Glioma Guidelines

Glioma Guidelines

The Korean Society for Neuro-Oncology (KSNO) published guidelines for managing adult glioma in 2019, and the National Comprehensive Cancer Network and European Association of Neuro-Oncology published guidelines in September 2021 and March 2021, respectively. However, these guidelines have several different recommendations in practice, including tissue management, adjuvant treatment after surgical resection, and salvage treatment for recurrent/progressive gliomas. Currently, the KSNO guideline working group is preparing an updated version of the guideline for managing adult gliomas 1).

EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood2)

The National Comprehensive Cancer Network (NCCN) Guidelines for Patients Brain Cancer: Gliomas

Zhao et al. systematically searched PubMed, China National Knowledge Infrastructure (CNKI), and Wanfang databases to retrieve guidelines on glioma in China published from the establishment of the database to 24 January 2022. We performed a narrative review of current clinical studies related to the management of glioblastoma, especially in the surgical, targeted, and immunotherapy therapy and tumor-treating fields.

Key content and findings: In this review, 19 guidelines were included, including 8 subclassified as the guideline, 8 subclassified as the consensus, and 3 subclassified as the standard. Two guidelines reported the contents of the system search, 4 guidelines are updated, and 9 guidelines reported the source of funding. At present, most clinical trials on the immune and targeted therapy of glioblastoma are ongoing in China.

China’s guidelines still need to be improved in terms of preciseness, applicability, and editorial independence. In addition, the cooperation in clinical research of glioblastoma in multiple centers needs to be strengthened in China 3).

To follow the revision of the fourth edition of WHO classification and the recent progress on the management of diffuse gliomas, the joint guideline committee of Chinese Glioma Cooperative Group (CGCG), Society for Neuro-Oncology of China (SNO-China) and Chinese Brain Cancer Association (CBCA) updated the clinical practice guideline. It provides recommendations for diagnostic and management decisions, and for limiting unnecessary treatments and cost. The recommendations focus on molecular and pathological diagnostics, and the main treatment modalities of surgery, radiotherapy, and chemotherapy. In this guideline, we also integrated the results of some clinical trials of immune therapies and target therapies, which we think are ongoing future directions. The guideline should serve as an application for all professionals involved in the management of patients with adult diffuse glioma and also a source of knowledge for insurance companies and other institutions involved in the cost regulation of cancer care in China and other countries 4).


Kim YZ, Kim CY, Lim DH. The Overview of Practical Guidelines for Gliomas by KSNO, NCCN, and EANO. Brain Tumor Res Treat. 2022 Apr;10(2):83-93. doi: 10.14791/btrt.2022.0001. PMID: 35545827; PMCID: PMC9098981.

Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, Bendszus M, Balana C, Chinot O, Dirven L, French P, Hegi ME, Jakola AS, Platten M, Roth P, Rudà R, Short S, Smits M, Taphoorn MJB, von Deimling A, Westphal M, Soffietti R, Reifenberger G, Wick W. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021 Mar;18(3):170-186. doi: 10.1038/s41571-020-00447-z. Epub 2020 Dec 8. Erratum in: Nat Rev Clin Oncol. 2022 May;19(5):357-358. PMID: 33293629; PMCID: PMC7904519.

Zhao MJ, Lu T, Ma C, Wang ZF, Li ZQ. A narrative review on the management of glioblastoma in China. Chin Clin Oncol. 2022 Aug;11(4):29. doi: 10.21037/cco-22-18. PMID: 36098100.

Jiang T, Nam DH, Ram Z, Poon WS, Wang J, Boldbaatar D, Mao Y, Ma W, Mao Q, You Y, Jiang C, Yang X, Kang C, Qiu X, Li W, Li S, Chen L, Li X, Liu Z, Wang W, Bai H, Yao Y, Li S, Wu A, Sai K, Li G, Yao K, Wei X, Liu X, Zhang Z, Dai Y, Lv S, Wang L, Lin Z, Dong J, Xu G, Ma X, Zhang W, Zhang C, Chen B, You G, Wang Y, Wang Y, Bao Z, Yang P, Fan X, Liu X, Zhao Z, Wang Z, Li Y, Wang Z, Li G, Fang S, Li L, Liu Y, Liu S, Shan X, Liu Y, Chai R, Hu H, Chen J, Yan W, Cai J, Wang H, Chen L, Yang Y, Wang Y, Han L, Wang Q; Chinese Glioma Cooperative Group (CGCG); Society for Neuro‐Oncology of China (SNO-China); Chinese Brain Cancer Association (CBCA); Chinese Glioma Genome Atlas (CGGA); Asian Glioma Genome Atlas (AGGA) network. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2021 Feb 28;499:60-72. doi: 10.1016/j.canlet.2020.10.050. Epub 2020 Nov 6. PMID: 33166616.

Diffuse midline glioma H3 K27M-altered case series

Diffuse midline glioma H3 K27M-altered case series

Forty-one cases of childhood Diffuse midline glioma H3 K27-altered were collected at Children’s Hospital of Fudan University (39 cases) and Xi’an Children’s Hospital (2 cases), from July 2016 to July 2020. The clinical manifestations, imaging data, histopathology, immunohistochemical phenotype and molecular genetics features, tumor size, site and histological grading were evaluated. Among the 41 cases, 21 were males and 20 females, the age of onset was 3-14 years, the average and median age was 7.6 years and 7.0 years, respectively. The tumor sites were brain stem (n=36) and other locations (n=5). The clinical manifestations were dizzinessgait disturbance, and limb weakness, etc. The MRI features were variable. The histology varied from low-grade to high-grade glioma with neuron differentiation. Immunohistochemistry showed that the tumor cells expressed H3K27MGFAP, and Olig2. Genetic study showed that 76% (16/21) of tumors had H3F3A gene mutation, mostly accompanied by TP53 (62%, 13/21) missense mutation; five tumors (24%, 5/21) had HIST1H3B gene mutation, accompanied by missense mutations in ACVR1 and PI3K pathway-related gene PIK3CA (4/5) and PIK3R1 (1/5) mutations. The prognosis was dismal with only one alive and others died. The average and median overall survival time was 7 months and 4 months, respectively. Cox multivariate regression analysis showed that age, tumor location, radiologically maximum tumor diameter, histologic grading, and surgical methods were not significantly associated with overall survival rate (P>0.05). Pediatric diffuse midline gliomas with H3K27 alteration have unique clinicopathological and genetic characteristics. The prognosis is poor. The tumor location and histopathologic grading are not related to prognosis. New specific drugs and comprehensive treatment are needed to improve the prognosis 1).

Piccardo et al., from Genoa, Italy. retrospectively analyzed 22 pediatric patients with DMG histologically proved and molecularly classified as H3K27M-mutant (12 subjects) and wild-type (10 subjects) who underwent DWIProton magnetic resonance spectroscopic imaging, and ASL performed within 2 weeks of 18F-FDOPA PET. DWI-derived relative minimum apparent diffusion coefficient (rADC min), 1H-MRS data choline/N-acetylaspartate (Cho/NAA), choline/creatine (Cho/Cr), and presence of lactate and relative ASL-derived cerebral blood flow max (rCBF max) were compared with 18F-DOPA uptake Tumor/Normal tissue (T/N) and Tumor/Striatum (T/S) ratios, and correlated with histological and molecular features of DMG. Statistics included Pearson’s chi-square and Mann-Whitney U tests, Spearman’s rank correlation and receiver operating characteristic (ROC) analysis.

The highest degrees of correlation among different techniques were found between T/S, rADC min and Cho/NAA ratio (p < 0.01), and between rCBF max and rADC min (p < 0.01). Significant differences between histologically classified low- and high-grade DMG, independently of H3K27M-mutation, were found among all imaging techniques (p ≤ 0.02). Significant differences in terms of rCBF max, rADC min, Cho/NAA and 18F-DOPA uptake were also found between molecularly classified mutant and wild-type DMG (p ≤ 0.02), even though wild-type DMG included low-grade astrocytomas, not present among mutant DMG. When comparing only histologically defined high-grade mutant and wild-type DMG, only the 18F-DOPA PET data T/S demonstrated statistically significant differences independently of histology (p < 0.003). ROC analysis demonstrated that T/S ratio was the best parameter for differentiating mutant from wild-type DMG (AUC 0.94, p < 0.001).

Advanced MRI and 18F-DOPA PET characteristics of DMG depend on histological features; however, 18F-DOPA PET-T/S was the only parameter able to discriminate H3K27M-mutant from wild-type DMG independently of histology 2).

Baseline diffusion or apparent diffusion coefficient (ADC) characteristics have been shown to predict outcome related to DIPG, but the predictive value of post-radiation ADC is less well understood. ADC parametric mapping (FDM) was used to measure radiation-related changes in ADC and compared these metrics to baseline ADC in predicting progression-free survival and overall survival using a large multi-center cohort of DIPG patients (Pediatric Brain Tumor Consortium-PBTC).

MR studies at baseline and post-RT in 95 DIPG patients were obtained and serial quantitative ADC parametric maps were generated from diffusion-weighted imaging based on T2/FLAIR and enhancement regions of interest (ROIs). Metrics assessed included total voxels with: increase in ADC (iADC); decrease in ADC (dADC), no change in ADC (nADC), fraction of voxels with increased ADC (fiADC), fraction of voxels with decreased ADC (fdADC), and the ratio of fiADC and fdADC (fDM Ratio).

A total of 72 patients were included in the final analysis. Tumors with higher fiADC between baseline and the first RT time point showed a trend toward shorter PFS with a hazard ratio of 6.44 (CI 0.79, 52.79, p = 0.083). In contrast, tumors with higher log mean ADC at baseline had longer PFS, with a hazard ratio of 0.27 (CI 0.09, 0.82, p = 0.022). There was no significant association between fDM derived metrics and overall survival.

Baseline ADC values are a stronger predictor of outcome compared to radiation related ADC changes in pediatric DIPG. We show the feasibility of employing parametric mapping techniques in multi-center studies to quantitate spatially heterogeneous treatment response in pediatric tumors, including DIPG 3).

Meyronet et al., from Lyon analyzed the characteristics of 21 adult H3 K27M-mutant gliomas and compared them with those of 135 adult diffuse gliomas without histone H3 and without isocitrate dehydrogenase (IDH) mutation (IDH/H3 wild type).

The median age at diagnosis in H3 K27M-mutant gliomas was 32 years (range: 18-82 y). All tumors had a midline location (spinal cord n = 6, thalamus n = 5, brainstem n = 5, cerebellum n = 3, hypothalamus n = 1, and pineal region n = 1) and were IDH and BRAF-V600E wild type. The identification of an H3 K27M mutation significantly impacted the diagnosis in 3 patients (14%) for whom the histological aspect initially suggested a diffuse low-grade glioma and in 7 patients (33%) for whom pathological analysis hesitated between a diffuse glioma, ganglioglioma, or pilocytic astrocytoma. Compared with IDH/H3 wild-type gliomas, H3 K27M-mutant gliomas were diagnosed at an earlier age (32 vs 64 y, P < .001), always had a midline location (21/21 vs 21/130, P < .001), less frequently had a methylated MGMT promoter (1/21 vs 52/129, P = .002), and lacked EGFR amplification (0/21 vs 26/128, P = .02). The median survival was 19.6 months in H3 K27M-mutant gliomas and 17 months in IDH/H3 wild-type gliomas (P = .3).

In adults, as in children, H3 K27M mutations define a distinct subgroup of IDH wild-type gliomas characterized by a constant midline location, low rate of MGMT promoter methylation, and poor prognosis 4).

130 cases of DIPG biopsies and previous published data, these procedures appear to have a diagnostic yield and morbidity rates similar to those reported for other brain locations (3.9 % of transient morbidity in our series). In addition, the quality and the quantity of the material obtained allow to (1) confirm the diagnosis, (2) reveal that WHO grading was useless to predict outcome, and (3) perform an extended molecular screen, including biomarkers study and the development of preclinical models. Recent studies reveal that DIPG may comprise more than one biological entity and a unique oncogenesis involving mutations never described in other types of cancers, i.e., histones H3 K27M and activin receptor ACVR1.

Stereotactic biopsies of DIPG can be considered as a safe procedure in well-trained neurosurgical teams and could be incorporated in protocols. It is a unique opportunity to integrate DIPG biopsies in clinical practice and use the biology at diagnosis to drive the introduction of innovative targeted therapies, in combination with radiotherapy 5).

A suboccipital, transcerebellar approach was used to obtain biopsy samples in 24 children.

Two patients suffered deficits. Both had a transient (< 2 months) new cranial nerve palsy; one of these patients also experienced an exacerbation of a preoperative hemiparesis. No patient died during the perioperative period. A histological diagnosis was made in all 24 patients as follows: 22 had a malignant infiltrative astrocytoma, one had a low-grade astrocytoma, and one had a pilocytic astrocytoma. The diagnosis of the latter two patients affected the initial treatment after the biopsy.

The findings of this study imply that stereotactic biopsy sampling of a diffuse pontine tumor is a safe procedure, is associated with minimal morbidity, and has a high diagnostic yield. A nonmalignant tumor was identified in two of the 24 patients in whom the imaging findings were characteristic of a malignant infiltrative astrocytoma. With the advent of new treatment protocols, stereotactic biopsy sampling, which would allow specific tumor characterization of diffuse pontine lesions, may become standard 6).


Li J, Ma YY, Feng J, Zhao D, Ding F, Tian L, Chen R, Zhao R. [Diffuse midline gliomas with H3K27 alteration in children: a clinicopathological analysis of forty-one cases]. Zhonghua Bing Li Xue Za Zhi. 2022 Apr 8;51(4):319-325. Chinese. doi: 10.3760/cma.j.cn112151-20210830-00625. PMID: 35359043.

Piccardo A, Tortora D, Mascelli S, Severino M, Piatelli G, Consales A, Pescetto M, Biassoni V, Schiavello E, Massollo M, Verrico A, Milanaccio C, Garrè ML, Rossi A, Morana G. Advanced MR imaging and (18)F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas. Eur J Nucl Med Mol Imaging. 2019 Apr 27. doi: 10.1007/s00259-019-04333-4. [Epub ahead of print] PubMed PMID: 31030232.

Ceschin R, Kocak M, Vajapeyam S, Pollack IF, Onar-Thomas A, Dunkel IJ, Poussaint TY, Panigrahy A. Quantifying radiation therapy response using apparent diffusion coefficient (ADC) parametric mapping of pediatric diffuse intrinsic pontine glioma: a report from the pediatric brain tumor consortium. J Neurooncol. 2019 Feb 27. doi: 10.1007/s11060-019-03133-y. [Epub ahead of print] PubMed PMID: 30810873.

Meyronet D, Esteban-Mader M, Bonnet C, Joly MO, Uro-Coste E, Amiel-Benouaich A, Forest F, Rousselot-Denis C, Burel-Vandenbos F, Bourg V, Guyotat J, Fenouil T, Jouvet A, Honnorat J, Ducray F. Characteristics of H3 K27M-mutant gliomas in adults. Neuro Oncol. 2017 Aug 1;19(8):1127-1134. doi: 10.1093/neuonc/now274. PubMed PMID: 28201752; PubMed Central PMCID: PMC5570304.

Puget S, Beccaria K, Blauwblomme T, Roujeau T, James S, Grill J, Zerah M, Varlet P, Sainte-Rose C. Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas. Childs Nerv Syst. 2015 Oct;31(10):1773-80. doi: 10.1007/s00381-015-2832-1. Epub 2015 Sep 9. PubMed PMID: 26351229.

Roujeau T, Machado G, Garnett MR, Miquel C, Puget S, Geoerger B, Grill J, Boddaert N, Di Rocco F, Zerah M, Sainte-Rose C. Stereotactic biopsy of diffuse pontine lesions in children. J Neurosurg. 2007 Jul;107(1 Suppl):1-4. PubMed PMID: 17647306.

5-aminolevulinic acid fluorescence guided resection of low-grade glioma

5-aminolevulinic acid fluorescence guided resection of low-grade glioma

Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with the assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Kiesel et al. discussed the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, they discussed the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, they introduced new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery 1).

A growing body of evidence has revealed the potential utility of 5-aminolevulinic acid (5-ALA) as a surgical adjunct in selected lower-grade gliomas. However, a reliable means of identifying which lower-grade gliomas will fluoresce has not been established.

Widhalm found that 5-ALA induced PpIX fluorescence is capable as a novel intra-operative marker to detect anaplastic foci within initially suspected low-grade gliomas independent of brainshift 2).

A systematic review of PubMedGoogle Scholar, and Cochrane was performed from the date of inception to February 1, 2019. Studies that correlated 5-aminolevulinic acid fluorescence with low-grade glioma in the setting of operative resection were selected. Studies with biopsy only were excluded. Positive fluorescence rates were calculated. The quality index of the selected papers was provided. No patient information was used, so Institutional Review Board approval and patient consent were not required.

A total of 12 articles met the selection criteria with 244 histologically confirmed low-grade glioma patients who underwent microsurgical resection. All patients received 20 mg/kg body weight of 5-aminolevulinic acid. Only 60 patients (n = 60/244; 24.5%) demonstrated visual intraoperative 5-aminolevulinic acid fluorescence. The extent of resection was reported in 4 studies; however, the data combined low- and high-grade tumors. Only 2 studies reported on tumor location. Only 3 studies reported on clinical outcomes. The Zeiss OPMI Pentero microscope was most commonly used across all studies. The average quality index was 14.58 (range: 10-17), which correlated with an overall good quality.

There is an overall low correlation between 5-aminolevulinic acid fluorescence and low-grade glioma. Advances in visualization technology and using standardized fluorescence quantification methods may further improve the visualization and reliability of 5-aminolevulinic acid fluorescence in low-grade glioma resection 3).

Müther et al. investigated a cohort of patients with WHO Grade 2 glioma and WHO Grade 3 gliomas who received 5-ALA before resection at a single institution. Using a logistic regression-based model, they evaluated 14 clinical and molecular variables considered plausible determinants of fluorescence. They then distilled the most predictive features to develop a model for predicting both fluorescence and tumor grade. They also explored the relationship between intraoperative fluorescence and diagnostic molecular markers.

One hundred seventy-nine subjects were eligible for inclusion. Our logistic regression classifier accurately predicted intraoperative fluorescence in our cohort with 91.9% accuracy and revealed enhancement as the singular variable in determining intraoperative fluorescence. There was a direct relationship between enhancement on MRI and the likelihood of observed fluorescence. Observed fluorescence correlated with MIB-1 index but not with isocitrate dehydrogenase (IDH) status, 1p19q codeletion, or methylguanine DNA methyltransferase promoter methylation.

They demonstrated a strong correlation between enhancement on preoperative MRI and the likelihood of visible fluorescence during surgery in patients with intermediate-grade glioma. The analysis provides a robust method for predicting 5-ALA-induced fluorescence in patients with grade II and grade III gliomas 4).

Valdés et al. describe their initial experience with 5-aminolevulinic acid (ALA)-induced PpIX fluorescence in twelve patients with presumed LGGs after receiving 20 mg/kg of ALA approximately 3 hours prior to surgery under an institutional review board-approved protocol.

Intraoperative assessments of the resulting PpIX emissions using both qualitative, visible fluorescence and quantitative measurements of PpIX concentration were obtained from tissue locations that were subsequently biopsied and evaluated histopathologically. Mixed models for random effects and receiver operating characteristic curve analysis for diagnostic performance were performed on the fluorescence data relative to the gold-standard histopathology.

Five of the 12 LGGs (1 ganglioglioma, 1 oligoastrocytoma, 1 pleomorphic xanthoastrocytoma, 1 oligodendroglioma, and 1 ependymoma) demonstrated at least 1 instance of visible fluorescence during surgery. Visible fluorescence evaluated on a specimen-by-specimen basis yielded a diagnostic accuracy of 38.0% (cutoff threshold: visible fluorescence score ≥ 1, area under the curve = 0.514). Quantitative fluorescence yielded a diagnostic accuracy of 67% (for a cutoff threshold of the concentration of PpIX [CPpIX] > 0.0056 μg/ml, area under the curve = 0.66). The authors found that 45% (9/20) of nonvisibly fluorescent tumor specimens, which would have otherwise gone undetected, accumulated diagnostically significant levels of CPpIX that were detected quantitatively.

The authors’ initial experience with ALA-induced PpIX fluorescence in LGGs concurs with other literature reports that the resulting visual fluorescence has poor diagnostic accuracy. However, the authors also found that diagnostically significant levels of CPpIX do accumulate in LGGs, and the resulting fluorescence emissions are very often below the detection threshold of current visual fluorescence imaging methods. Indeed, at least in the authors’ initial experience reported here, if quantitative detection methods are deployed, the diagnostic performance of ALA-induced PpIX fluorescence in LGGs approaches the accuracy associated with visual fluorescence in HGGs 5).


Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current RoleLimitations, and New Approaches. Front Oncol. 2021 Jul 30;11:699301. doi: 10.3389/fonc.2021.699301. PMID: 34395266; PMCID: PMC8362830.

Widhalm G. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence. Clin Neuropathol. 2014 Jul-Aug;33(4):260-78. PubMed PMID: 24986206.

Almekkawi AK, El Ahmadieh TY, Wu EM, Abunimer AM, Abi-Aad KR, Aoun SG, Plitt AR, El Tecle NE, Patel T, Stummer W, Bendok BR. The Use of 5-Aminolevulinic Acid in Low-Grade Glioma Resection: A Systematic Review. Oper Neurosurg (Hagerstown). 2020 Jul 1;19(1):1-8. doi: 10.1093/ons/opz336. Erratum in: Oper Neurosurg (Hagerstown). 2020 Jul 1;19(1):107. PMID: 31828346.

Müther M, Jaber M, Johnson TD, Orringer DA, Stummer W. A Data-Driven Approach to Predicting 5-Aminolevulinic Acid-Induced Fluorescence and World Health Organization Grade in Newly Diagnosed Diffuse Gliomas. Neurosurgery. 2022 Mar 16. doi: 10.1227/NEU.0000000000001914. Epub ahead of print. PMID: 35285461.

Valdés PA, Jacobs V, Harris BT, Wilson BC, Leblond F, Paulsen KD, Roberts DW. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. J Neurosurg. 2015 Jul 3:1-10. [Epub ahead of print] PubMed PMID: 26140489.
WhatsApp WhatsApp us
%d bloggers like this: