulation. Significant reductions in seizure frequency have been demonstrated in clinical trials using each of these neuromodulation therapies 2).

see Vagus nerve stimulation for drug resistant epilepsy.


see Epilepsy surgery in India.

The current practice under which patients with refractory epilepsy are surgically treated is based mainly on the identification of specific cortical areas, mainly the epileptogenic zone, which is believed to be responsible for generation of seizures. A better understanding of the whole epileptic network and its components and properties is required before more effective and less invasive therapies can be developed.

Epilepsy surgery is constantly researching for new options for patients with refractory epilepsy.

see Magnetic resonance guided laser induced thermal therapy for epilepsy

Despite significant underutilization of surgical treatment for drug-resistant epilepsy, no studies have quantified patient desire for surgery within a representative population.

An online survey was administered to all clients connected with a core epilepsy community access center. It obtained information about demographics, clinical characteristics, knowledge of epilepsy surgery, and interest in receiving surgery before and after receiving risk/benefit information about it.

Of 118 potential respondents, 48 (41%) completed the questionnaire, of which 67% had failed more than two AEDs and 78% experienced seizures in the past year. Eleven ( 26%) were uninterested in receiving surgery at baseline, and this decreased significantly to 7 (16%) following knowledge translation regarding the benefits (p = 0.001). Significance was lost with subsequent complication rate information despite fewer respondents still being uninterested compared to baseline (20% vs. 26%). Having experienced seizures within the past month was correlated with being interested in or undecided regarding surgery at baseline and following all steps of knowledge translation. Subjects had conservative views regarding the benefits of surgery and largely overestimated the risks.

A significant portion of those with active epilepsy in the community do not desire surgical treatment. Passive knowledge translation regarding the risks and benefits enhanced optimistic attitudes and mobilized interest within a subset of participants. Preexisting views regarding the risks of surgery were exaggerated, and analysis suggests that these views can be modified with information about the benefits of surgery. However, exaggerated risk perceptions return following crude descriptions of the risks, underlying the importance of sensitive counseling from primary care physicians 3).


In Epilepsy surgery where resective surgery is not indicated, deep brain stimulation (DBS) may be an effective alternative. The majority of available literature targets the thalamic nuclei (anterior; centromedian), subthalamic nucleus, hippocampus, and cerebellum.

Data show DBS may be a safe and effective treatment option for refractory epilepsy 4).

Surgery is a safe and effective option for some patients, however the opportunity exists to develop less invasive and more effective surgical options. To this end, multiple minimally invasive, image-guided techniques have been applied to the treatment of epilepsy. These techniques can be divided into thermoablative and disconnective techniques. Each has been described in the treatment of epilepsy only in small case series. Larger series and longer follow up periods will determine each option’s place in the surgical armamentarium for the treatment of refractory epilepsy but early results are promising 5).

Outcome

see Epilepsy Surgery outcome.

Books

Engel J Jr, Van Ness PC, Rasmussen T, Ojemann LM: Outcome with respect to epileptic seizures, in Engle J Jr (ed): Surgical Treatment of the Epilepsies, ed 2. New York: Raven Press, 1993, pp 609–621

Case series

Epilepsy surgery case series.

References

1)

Dorfer C, Rydenhag B, Baltuch G, Buch V, Blount J, Bollo R, Gerrard J, Nilsson D, Roessler K, Rutka J, Sharan A, Spencer D, Cukiert A. How technology is driving the landscape of epilepsy surgery. Epilepsia. 2020 Mar 29. doi: 10.1111/epi.16489. [Epub ahead of print] PubMed PMID: 32227349.
2)

Krishna V, Sammartino F, King NK, So RQ, Wennberg R. Neuromodulation for Epilepsy. Neurosurg Clin N Am. 2016 Jan;27(1):123-131. doi: 10.1016/j.nec.2015.08.010. Epub 2015 Oct 24. Review. PubMed PMID: 26615114.
3)

Zuccato JA, Milburn C, Valiante TA. Balancing health literacy about epilepsy surgery in the community. Epilepsia. 2014 Sep 23. doi: 10.1111/epi.12791. [Epub ahead of print] PubMed PMID: 25251908.
4)

Klinger NV, Mittal S. Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy. Clin Neurol Neurosurg. 2015 Nov 14;140:11-25. doi: 10.1016/j.clineuro.2015.11.009. [Epub ahead of print] Review. PubMed PMID: 26615464.
5)

Bandt SK, Leuthardt EC. Minimally Invasive Neurosurgery for Epilepsy Using Stereotactic MRI Guidance. Neurosurg Clin N Am. 2016 Jan;27(1):51-8. doi: 10.1016/j.nec.2015.08.005. Epub 2015 Oct 24. Review. PubMed PMID: 26615107.

Pediatric Epilepsy Surgery Preoperative Assessment and Surgical Treatment

Pediatric Epilepsy Surgery Preoperative Assessment and Surgical Treatment

by Oguz Cataltepe (Author), George Jallo (Author)

List Price: $209.99

Buy

The definitive guide to surgical management of epilepsy in pediatric patients

This fully revised and updated second edition of Pediatric Epilepsy Surgery, edited by internationally renowned pediatric neurosurgeons and epilepsy surgery experts Oğuz Çataltepe and George Jallo, fills a void in the literature, encompassing the full spectrum of topics related to the surgical treatment of intractable epilepsy and seizures in children. The prodigiously illustrated book and its accompanying videos feature contributions from distinguished specialists in several different countries across a wide range of disciplines.

From epidemiology, genetics, pathology, preoperative electrophysiological assessment and neuroimaging to state-of-the-art surgical approaches, this remarkable resource covers the full depth and breadth of surgical management of pediatric epilepsy. Topics include awake anesthesia, intracranial stimulation and mapping techniques, temporal and extratemporal epilepsy surgery techniques, insular, multilobar and hemispheric surgery approaches, and diverse disconnection, neuromodulation, and ablative procedures. Insights are provided on postoperative issues including seizure control, neuropsychological and psychosocial outcomes, surgical failure and re-operation, and much more.

Key Features

A review of topographic anatomy of the cerebral cortex and white matter with numerous illustrations provides enhanced understanding of eloquent anatomy. Discussion of cutting-edge techniques such as stereo-electroencephalography, multi-modality imaging and tractography, endoscopic and laser ablation approaches in hypothalamic hamartomas, peri-insular quadrantotomy, and various hemispherotomy approaches. Overview of common cortical stimulation and mapping techniques including magnetic and electrical stimulation modalities, functional MRI, and the WADA test. 13 videos demonstrate seizure semiology, stimulation, awake surgery, hemispherotomy, amygdalohippocampectomy, and endoscopic corpus callosotomy. This state-of-the-art resource is a must-have for epilepsy surgeons and epileptologists. It will also greatly benefit neurosurgeons, neurologists, clinical neuropsychologists, electrophysiologists, neuroradiologists, residents, fellows, and medical students involved in the assessment and surgical management of epilepsy in pediatric patients.

This book includes complimentary access to a digital copy on https://medone.thieme.com.

Epilepsy after cranioplasty

Epilepsy after cranioplasty

Among the several cranioplasty complicationsepilepsy is a common complication with an incidence of 14.8-33.0% 1) 2).

Antiepileptic drugs can effectively reduce the occurrence of seizure3).

Systematic review

Seizures are a recognised complication of cranioplasty but its incidence and risk factors in TBI patients are unclear. Accurate prognostication can help direct prophylactic and treatment strategies for seizures. In a systematic review, Spencer et al., aimed to evaluate current literature on these factors. A PROSPERO-registered systematic review was performed in accordance with PRISMA guidelines. Data was synthesised qualitatively and quantitatively in meta-analysis where appropriate. A total of 8 relevant studies were identified, reporting 919 cranioplasty patients. Random-effects meta-analysis reveals a pooled incidence of post-cranioplasty seizures (PCS) of 5.1% (95% CI 2.6-8.2%). Identified risk factors from a single study included increasing age (OR 6.1, p = 0.006), contusion at cranioplasty location (OR 4.8, p = 0.015), and use of monopolar diathermy at cranioplasty (OR 3.5, p = 0.04). There is an association between an extended DC-cranioplasty interval and PCS risk although it did not reach statistical significance (p = 0.062). Predictive factors for PCS are poorly investigated in the TBI population to date. Heterogeneity of included studies preclude meta-analysis of risk factors. Further studies are required to define the true incidence of PCS in TBI and its predictors, and trials are needed to inform management of these patients. 4).

Case series

Two hundred and thirty-eight patients who received cranioplasty following craniectomy between January 2012 and December 2014 were included in a study. The risk factors of the patients with early and late post-cranioplasty seizures were compared to those with no post-cranioplasty seizures.

Seizures (73/238, 30.3%) were the most common complication after cranioplasty. Of these 73 patients, 17 (7.1%) had early post-cranioplasty seizures and 56 (23.5%) had late post-cranioplasty seizures. Early post-cranioplasty seizures were related to a longer interval between craniectomy and cranioplasty (P = 0.006), artificial materials (P < 0.001), and patients with late post-craniectomy seizures (P = 0.001). Late post-cranioplasty seizures were related to the presence of neurological deficits (P = 0.042). After stepwise logistic regression analysis, a longer interval between craniectomy and cranioplasty (P = 0.012; OR: 1.004, 95% CI: 1.001-1.007) and late post-craniectomy seizures (P = 0.033; OR: 4.335, 95% CI: 1.127-16.675) were independently associated with early post-cranioplasty seizures.

Delayed cranioplasty procedures and seizures before cranioplasty were significantly associated with early post-cranioplasty seizures. Further studies are warranted to investigate whether early surgery after craniectomy can reduce the risk of early post-cranioplasty seizures 5).


A retrospective study, covering the period between January 2008 and July 2015, compared postcranioplasty seizures (PCS) in postcranioplasty patients. Postcranioplasty seizures risk factors included diabetes mellitus, hypertension, time between DC and cranioplasty, duraplasty material, cranioplasty contusion location, electrocautery method, PCS type, and infection. Multivariate logistic regression analysis was performed and confidence intervals (CIs) were calculated (95% CI).

Of 270 patients, 32 exhibited initial PCS onset postcranioplasty with 11.9% incidence (32/270). Patients fell into immediate (within 24 hours), early (from 1 to 7 days), and late (after 7 days) PCS groups with frequencies of 12, 5, and 15 patients, respectively. Generalized, partial, and mixed seizure types were observed in 13, 13, and 6 patients, respectively. Multivariate logistic regression analysis showed increased risk with increasing age (>50 years). Cranioplasty contusion location, precranioplasty deficits, duraplasty material, and monopolar electrocautery were predictive of PCS onset (P < 0.05). Increased DC to cranioplasty interval increased risk but was not statistically significant (P = 0.062).

Understanding risk factors for PCS will benefit the management of cranioplasty patients 6).

References

1)

L. Lee, J. Ker, B.L. Quah, N. Chou, D. Choy, T.T. Yeo, A retrospective analysis and review of an institution’s experience with the complications of cranioplasty, Br. J. Neurosurg. 27 (2013) 629e635.
2)

A. Pechmann, C. Anastasopoulos, R. Korinthenberg, V. van Velthoven-Wurster, J. Kirschner, Decompressive craniectomy after severe traumatic brain injury in children: complications and outcome, Neuropediatrics 46 (2015) 5e12.
3)

Chen F, Duan Y, Li Y, Han W, Shi W, Zhang W, Huang Y. Use of an antiepileptic drug to control epileptic seizures associated with cranioplasty: A Randomised Controlled Trial. Int J Surg. 2017 Feb 18. pii: S1743-9191(17)30140-1. doi: 10.1016/j.ijsu.2017.02.017. [Epub ahead of print] PubMed PMID: 28223259.
4)

Spencer R, Manivannan S, Sharouf F, Bhatti MI, Zaben M. Risk factors for the development of seizures after cranioplasty in patients that sustained traumatic brain injury: A systematic review. Seizure. 2019 Mar 21;69:11-16. doi: 10.1016/j.seizure.2019.03.014. [Epub ahead of print] Review. PubMed PMID: 30952091.
5)

Shih FY, Lin CC, Wang HC, Ho JT, Lin CH, Lu YT, Chen WF, Tsai MH. Risk factors for seizures after cranioplasty. Seizure. 2019 Mar;66:15-21. doi: 10.1016/j.seizure.2018.12.016. Epub 2018 Dec 19. PubMed PMID: 30772643.
6)

Wang H, Zhang K, Cao H, Zhang X, Li Y, Wei Q, Zhang D, Jia Q, Bie L. Seizure After Cranioplasty: Incidence and Risk Factors. J Craniofac Surg. 2017 Sep;28(6):e560-e564. doi: 10.1097/SCS.0000000000003863. PubMed PMID: 28796104.
WhatsApp WhatsApp us
%d bloggers like this: