Chronic subdural hematoma

Chronic subdural hematoma

J.Sales-Llopis

Neurosurgery Department, University General Hospital of Alicante, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Alicante, Spain

Chronic subdural hematoma (CSDH) is an encapsulated collection of old blood, mostly or totally liquefied and located between the dura mater and the arachnoid mater.

They are arbitrarily defined as those hematomas presenting 21 days or more after injury. These numbers are not absolute, and a more accurate classification of a subdural hematoma usually is based on imaging characteristics.

cSDHs have a tendency to persist and gradually increase in volume over time. The disease is thought to be related to a cycle of chronic inflammation and angiogenesis. An original hemorrhage forms and fibrinolysis ensues with the liquefaction of the initial clot. The subsequent blood breakdown products stimulate inflammation and thickening of the inner dural layer (ie, ‘dural border cells). This process incites angiogenesis with the ingrowth of immature capillaries, which chronically leak blood. These microhemorrhages result in the progressive enlargement of the collection with increased fibrinolytic activity, inflammation, and further angiogenesis, membrane formation, and vessel proliferation. The rate of accumulation of blood products outpaces physiological reabsorption and the collection gradually enlarges. Thus the entire basis for the pathology is the formation of leaky vascular membranes, which incite a positive feedback cycle of continued hemorrhage, inflammation, and angiogenesis 1) 2)


Chronic subdural hematoma (CSDH) is characterized by an “old” encapsulated collection of blood and blood breakdown products between the brain and its outermost covering (the dura).

It is delimited by an outer and inner membrane. In between are bloodplasmacerebrospinal fluid, membranes, and a mixture of inflammatory angiogenic fibrinolytic and coagulation factors. These factors maintain a self-perpetuating cycle of bleeding, lysis, and growing of neo-membranes and neo-capillaries 3).

The association between the biomarkers of inflammation and angiogenesis, and the clinical and radiological characteristics of CSDH patients, need further investigation. The high number of biomarkers compared to the number of observations, the correlation between biomarkers, missing data and skewed distributions may limit the usefulness of classical statistical methods.

Pripp et al. explored lasso regression to assess the association between 30 biomarkers of inflammation and angiogenesis at the site of lesions, and selected clinical and radiological characteristics in a cohort of 93 patients. Lasso regression performs both variable selection and regularization to improve the predictive accuracy and interpretability of the statistical model. The results from the lasso regression showed analysis exhibited lack of robust statistical association between the biomarkers in hematoma fluid with age, gender, brain infarct, neurological deficiencies and volume of hematoma. However, there were associations between several of the biomarkers with postoperative recurrence requiring reoperation. The statistical analysis with lasso regression supported previous findings that the immunological characteristics of CSDH are local. The relationship between biomarkers, the radiological appearance of lesions and recurrence requiring reoperation have been inclusive using classical statistical methods on these data, but lasso regression revealed an association with inflammatory and angiogenic biomarkers in hematoma fluid. They suggest that lasso regression should be a recommended statistical method in research on biological processes in CSDH patients 4).

Chronic subdural hematoma (CSDH) is a disease of the meninges and is to be distinguished from hygroma and subdural empyema.

Subdural effusion in the setting of dural metastases is very rare and may be difficult to be distinguished from chronic subdural hematoma. Such lesions could be missed and could be the cause of recurrence in CSDH. A contrast-enhanced brain CT scan is recommended to diagnose dural metastases.

Rosai–Dorfman disease may be mistaken for a CSDH on imaging. This disease is an uncommon, benign systemic histioproliferative disease characterized by massive lymphadenopathy, particularly in the head and neck region, and is often associated with extranodal involvement. CSDH can also develop in multifocal fibrosclerosis (MFS) which is a rare disorder of unknown etiology, characterized by chronic inflammation with dense fibrosis and lymphoplasmacytic infiltration into the connective tissue of various organs. The mechanism of the formation of CSDH is presumed to involve reactive granular membrane together with subdural collection. On the other hand, the extramedullary erythropoiesis within CSDH can be confused with metastatic malignant tumors, such as lymphoma, carcinoma, and malignant melanoma 5).

A 44-year old woman with gastric adenocarcinoma was presented with headache and a hypodense subdural collection in right fronto-parietal in brain CT. Burr-hole irrigation was performed with the impression of chronic subdural hematoma, but nonhemorrhagic xantochromic fluid was evacuated without malignant cell. Brain CT on the 11th day depicted fluid re-accumulation and noticeable midline shift, necessitating craniotomy and removing the affected dura.

Because the affected dura can be supposed as the main source of subdural effusion, resection of the involved dura is obligatory for the appropriate palliative management of such patients 6).

The progression of CSDH is an angiogenic process, involving inflammatory mediators that affect vascular permeability, microvascular leakage, and hematoma thickness.

see Chronic subdural hematoma surgery complication.

bibliometrics retrieved 1424 CSDH-related articles published since the beginning of the twenty-first century. There was a general increase in both the number of published articles and the mean number of citations. The authors, institutions, and journals that contributed the most to the field of CSDH were Jianning Zhang, Tianjin Medical University General Hospital, and world neurosurgery, respectively. The reference co-citation network identified 13 clusters with significant modularity Q scores and silhouette scores (Q = 0.7124, S = 0.8536). The major research categories were (1) the evolution of the therapeutic method and (2) the etiology and pathology of CSDH. Keyword analysis revealed that ‘middle meningeal artery embolization‘ was the latest burst keyword.

This study identified the most influential countries, authors, institutions, and journals contributing to CSDH research and discussed the hotspots and the latest subjects of CSDH research 7)

Attempts to create CSDH have been made in mice, rats, cats, dogs and monkeys. Methods include injection or surgical implantation of clotted blood or various other blood products and mixtures into the potential subdural space or the subcutaneous space. No intracranial model produced a progressively expanding CSDH. Transient hematoma expansion with liquification could be produced by subcutaneous injections in some models. Spontaneous subdural blood collections were found after creation of hydrocephalus in mice by systemic injection of the neurotoxin, 6-aminonicotinamide. The histology of the hematoma membranes in several models resembles the appearance in humans. None of the models has been replicated since its first description.

D’Abbondanza et al. did not find a report of a reproducible, well-described animal model of human CSDH 8).

Zhuang Y, Jiang M, Zhou J, Liu J, Fang Z, Chen Z. Surgical Treatment of Bilateral Chronic Subdural Hematoma. Comput Intell Neurosci. 2022 Jun 27;2022:2823314. doi: 10.1155/2022/2823314. Retraction in: Comput Intell Neurosci. 2022 Dec 25;2022:9806807. PMID: 35795746; PMCID: PMC9252673.


1)

Ito H , Yamamoto S , Komai T , et al . Role of local hyperfibrinolysis in the etiology of chronic subdural hematoma. J Neurosurg 1976;45:26–31.doi:10.3171/jns.1976.45.1.0026
2)

Edlmann E , Giorgi-Coll S , Whitfield PC , et al . Pathophysiology of chronic subdural haematoma: inflammation, angiogenesis and implications for pharmacotherapy. J Neuroinflammation 2017;14:108.doi:10.1186/s12974-017-0881-y
3)

Frati A, Salvati M, Mainiero F, Ippoliti F, Rocchi G, Raco A, Caroli E, Cantore G, Delfini R (2004) Inflammation markers and risk factors for recurrence in 35 patients with a posttraumatic chronic subdural haematoma: a prospective study. J Neurosurg 100:24–32
4)

Pripp AH, Stanišić M. Association between biomarkers and clinical characteristics in chronic subdural hematoma patients assessed with lasso regression. PLoS One. 2017 Nov 6;12(11):e0186838. doi: 10.1371/journal.pone.0186838. eCollection 2017. PubMed PMID: 29107999.
5)

Yadav YR, Parihar V, Namdev H, Bajaj J. Chronic subdural hematoma. Asian J Neurosurg. 2016 Oct-Dec;11(4):330-342. Review. PubMed PMID: 27695533; PubMed Central PMCID: PMC4974954.
6)

Mirsadeghi SM, Habibi Z, Meybodi KT, Nejat F, Tabatabai SA. Malignant subdural effusion associated with disseminated adenocarcinoma: a case report. Cases J. 2008 Nov 18;1(1):328. doi: 10.1186/1757-1626-1-328. PubMed PMID: 19019205; PubMed Central PMCID: PMC2611978.
7)

Chen R, Wei Y, Xu X, Zhang R, Tan Y, Zhang G, Yin H, Dai D, Li Q, Zhao R, Huang Q, Xu Y, Yang P, Liu J, Zuo Q. A bibliometric analysis of chronic subdural hematoma since the twenty-first century. Eur J Med Res. 2022 Dec 27;27(1):309. doi: 10.1186/s40001-022-00959-7. PMID: 36572939.
8)

D’Abbondanza JA, Loch Macdonald R. Experimental models of chronic subdural hematoma. Neurol Res. 2014 Feb;36(2):176-88. doi: 10.1179/1743132813Y.0000000279. Epub 2013 Dec 6. Review. PubMed PMID: 24172841.

Subgaleal hematoma

Subgaleal hematoma

Subgaleal hematoma is a type of cephalhematoma in the potential space between the periosteum and the galea aponeurosis.

They dont calcify.

Its occurrence beyond the neonatal period is rare and is often associated with head trauma involving tangential or radial forces applied to the scalp causing emissary veins traversing the subgaleal space to be ruptured 1).

In patients with traumatic intracranial hemorrhage or skull fractures, the incidence is increased.

In the newborn infant is rare, occurs early, and often bears serious consequences.

The diagnosis is generally a clinical one, with a fluctuant boggy mass developing over the scalp

Laboratory studies consist of a hematocrit evaluation.

Right frontotemporoparietal intracranial acute epidural hematoma, up to 1 cm. thick, underlying a broad line of right temporoparietal Right parietal subgaleal hematoma, up to 1cm. of thickness.

Hemorrhage under the scalp

Not to confuse with subperiosteal hematoma.


Small gyriform laminar hyperdensity is observed in the left superior frontal sulcus in relation to a small subarachnoid hemorrhage. Left parietal subgaleal hematoma up to 7 mm thick.

Although rare, rapid spontaneous resolution of epidural hematomas in the pediatric population has even been reported 2).

Numerous theories have been proposed to explain the pathophysiology behind these cases, including egress of epidural collections through cranial discontinuities (fractures/open sutures), blood that originates in the subgaleal space, and bleeding from the cranial diploic cavity after a skull fracture that preferentially expands into the subgaleal space 3)

Children born by use of vacuum extractor or forceps require careful monitoring by the nursing staff throughout their stay in the maternity unit 4).

In most cases, conservative treatment is the preferred option because adhesion between the galea aponeurotica and the periosteum restricts the extent of the hematoma. In special cases, however, the hematoma enlarges extraordinarily past these adhesions, and the patients thus affected suffer from progressive anemia followed by the lethargy and headache resulting from the excessive distension of the skin and the subcutaneous tissue. In such cases, hematoma removal is performed in order to relieve the symptoms 5).

The therapeutic strategy for massive subgaleal hematoma is individualized. However, treatment for massive subgaleal hematoma with skull fracture should not be considered the same as for hematoma without skull fracture. Emergent surgery is recommended before neurological deterioration is recognized in the patient if damage to the dural sinus is suspected 6).

Endoscopic techniques have been advanced along with the recent trend toward invasive neurosurgery. These minimally invasive techniques can allow sufficient removal of subgaleal hematoma with minimal morbidity, especially in patients such as ours. In addition, the utility of endoscopic techniques for the removal of subgaleal hematoma should be confirmed after long-term follow-up 7).

Usually starts as a small localized hematoma, and may become huge (with significant loss of circulating blood volume in age < 1 year, transfusion may be necessary).


A 3 kg baby was delivered by cesarean section after prolonged labor. He had massive subgaleal hematoma. He developed anemia requiring packed cell transfusions and hyperbilirubinemia requiring a total of seven exchange transfusions and highly intensive phototherapy. There were no adverse complications of the hyperbilirubinemia or the exchange transfusion 8).

A 39-year-old healthy worker came to our emergency department (ED) due to scalp lacerations from an accident that caused severe twisting of his hair. He denied head contusion and was conscious upon arrival. Physical examination showed three lacerations over his right temporal area. The wounds depth extended to the skull, with a 10-cm subperiosteal pocket beneath the lacerations. Primary sutures were performed immediately under local anesthesia, not only for wound closure but also for hemostasis. However, he returned to our ED 3 h after the first visit for a newly developed soft lump over the left side of his forehead. Computed tomography scan of brain illustrated a huge and diffuse SGH in the left temporal region with extension to periorbital region. Although the option of incision and drainage was discussed with a neurosurgeon and a search for some case reports was done, most of the hematoma could be self-limited. Conservative management with non-elastic bandage packing direct compression was applied. The patient was then admitted for close observation and conservative treatment for 1 week. There was no recurrence of SGH in the following 3 months. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: SGH is an uncommon phenomenon that is caused by tearing of the emissary veins in the loose areolar tissue located beneath the galeal aponeurosis. Conservative treatment with bandage compression is recommended for SGH. Surgery is reserved for cases where non-invasive management fails or severe complications 9).


1)

Vu TT, Guerrera MF, Hamburger EK, Klein BL. Subgaleal hematoma from hair braiding.Case report and literature review. Pediatr Emerg Cure. 2004;20:821–3
2)

Chida K, Yukawa H, Mase T, Endo H, Ogasawara K. Spontaneous slow drainage of epidural hematoma into the subgaleal space through a skull fracture in an infant–case report. Neurol Med Chir (Tokyo). 2011;51(12):854-6. PubMed PMID: 22198110.
3)

Tataryn Z, Botsford B, Riesenburger R, Kryzanski J, Hwang S. Spontaneous resolution of an acute epidural hematoma with normal intracranial pressure: case report and literature review. Childs Nerv Syst. 2013 Nov;29(11):2127-30. doi: 10.1007/s00381-013-2167-8. Epub 2013 May 26. Review. PubMed PMID: 23708934.
4)

Boumahni B, Ghazouani J, Bey KJ, Carbonnier M, Staquet P. [Subgaleal hematoma in 2 neonates]. Arch Pediatr. 2010 Oct;17(10):1451-4. doi: 10.1016/j.arcped.2010.07.011. Epub 2010 Sep 18. French. PubMed PMID: 20851581.
5)

Amar AP, Aryan HE, Meltzer HS, Levy ML. Neonatal subgaleal hematoma causing brain compression: Report of two cases and review of the literature. Neurosurgery. 2003;52:1470–4.
6)

Yamada SM, Tomita Y, Murakami H, Nakane M. Delayed post-traumatic large subgaleal hematoma caused by diastasis of rhomboid skull suture on the transverse sinus. Childs Nerv Syst. 2015 Apr;31(4):621-4. doi: 10.1007/s00381-014-2531-3. Epub 2014 Aug 21. PubMed PMID: 25142690.
7)

Hayashi Y, Kita D, Furuta T, Oishi M, Hamada J. Endoscopic removal of subgaleal hematoma in a 7-year-old patient treated with anticoagulant and antiplatelet agents. Surg Neurol Int. 2014 Jun 20;5:98. doi: 10.4103/2152-7806.134911. eCollection 2014. PubMed PMID: 25024898; PubMed Central PMCID: PMC4093743.
8)

Dutta S, Singh A, Narang A. Subgaleal hematoma and seven exchange transfusions. Indian Pediatr. 2004 Mar;41(3):267-70. PubMed PMID: 15064515.
9)

Chen CE, Liao ZZ, Lee YH, Liu CC, Tang CK, Chen YR. Subgaleal Hematoma at the Contralateral Side of Scalp Trauma in an Adult. J Emerg Med. 2017 Nov;53(5):e85-e88. doi: 10.1016/j.jemermed.2017.06.007. Epub 2017 Sep 20. PMID: 28941556.

Chronic subdural hematoma recurrence prevention

Chronic subdural hematoma recurrence prevention

In total, 402 studies were included in this analysis and 32 potential risk factors were evaluated. Among these, 21 were significantly associated with the postoperative recurrence of CSDH. Three risk factors (male, bilateral hematoma, and no drainage) had convincing evidence 1).

The single most important factor appears to be the residual subdural space after drainage of the chronic subdural hematoma and an effort should be made by the surgeon to facilitate the expansion of the underlying brain. The presence of a functioning drain for 48–72 h draining the subdural fluid and promoting brain expansion will reduce the subdural space, thus reducing the recurrence of the CSDH. Some of the relevant surgical nuances include placement of at least two burr holes with the burr holes located to drain multiple cavities, copious irrigation of the subdural space, placement of the drain in the dependent burr hole site, near-total filling of the subdural space with irrigation to prevent a pneumocephalus and placing a subdural drain. Closure of the site with a large piece of Gelfoam prevents the subgaleal blood to migrate into the subdural space.

Postoperative subdural drain of maximal 48 h is effective in reducing recurrent hematomas. However, the shortest possible drainage time without increasing the recurrence rate is unknown

see Subdural drain for chronic subdural hematoma

The effect of a physical property of irrigation solution (at body vs room temperature) on the chronic subdural hematoma recurrence rate needs further study.

Objective: To explore whether irrigation fluid temperature has an influence on cSDH recurrence.

Design, setting, and participants: This was a multicenter randomized clinical trial performed between March 16, 2016, and May 30, 2020. The follow-up period was 6 months. The study was conducted at 3 neurosurgical departments in Sweden. All patients older than 18 years undergoing cSDH evacuation during the study period were screened for eligibility in the study.

Interventions: The study participants were randomly assigned by 1:1 block randomization to the cSDH evacuation procedure with irrigation fluid at room temperature (RT group) or at body temperature (BT group).

Main outcomes and measures: The primary end point was recurrence requiring reoperation within 6 months. Secondary end points were mortality, health-related quality of life, and complication frequency.

Results: At 6 months after surgery, 541 patients (mean [SD] age, 75.8 [9.8] years; 395 men [73%]) had a complete follow-up according to protocol. There were 39 of 277 recurrences (14%) requiring reoperation in the RT group, compared with 16 of 264 recurrences (6%) in the BT group (odds ratio, 2.56; 95% CI, 1.38-4.66; P < .001). There were no significant differences in mortality, health-related quality of life, or complication frequency.

Conclusions and Relevance: In this study, irrigation at body temperature was superior to irrigation at room temperature in terms of fewer recurrences. This is a simple, safe, and readily available technique to optimize outcome in patients with cSDH. When irrigation is used in cSDH surgery, irrigation fluid at body temperature should be considered standard of care.

Trial registration: ClincalTrials.gov Identifier: NCT02757235 2).

A study aimed to evaluate the efficacy and safety of half-saline solution for irrigation in burr hole trephination for chronic subdural hematoma.

This randomized clinical trial was conducted in university hospital referral centers from 2020 to 2021. Sixty-three patients with chronic subdural hematoma eligible for burr hole trephination were primarily enrolled. Two patients were excluded because of concurrent stroke. Sixty-one patients were randomly allocated into case (HS=30) and control (normal-saline [NS]=31) groups. HS was used to irrigate the hematoma in the case group and NS was used in the control group. The patients were followed-up. Clinical variables including demographic and medical findings, postoperative computed tomography findings, postoperative complications, hospitalization period, recurrence rate, and functional status measured by the Barthel type B index were recorded.

Forty-six of 61 patients were male (75.4%), and the patients’ mean age was 65.4±16.9 years, with equal distribution between the 2 groups. Postoperative effusion and postoperative hospital stay duration were significantly lower in the HS group than in the NS group (p=0.002 and 0.033, respectively). The postoperative recurrence within 3 months in both groups was approximately equal (6.6%). In terms of functional outcomes and postoperative complications, HS showed similar results to those of NS.

Conclusion: HS as an irrigation fluid in BHC effectively reduced postoperative effusion and hospital stay duration without considerable complications.

Trial registration: Iranian Registry of Clinical Trials Identifier: IRCT20200608047688N1 3).


1)

Zhu F, Wang H, Li W, Han S, Yuan J, Zhang C, Li Z, Fan G, Liu X, Nie M, Bie L. Factors correlated with the postoperative recurrence of chronic subdural hematoma: An umbrella study of systematic reviews and meta-analyses. EClinicalMedicine. 2021 Dec 20;43:101234. doi: 10.1016/j.eclinm.2021.101234. PMID: 34988412; PMCID: PMC8703229.
2)

Bartley A, Bartek J Jr, Jakola AS, Sundblom J, Fält M, Förander P, Marklund N, Tisell M. Effect of Irrigation Fluid Temperature on Recurrence in the Evacuation of Chronic Subdural Hematoma: A Randomized Clinical Trial. JAMA Neurol. 2022 Nov 21. doi: 10.1001/jamaneurol.2022.4133. Epub ahead of print. PMID: 36409480.
3)

Mahmoodkhani M, Sharafi M, Sourani A, Tehrani DS. Half-Saline Versus Normal-Saline as Irrigation Solutions in Burr Hole Craniostomy to Treat Chronic Subdural Hematomata: A Randomized Clinical Trial. Korean J Neurotrauma. 2022 Sep 29;18(2):221-229. doi: 10.13004/kjnt.2022.18.e47. PMID: 36381457; PMCID: PMC9634318.

Chronic Subdural Hematoma Surgical Technique

Chronic Subdural Hematoma Surgical Technique

(1) Twist drill craniostomy for chronic subdural hematoma is a relatively safe technique that can be employed under local anesthesia and thus can be considered as first-line treatment in high-risk surgical candidates. (2) Single and double burr hole craniotomies have shown comparable results. (3) Intraoperative irrigation during burr-hole craniostomy doesn’t affect the outcome. (4) Drain insertion after hematoma evacuation lowers the recurrence risk. (5) Position of the drain is not significant but early drain removal is associated with higher recurrence rates. (6) Craniotomy is associated with high morbidity and mortality, hence should be reserved for recurrent and large septate hematoma cases. (7) Head elevation in the postoperative period reduces recurrence. (8) Embolization of the middle meningeal artery (EMMA): A novel treatment modality, is promising but requires further approval in terms of large sample-sized multicenter randomized control trials. In conclusion, further research is required on the subject to formulate guidelines regarding the management of this common neurosurgical emergency 1)


Due to the lack of consensus treatment, tissue plasminogen activator (tPA) has begun to be investigated to promote drainage and has shown promise in some early studies in reducing recurrence rates.


The most usual procedures for chronic subdural hematoma treatment include single or multiple burr hole drainage craniectomy. There is still controversy, however, about the risks and benefits of the different surgical approaches and types of drainage.

Till 1970s, craniotomy was the most commonly used method. Burr hole trephination for chronic subdural hematoma became the most preferred method from 1980s. In 1977Twist drill craniostomy for chronic subdural hematoma was introduced. Closed system drainage after a Burr hole (BH) or a Twist drill (TD) became the most frequently used surgical method 2).

Pre-operative evaluation of radiological features of CSDHs is crucial in determining the right indication for minimally invasive drainage. Minimally invasive treatments of CSH may reduce the use of anaesthetic drugs and worsening of pre-existing neurodegenerative disorders 3).

The duration of procedure was significantly more in Burr-Hole Craniostomy BHC than in Twist-Drill Craniostomy TDC. In postoperative outcome, there was no significant difference in the GCS score, motor power improvement, motor power deterioration, overall clinical improvement, and improvement in CT scans of both the groups. Postoperative residue requiring reoperation was significantly more in TDC group. There was no significant difference in the development acute SDH, reoperation rate, complications, death, and hospital stay in both the groups. Avoiding the complications of general anesthesia and giving the equal postoperative improvement and complications of BHC, the TDC is considered as an effective alternative to the BHC in the surgical management of CSDH 4)

Although nonsurgical treatment is often successful, trephination has more advantages, such as rapid resolution of the symptoms and short period of hospitalization. Nonsurgical treatment is possible in asymptomatic patients with a small CSDH. For the symptomatic patients with CSDH, trephination is the treatment of choice, either by BH or TD. In gray zone between surgery and medical treatment, shared decision making can be an ideal approach. For chronic subdural hematoma recurrences, repeated trephination is still effective for patients with a low risk of recurrence. If the risk of recurrence is high, additional management would be helpful. For the refractory CSDHs, it is necessary to obliterate the subdural space 5).


Chronic subdural hematoma treatment in the elderly include observation, operative burr holes or craniotomy, and bedside twist drill drainage. The decision on which technique to use should be determined by weighing the comorbidities and symptoms of the patient with the potential risks and benefits.

Chronic subdural hematoma are ideally treated with surgical drainage. Despite this common practice, there is still controversy surrounding the best surgical procedure. With lack of clear evidence of a superior technique, surgeons are free to base the decision on other factors that are not related to patient care.

Originally, CSDHs were treated by open craniotomy 6) 7) 8) 9). Later burr hole trephination (BHT) was adopted because it was less invasive with lower morbidity and recurrence rates when compared with standard craniotomy 10) 11) 12) 13) 14) 15).

The traditional methods include evacuation via a burr hole with closed system drainage with or without irrigation, two burr-hole craniostomy with closed system drainage with irrigation or craniotomy, with subdural drain or without drain placement.

Minicraniotomy (MC) emerged as an attractive alternative to BHT as it allows better visualisation of the subdural cavity, enabling better haemostasis and resection of membranes.

Although bedside twist drill evacuation may avoid operating room costs and anesthetic complications in an elderly patient population and allow earlier anticoagulation resumption treatment if necessary, there is also a risk of morbidity if uncontrolled bleeding is encountered or the patient is unable to tolerate the bedside procedure. However, bedside twist drill craniostomy is a reasonable and effective option for the treatment of subacute/chronic SDH in patients who may not be optimal surgical candidates 16).


Subperiosteal vs Subdural Drain After Burr-Hole Drainage of Chronic Subdural Hematoma: A Randomized Clinical Trial (cSDH-Drain-Trial) 17).

see Burr hole trephination for chronic subdural hematoma.

see Twist drill craniostomy for chronic subdural hematoma.

see Subdural drain for chronic subdural hematoma.

see Subdural evacuating port system for chronic subdural hematoma.

see Subperiosteal drain for chronic subdural hematoma

see Craniotomy for chronic subdural hematoma.

see Chronic subdural hematoma neuroendoscopy.


1)

Siddique AN, Khan SA, Khan AA, Aurangzeb A. Surgical Treatment Options For Chronic Subdural Haematoma. J Ayub Med Coll Abbottabad. 2022 Jul-Sep;34(3):550-556. doi: 10.55519/JAMC-03-10225. PMID: 36377174.
2) , 5)

Lee KS. How to Treat Chronic Subdural Hematoma? Past and Now. J Korean Neurosurg Soc. 2019 Mar;62(2):144-152. doi: 10.3340/jkns.2018.0156. Epub 2018 Nov 30. PubMed PMID: 30486622; PubMed Central PMCID: PMC6411568.
3)

Certo F, Maione M, Altieri R, Garozzo M, Toccaceli G, Peschillo S, Barbagallo GMV. Pros and cons of a minimally invasive percutaneous subdural drainage system for evacuation of chronic subdural hematoma under local anesthesia. Clin Neurol Neurosurg. 2019 Oct 10;187:105559. doi: 10.1016/j.clineuro.2019.105559. [Epub ahead of print] PubMed PMID: 31639631.
4)

Thavara BD, Kidangan GS, Rajagopalawarrier B. Comparative Study of Single Burr-Hole Craniostomy versus Twist-Drill Craniostomy in Patients with Chronic Subdural Hematoma. Asian J Neurosurg. 2019 Apr-Jun;14(2):513-521. doi: 10.4103/ajns.AJNS_37_19. PubMed PMID: 31143272; PubMed Central PMCID: PMC6516027.
6)

Ernestus R, Beldzinski P, Lanfermann H, Klug N. Chronic subdural hematoma: surgical treatment and outcome in 104 patients. Surg Neurol 1997;48:220–5.
7)

McKissock W, Richardson A, Bloom WH. Subdural hematoma: a review of 389 cases. Lancet 1960;1:1365–9.
8)

Tyson G et al. The role of craniectomy in the treatment of chronic subdural hematomas. J Neurosurg 1980;52:776–81.
9)

Putnam IJ, Cushing H. Chronic subdural hematoma. Its pathology, its relation to pachymeningitis hemorrhagica, and its surgical treatment. Arch Surg 1925;11:329–93.
10)

Chronic Almenawer S et al. Subdural hematoma management: a systematic review and meta-analysis of 34829 patients. Ann Surg 2014;259(3):449–57.
11)

Lee J, Ebel H, Ernestus R, Klug N. Various surgical treatments of chronic subdural hematoma and outcome in 172 patients: is membranectomy necessary? Surg Neurol 2004;61:523–5528.
12)

Ducruet A et al. The surgical management of chronic subdural hematoma. Neurosurg Rev 2012;35:155–69.
13)

Leroy H et al. Predictors of functional outcomes and recurrence of chronic subdural. J Clin Neurosci 2015;22:1895–900.
14)

Regan J, Worley E, Shelburne C, Pullarkat R, Burr Watson J. Hole Washout versus craniotomy for chronic subdural hematoma: patient outcome and cost analysis. PLoS One 2015;10(1):1–8.
15)

Mondorf Y, Abu-Owaimer M, Gaab M, Oertel J. Chronic subdural hematoma – Craniotomy versus burr hole trephination. Br J Neurosurg 2009;23(6):612–6.
16)

Garber S, McCaffrey J, Quigley EP, MacDonald JD. Bedside Treatment of Chronic Subdural Hematoma: Using Radiographic Characteristics to Revisit the Twist Drill. J Neurol Surg A Cent Eur Neurosurg. 2016 Jan 25. [Epub ahead of print] PubMed PMID: 26807616.
17)

Agrawal A, Pacheco-Hernandez A, Moscote-Salazar LR. Letter: Subperiosteal vs Subdural Drain After Burr-Hole Drainage of Chronic Subdural Hematoma: A Randomized Clinical Trial (cSDH-Drain-Trial). Neurosurgery. 2019 Aug 6. pii: nyz289. doi: 10.1093/neuros/nyz289. [Epub ahead of print] PubMed PMID: 31387117.

Middle meningeal artery embolization for chronic subdural hematoma trials

Middle meningeal artery embolization for chronic subdural hematoma trials

Several randomized controlled trials are planned or ongoing. In most of these trials, conventional neurosurgical treatment with or without adjunctive endovascular embolization is compared.


Given the encouraging results with a 91% long-term success rate in the series of Link et al., a large scale clinical trial is warranted 1).

https://clinicaltrials.gov/ct2/show/NCT03307395


A proposed trial aimed to conduct a head-to-head comparison between neurosurgical and endovascular treatment as stand-alone treatments.

The trial is academically driven and funded within existing public healthcare systems and infrastructure. Patients with uni- or bilateral cSDH, presenting with mild-to moderate symptoms, and admitted to neurosurgery on clinical grounds will be offered participation. Subjects are randomized 1:1 between conventional neurosurgical treatment (control) and endovascular embolization of the middle meningeal artery (intervention). Primary endpoint is reoperation due to clinically and/or radiologically significant recurrence within 3 months. Secondary endpoints include safety, technical success rate, neurological disability, and quality of life.

There are mounting retrospective data suggesting eMMA, as sole treatment or as an adjunctive to neurosurgery for cSDH, is safe and effective with a reoperation rate lower than neurosurgical hematoma evacuation alone. If randomized controlled trials confirm these findings, there is a potential for a paradigm shift in the treatment of cSDH where a minimally invasive procedure can replace open surgery in a large and oftentimes old and fragile patient cohort.

Trial registration: ClinicalTrials.gov, ClinicalTrials.gov Identifier NCT05267184 . Registered March 4, 2022 2).


MEMBRANE is an investigator-initiated, single-center, randomized controlled trial. Male, female, and diverse patients older than 18 years scheduled for surgical evacuation of a first chronic subdural hematoma will be assigned in a 1:1 fashion by block randomization to the chronic subdural hematoma treatment (surgery plus endovascular MMA embolization) or the control group (surgery alone). The primary trial endpoint is chronic subdural hematoma recurrence within 3 months of follow-up after surgery. Secondary endpoints comprise neurological deficits assessed by the modified Rankin Scale (mRS) and recurrence- or intervention-associated complications (see Chronic subdural hematoma surgery complications) see Middle meningeal artery embolization for chronic subdural hematoma complications during 3 months of follow-up. Assuming a risk difference of 20% of rebleeding and surgical revision, a power of 80%, and a drop-out rate of 10%, 154 patients will be enrolled in this trial, employing an adaptive O’Brien-Fleming approach with a planned interim analysis halfway.

The MEMBRANE trial will provide the first clinical experimental evidence on the effectiveness of endovascular embolization of the MMA as an adjunct to surgery to reduce the risk of recurrence after the evacuation of cSDH.

Trial registration: German Clinical Trials Registry (Deutsches Register Klinischer Studien [DRKS]) DRKS00020465. Registered on 18 Nov 2021 3).


1)

Link TW, Boddu S, Paine SM, Kamel H, Knopman J. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma: A Series of 60 Cases. Neurosurgery. 2019 Dec 1;85(6):801-807. doi: 10.1093/neuros/nyy521. PMID: 30418606.
2)

Drake M, Ullberg T, Nittby H, Marklund N, Wassélius J. Swedish trial on embolization of middle meningeal artery versus surgical evacuation in chronic subdural hematoma (SWEMMA)-a national 12-month multi-center randomized controlled superiority trial with parallel group assignment, open treatment allocation and blinded clinical outcome assessment. Trials. 2022 Nov 8;23(1):926. doi: 10.1186/s13063-022-06842-4. PMID: 36348417.
3)

Hoenning A, Lemcke J, Rot S, Stengel D, Hoppe B, Zappel K, Schuss P, Mutze S, Goelz L. Middle Meningeal Artery Embolization Minimizes Burdensome Recurrence Rates After Newly Diagnosed Chronic Subdural Hematoma Evacuation (MEMBRANE): study protocol for a randomized controlled trial. Trials. 2022 Aug 22;23(1):703. doi: 10.1186/s13063-022-06506-3. PMID: 35996195.

Interhemispheric subdural hematoma

Interhemispheric subdural hematoma

Interhemispheric acute subdural hematomas (ASDHs) were first described by Aring and Evans 1).

Interhemispheric Subdural Hematoma Epidemiology.

Spontaneous Interhemispheric Subdural Hematoma.

Traumatic Interhemispheric Subdural Hematoma.

Acute Interhemispheric Subdural Hematoma.

Chronic Interhemispheric Subdural Hematoma

Its natural history is still quite unknown in terms of potential origin and course.

They usually occur in patients with bleeding disorders and are associated with trauma in 83% of cases 2).

Other causes include history of birth trauma, forceps delivery, child abuse with shaking, hemodialysis, anticoagulation and aneurysmal bleeding 3).

Fruin et al. 4) suggested that an occipital blow in the sagittal plane lead to an interhemispheric ASDH because of the anatomic orientation of the veins in the interhemispheric fissure, which tend to course antero-medially from the cortex to the midline sinuses. Before the CT era, it was difficult to detect an interhemispheric ASDH. Though removal of the blood has proved to be an option in the management of these patients, there is danger due to the close proximity of the superior sagittal sinus and bridging veins. Some of these hematomas migrate superiorly (to a more favorable position) with time, as they liquefy. It is also conceivable that if a patient with an interhemispheric ASDH is relatively asymptomatic, initial conservative management might be followed by migration of the clot to a position over the convexity where removal is considerably less dangerous. Thus there is no consensus on the ideal management of these rare hematomas, conservative treatment may be followed in those who are neurologically stable or have concurrent risk factors, while surgical treatment should be reserved for those who have pronounced symptoms or neurological deficits 5).

The hyperdense hematoma can best be visualized on the coronal and sagittal views. This is in contrast with typical subdural hematomas, which can be best appreciated on the axial views. Thus, it is important to image all three main views of the brain looking out for interhemispheric hematoma 6).

Interhemispheric Subdural Hematoma Treatment.

Interhemispheric Subdural Hematoma Case Series.

Interhemispheric Subdural Hematoma Case Reports.


1)

Aring CD, Evans JP. Aberrant location of subdural hematoma. Arch Neurol Psychiatry. 1940;44:1296–306.
2)

Houtteville JP, Toumi K, Theron J, Derlon JM, Benazza A, Hubert P. Interhemispheric subdural haematomas: seven cases and review of the literature. Br J Neurosurg. 1988;2:357–67. doi: 10.3109/02688698809001007.
3)

Ishikawa E, Sugimoto K, Yanaka K, Ayuzawa S, Iguchi M, Moritake T, Kobayashi E, Nose T. Interhemispheric subdural hematoma caused by a ruptured internal carotid artery aneurysm: case report. Surg Neurol. 2000;54:82–6. doi: 10.1016/S0090-3019(00)00262-7.
4)

Fruin AH, Juhl GL, Taylon C. Interhemispheric subdural hematoma. Case report. J Neurosurg. 1984;60:1300–2. doi: 10.3171/jns.1984.60.6.1300.
5)

Kawoosa NN, Bhat AR, Rashid B. Interhemispheric acute subdural hematomas. Iran Red Crescent Med J. 2011 Apr;13(4):289-90. Epub 2011 Apr 1. PubMed PMID: 22737484; PubMed Central PMCID: PMC3371964.

Chronic subdural hematoma recurrence

Chronic subdural hematoma recurrence

In 2 large cohorts of US patients, approximately 5% to 10% of patients who underwent surgery for nontraumatic SDH were required to undergo repeated operation within 30 to 90 days. These results may inform the design of future prospective studies and trials and help practitioners calibrate their index of suspicion to ensure that patients are referred for timely surgical care 1).

Recurrence rates after chronic subdural hematoma (CSDH) evacuation with any of actual techniques twist drill craniostomy (TDC), burr hole craniostomy, craniotomy range from 5% to 30%. 2).

Oslo grading system.

Hyperdense hematoma components were the strongest prognostic factor of recurrence after surgery. Awareness of these findings allows for individual risk assessment and might prompt clinicians to tailor treatment measures 3).


In the series of Santos et al. it was possible to demonstrate an age-related protective factor, analyzed as a continuous variable, regarding the recurrence of the chronic subdural hematoma (CSDH), with a lower rate of recurrence the higher the age.

The results indicate that, among possible factors associated with recurrence, only age presented a protective factor with statistical significance. The fact that no significant difference between the patients submitted to trepanning or craniotomy was found favors the preferential use of burr-hole surgery as a procedure of choice due to its fast and less complex execution 4).


In the series of Han et al. independent risk factors for recurrence were as follows: age > 75 years (HR 1.72, 95% CI 1.03-2.88; p = 0.039), obesity (body mass index ≥ 25.0 kg/m2), and a bilateral operation 5).


Chon et al. shown that postoperative midline shifting (≥5 mm), diabetes mellitus, preoperative seizure, preoperative width of hematoma (≥20 mm), and anticoagulant therapy were independent predictors of the recurrence of chronic subdural hematoma.

According to internal architecture of hematoma, the rate of recurrence was significantly lower in the homogeneous and the trabecular type than the laminar and separated type 6).


The recurrence rate of chronic subdural hematoma cSDH seems to be related to the excessive neoangiogenesis in the parietal membrane, which is mediated via vascular endothelial growth factor (VEGF). This is found to be elevated in the hematoma fluid and is dependent on eicosanoid/prostaglandin and thromboxane synthesis via cyclooxygenase-2 (COX-2).

see Chronic subdural hematoma and anticoagulant therapy.

Antiplatelet therapy significantly influences the recurrence of CSDH 7).

Timing of Low-Dose Aspirin Discontinuation for chronic subdural hematoma.

Pneumocephalus

Remaining pneumocephalus is seen as an approved factor of recurrence 8) 9).

Septation

Jack et al.found a 12% reoperation rate. CSDH septation (seen on computed tomogram scan) was found to be an independent risk factor for recurrence requiring reoperation (p=0.04). Larger post-operative subdural haematoma volume was also significantly associated with requiring a second drainage procedure (p<0.001). Independent risk factors of larger post-operative haematoma volume included septations within a CSDH (p<0.01), increased pre-operative haematoma volume (p<0.01), and a greater amount of parenchymal atrophy (p=0.04). A simple scoring system for quantifying recurrence risk was created and validated based on patient age (< or ≥80 years), haematoma volume (< or ≥160cc), and presence of septations within the subdural collection (yes or no).

Septations within CSDHs are associated with larger post-operative residual haematoma collections requiring repeat drainage. When septations are clearly visible within a CSDH, craniotomy might be more suitable as a primary procedure as it allows greater access to a septated subdural collection. The proposed scoring system combining haematoma volume, age, and presence of septations might be useful in identifying patients at higher risk for recurrence 10).

Membranectomy

Opening the internal hematoma membrane does not alter the rate of patients requiring revision surgery and the number of patients showing a marked residual hematoma six weeks after evacuation of a CSDH 11).

In the study of Lee et al, an extended surgical approach with partial membranectomy has no advantages regarding the rate of reoperation and the outcome. As initial treatment, burr-hole drainage with irrigation of the hematoma cavity and closed-system drainage is recommended. Extended craniotomy with membranectomy is now reserved for instances of acute rebleeding with solid hematoma 12).

Diabetes

Surgeons should consider informing patients with diabetes mellitus that this comorbidity is associated with an increased likelihood of recurrence

13) 14) 15).


Balser et al. report 11% recurrence, which included individuals who recurred as late as 3 years after initial diagnosis 16).

Close imaging follow-up is important for CSDH patients for recurrence prediction. Using quantitative CT volumetric analysis, strong evidence was provided that changes in the residual fluid volume during the ‘self-resolution’ period can be used as significantly radiological predictors of recurrence 17).

A structural equation model showed a significant association between increased antiinflammatory activity in hematoma fluid samples and a lower risk of recurrence, but this relationship was not statistically significant in venous blood samples. Moreover, these findings indicate that anti-inflammatory activities in the hematoma may play a role in the risk of a recurrence of CSDH 18).

Irrigation with artificial cerebrospinal fluid (ACF) decreased the rate of CSDH recurrence 19).

Little is known about the best type of drainage system and its relationship with recurrence. In a study, Takroni et al. compared the use of two drainage systems on the recurrence rate of CSDH. They retrospectively analyzed the charts of 180 CSDH patients treated with bedside twist drill craniostomy (TDC) and subdural drain insertion. Patients were divided into two groups: Group A (n=123) received our traditional drain (pediatric size nasogastric tube (NGT), while group B (n=49) had the external ventricular drain (EVD). Various demographic and radiological data were collected. Our main outcome was recurrence, defined as symptomatic re-accumulation of hematoma on the previously operated side within 3 months. Results 212 cases of subdural hematoma were treated in 172 patients. Majority of patients were male (78%) and had a history of previous head trauma (73%). 17 cases had recurrence, 11 in the NGT group drain and 6 in the EVD group. The use of antiplatelet or anticoagulation agents was associated with recurrence (P= 0.038 and 0.05, respectively). There was no difference between both groups in terms of recurrence [OR=1.42, 95% CI:0.49 to 4.08, P=0.573].

Chronic subdural hematoma is a common disease with a high rate of recurrence. Although using a drain postoperatively has shown to improve the incidence of recurrence, little remains known about the best type of drain to use. The analysis showed no difference in the recurrent rate between using the pediatric size NGT and the EVD catheter post TDC 20).

There is no definite operative procedure for patients with intractable chronic subdural hematoma (CSDH).

Most recurrent hematomas are managed successfully with burr hole craniostomies with postoperative closed-system drainage. Refractory hematomas may be managed with a variety of techniques, including craniotomy or subdural-peritoneal shunt placement 21).

Although many studies have reported risk factors or treatments in efforts to prevent recurrence, those have focused on single recurrence, and little cumulative data is available to analyze refractory CSDH.

Matsumoto et al. defined refractory CSDH as ≥2 recurrences, then analyzed and compared clinical factors between patients with single recurrence and those with refractory CSDH in a cohort study, to clarify whether patients with refractory CSDH experience different or more risk factors than patients with single recurrence, and whether burr-hole irrigation with closed-system drainage reduces refractory CSDH.

Seventy-five patients had at least one recurrence, with single recurrence in 62 patients and ≥2 recurrences in 13 patients. In comparing clinical characteristics, patients with refractory CSDH were significantly younger (P=0.04) and showed shorter interval to first recurrence (P<0.001). Organized CSDH was also significantly associated with refractory CSDH (P=0.02). Multivariate logistic regression analysis identified first recurrence interval <1 month (OR 6.66, P<0.001) and age <71 years (OR 4.16, P<0.001) as independent risk factors for refractory CSDH. On the other hand, burr-hole irrigation with closed-system drainage did not reduce refractory CSDH.

When patients with risk factors for refractory CSDH experience recurrence, alternative surgical procedures may be considered as the second surgery, because burr-hole irrigation with closed-system drainage did not reduce refractory CSDH 22).

Implantation of a reservoir 23) 24) 25).

Subdural-peritoneal shunt 26).

Embolization of the MMA is effective for refractory CSDH or CSDH patients with a risk of recurrence, and is considered an effective therapeutic method to stop hematoma enlargement and promote resolution 27) 28) 29) 30) 31) 32).

A pilot study indicated that perioperative middle meningeal artery (MMA) embolization could be offered as the least invasive and most effectual means of treatment for resistant patients of CSDHs with 1 or more recurrences 33).

Chihara et al. have treated three cases of CSDH with MMA embolization to date, but there was a postoperative recurrence in one patient, which required a craniotomy for hematoma removal and capsulectomy. MMA embolization blocks the blood supply from the dura to the hematoma outer membrane in order to prevent recurrences of refractory CSDH. Histopathologic examination of the outer membrane of the hematoma excised during craniotomy showed foreign-body giant cells and neovascular proliferation associated with embolization. Because part of the hematoma was organized in this case, the CSDH did not resolve when the MMA was occluded, and the development of new collateral pathways in the hematoma outer membrane probably contributed to the recurrence. Therefore, in CSDH with some organized hematoma, MMA embolization may not be effective. Magnetic resonance imaging (MRI) should be performed in these patients before embolization 34).

see Chronic subdural hematoma recurrence case series.

Chronic subdural hematoma recurrence case reports.


1)

Knopman J, Link TW, Navi BB, Murthy SB, Merkler AE, Kamel H. Rates of Repeated Operation for Isolated Subdural Hematoma Among Older Adults. JAMA Netw Open. 2018 Oct 5;1(6):e183737. doi: 10.1001/jamanetworkopen.2018.3737. PubMed PMID: 30646255.
2)

Escosa Baé M, Wessling H, Salca HC, de Las Heras Echeverría P. Use of twist-drill craniostomy with drain in evacuation of chronic subdural hematomas: independent predictors of recurrence. Acta Neurochir (Wien). 2011 May;153(5):1097-103. doi: 10.1007/s00701-010-0903-3. Epub 2010 Dec 31. PubMed PMID: 21193935.
3)

Miah IP, Tank Y, Rosendaal FR, Peul WC, Dammers R, Lingsma HF, den Hertog HM, Jellema K, van der Gaag NA; Dutch Chronic Subdural Hematoma Research Group. Radiological prognostic factors of chronic subdural hematoma recurrence: a systematic review and meta-analysis. Neuroradiology. 2020 Oct 22. doi: 10.1007/s00234-020-02558-x. Epub ahead of print. Erratum in: Neuroradiology. 2020 Nov 5;: PMID: 33094383.
4)

Santos RGD, Xander PAW, Rodrigues LHDS, Costa GHFD, Veiga JCE, Aguiar GB. Analysis of predisposing factors for chronic subdural hematoma recurrence. Rev Assoc Med Bras (1992). 2019 Jul 22;65(6):834-838. doi: 10.1590/1806-9282.65.6.834. PubMed PMID: 31340313.
5)

Han MH, Ryu JI, Kim CH, Kim JM, Cheong JH, Yi HJ. Predictive factors for recurrence and clinical outcomes in patients with chronic subdural hematoma. J Neurosurg. 2017 Nov;127(5):1117-1125. doi: 10.3171/2016.8.JNS16867. Epub 2016 Dec 16. PubMed PMID: 27982768.
6)

Chon KH, Lee JM, Koh EJ, Choi HY. Independent predictors for recurrence of chronic subdural hematoma. Acta Neurochir (Wien). 2012 Sep;154(9):1541-8. doi: 10.1007/s00701-012-1399-9. Epub 2012 Jun 1. PubMed PMID: 22653496.
7)

Wada M, Yamakami I, Higuchi Y, Tanaka M, Suda S, Ono J, Saeki N. Influence of antiplatelet therapy on postoperative recurrence of chronic subdural hematoma: a multicenter retrospective study in 719 patients. Clin Neurol Neurosurg. 2014 May;120:49-54. doi: 10.1016/j.clineuro.2014.02.007. Epub 2014 Feb 24. PubMed PMID: 24731576.
8)

Mori K, Maeda M (2001) Surgical treatment of chronic subdural hematoma in 500 consecutive cases: clinical characteristics, surgical outcome, complications, and recurrence rate. Neurol Med Chir (Tokyo) 41:371–381
9)

Stanišić M, Hald J, Rasmussen IA, Pripp AH, Ivanović J, Kolstad F, Sundseth J, Züchner M, Lindegaard KF (2013) Volume and densities of chronic subdural haematoma obtained from CT imaging as predictors of postoperative recurrence: a prospective study of 107 operated patients. Acta Neurochir 155:323–333
10)

Jack A, O’Kelly C, McDougall C, Max Findlay J. Predicting Recurrence after Chronic Subdural Haematoma Drainage. Can J Neurol Sci. 2015 Jan 5:1-6. [Epub ahead of print] PubMed PMID: 25557536.
11)

Unterhofer C, Freyschlag CF, Thomé C, Ortler M. Opening the Internal Hematoma Membrane does not Alter the Recurrence Rate of Chronic Subdural Hematomas – A Prospective Randomized Trial. World Neurosurg. 2016 May 2. pii: S1878-8750(16)30210-8. doi: 10.1016/j.wneu.2016.04.081. [Epub ahead of print] PubMed PMID: 27150644.
12)

Lee JY, Ebel H, Ernestus RI, Klug N. Various surgical treatments of chronic subdural hematoma and outcome in 172 patients: is membranectomy necessary? Surg Neurol. 2004 Jun;61(6):523-7; discussion 527-8. PubMed PMID: 15165784.
13)

Matsumoto K, Akagi K, Abekura M, Ryujin H, Ohkawa M, Iwasa N, Akiyama C. Recurrence factors for chronic subdural hematomas after burr-hole craniostomy and closed system drainage. Neurol Res. 1999 Apr;21(3):277-80. PubMed PMID: 10319336.
14)

Yamamoto H, Hirashima Y, Hamada H, Hayashi N, Origasa H, Endo S. Independent predictors of recurrence of chronic subdural hematoma: results of multivariate analysis performed using a logistic regression model. J Neurosurg. 2003 Jun;98(6):1217-21. PubMed PMID: 12816267.
15)

Pang CH, Lee SE, Kim CH, Kim JE, Kang HS, Park CK, Paek SH, Kim CH, Jahng TA, Kim JW, Kim YH, Kim DG, Chung CK, Jung HW, Yoo H. Acute intracranial bleeding and recurrence after bur hole craniostomy for chronic subdural hematoma. J Neurosurg. 2015 Jul;123(1):65-74. doi: 10.3171/2014.12.JNS141189. Epub 2015 Feb 13. PubMed PMID: 25679282.
16)

Balser D, Rodgers SD, Johnson B, Shi C, Tabak E, Samadani U. Evolving management of symptomatic chronic subdural hematoma: experience of a single institution and review of the literature. Neurol Res. 2013 Apr;35(3):233-42. doi: 10.1179/1743132813Y.0000000166. Review. PubMed PMID: 23485050.
17)

Xu FF, Chen JH, Leung GK, Hao SY, Xu L, Hou ZG, Mao X, Shi GZ, Li JS, Liu BY. Quantitative computer tomography analysis of post-operative subdural fluid volume predicts recurrence of chronic subdural haematoma. Brain Inj. 2014;28(8):1121-6. doi: 10.3109/02699052.2014.910702. Epub 2014 May 6. PubMed PMID: 24801643.
18)

Pripp AH, Stanišić M. The Correlation between Pro- and Anti-Inflammatory Cytokines in Chronic Subdural Hematoma Patients Assessed with Factor Analysis. PLoS One. 2014 Feb 27;9(2):e90149. doi: 10.1371/journal.pone.0090149. eCollection 2014. PubMed PMID: 24587250.
19)

Adachi A, Higuchi Y, Fujikawa A, Machida T, Sueyoshi S, Harigaya K, Ono J, Saeki N. Risk factors in chronic subdural hematoma: comparison of irrigation with artificial cerebrospinal fluid and normal saline in a cohort analysis. PLoS One. 2014 Aug 4;9(8):e103703. doi: 10.1371/journal.pone.0103703. eCollection 2014. PubMed PMID: 25089621; PubMed Central PMCID: PMC4121178.
20)

Takroni R, Zagzoog N, Patel N, Martyniuk A, Farrokhyar F, Singh S, Trivedi A, Alotaibi M, Algird A. Comparison of two drainage systems on chronic subdural hematoma (CSDH) recurrence. J Neurol Surg A Cent Eur Neurosurg. 2021 Nov 16. doi: 10.1055/a-1698-6212. Epub ahead of print. PMID: 34784622.
21)

Desai VR, Scranton RA, Britz GW. Management of Recurrent Subdural Hematomas. Neurosurg Clin N Am. 2017 Apr;28(2):279-286. doi: 10.1016/j.nec.2016.11.010. Epub 2017 Jan 4. Review. PubMed PMID: 28325462.
22)

Matsumoto H, Hanayama H, Okada T, Sakurai Y, Minami H, Masuda A, Tominaga S, Miyaji K, Yamaura I, Yoshida Y, Yoshida K. Clinical investigation of refractory chronic subdural hematoma: a comparison of clinical factors between single and repeated recurrences. World Neurosurg. 2017 Aug 24. pii: S1878-8750(17)31402-X. doi: 10.1016/j.wneu.2017.08.101. [Epub ahead of print] PubMed PMID: 28844917.
23)

Sato M, Iwatsuki K, Akiyama C, Masana Y, Yoshimine T, Hayakawa T. [Use of Ommaya CSF reservoir for refractory chronic subdural hematoma]. No Shinkei Geka. 1999 Apr;27(4):323-8. Japanese. PubMed PMID: 10347846.
24)

Sato M, Iwatsuki K, Akiyama C, Kumura E, Yoshimine T. Implantation of a reservoir for refractory chronic subdural hematoma. Neurosurgery. 2001 Jun;48(6):1297-301. PubMed PMID: 11383733.
25)

Laumer R. Implantation of a reservoir for refractory chronic subdural hematoma. Neurosurgery. 2002 Mar;50(3):672. PubMed PMID: 11841742.
26)

Misra M, Salazar JL, Bloom DM. Subdural-peritoneal shunt: treatment for bilateral chronic subdural hematoma. Surg Neurol. 1996 Oct;46(4):378-83. PubMed PMID: 8876720.
27)

Mandai S, Sakurai M, Matsumoto Y. Middle meningeal artery embolization for refractory chronic subdural hematoma. Case report. J Neurosurg. 2000 Oct;93(4):686-8. PubMed PMID: 11014549.
28)

Takahashi K, Muraoka K, Sugiura T, Maeda Y, Mandai S, Gohda Y, Kawauchi M, Matsumoto Y. [Middle meningeal artery embolization for refractory chronic subdural hematoma: 3 case reports]. No Shinkei Geka. 2002 May;30(5):535-9. Japanese. PubMed PMID: 11993178.
29)

Hirai S, Ono J, Odaki M, Serizawa T, Nagano O. Embolization of the Middle Meningeal Artery for Refractory Chronic Subdural Haematoma. Usefulness for Patients under Anticoagulant Therapy. Interv Neuroradiol. 2004 Dec 24;10 Suppl 2:101-4. Epub 2008 May 15. PubMed PMID: 20587257; PubMed Central PMCID: PMC3522210.
30)

Tsukamoto Y, Oishi M, Shinbo J, Fujii Y. Transarterial embolisation for refractory bilateral chronic subdural hematomas in a case with dentatorubral-pallidoluysian atrophy. Acta Neurochir (Wien). 2011 May;153(5):1145-7. doi: 10.1007/s00701-010-0891-3. Epub 2010 Dec 2. PubMed PMID: 21125409.
31)

Mino M, Nishimura S, Hori E, Kohama M, Yonezawa S, Midorikawa H, Kaimori M, Tanaka T, Nishijima M. Efficacy of middle meningeal artery embolization in the treatment of refractory chronic subdural hematoma. Surg Neurol Int. 2010 Dec 13;1:78. doi: 10.4103/2152-7806.73801. PubMed PMID: 21206540; PubMed Central PMCID: PMC3011107.
32)

Hashimoto T, Ohashi T, Watanabe D, Koyama S, Namatame H, Izawa H, Haraoka R, Okada H, Ichimasu N, Akimoto J, Haraoka J. Usefulness of embolization of the middle meningeal artery for refractory chronic subdural hematomas. Surg Neurol Int. 2013 Aug 19;4:104. doi: 10.4103/2152-7806.116679. eCollection 2013. PubMed PMID: 24032079; PubMed Central PMCID: PMC3766342.
33)

Kim E. Embolization Therapy for Refractory Hemorrhage in Patients with Chronic Subdural Hematomas. World Neurosurg. 2017 May;101:520-527. doi: 10.1016/j.wneu.2017.02.070. Epub 2017 Feb 27. PubMed PMID: 28249828.
34)

Chihara H, Imamura H, Ogura T, Adachi H, Imai Y, Sakai N. Recurrence of a Refractory Chronic Subdural Hematoma after Middle Meningeal Artery Embolization That Required Craniotomy. NMC Case Rep J. 2014 May 9;1(1):1-5. doi: 10.2176/nmccrj.2013-0343. eCollection 2014 Oct. PubMed PMID: 28663942; PubMed Central PMCID: PMC5364934.

Subdural drain for chronic subdural hematoma

Subdural drain for chronic subdural hematoma

see also Subdural Evacuating Port System.

Little is known about the best type of drainage system and its relationship with recurrence. In a study, Takroni et al. compared the use of two drainage systems on the recurrence rate of CSDH. They retrospectively analyzed the charts of 180 CSDH patients treated with bedside twist drill craniostomy (TDC) and subdural drain insertion. Patients were divided into two groups: Group A (n=123) received our traditional drain (pediatric size nasogastric tube (NGT), while group B (n=49) had the external ventricular drain (EVD). Various demographic and radiological data were collected. Our main outcome was recurrence, defined as symptomatic re-accumulation of hematoma on the previously operated side within 3 months. Results 212 cases of subdural hematoma were treated in 172 patients. Majority of patients were male (78%) and had a history of previous head trauma (73%). 17 cases had recurrence, 11 in the NGT group drain and 6 in the EVD group. The use of antiplatelet or anticoagulation agents was associated with recurrence (P= 0.038 and 0.05, respectively). There was no difference between both groups in terms of recurrence [OR=1.42, 95% CI:0.49 to 4.08, P=0.573].

Chronic subdural hematoma is a common disease with a high rate of recurrence. Although using a drain postoperatively has shown to improve the incidence of recurrence, little remains known about the best type of drain to use. The analysis showed no difference in the recurrent rate between using the pediatric size NGT and the EVD catheter post TDC 1).


There is some evidence that postoperative drainage is effective in reducing the symptomatic recurrence of chronic subdural hematoma surgery. Further research is likely to have an important impact on confidence in the estimate of effect and may change the estimate. Due to the low quality of the evidence for the secondary outcomes, the effect of drainage on the occurrence of surgical complications, mortality and poor functional outcome is uncertain. This uncertainty can be clarified with data from high-quality studies which may be conducted in the future. There is no strong evidence of any increase in complications when drains are used 2).


Soleman et al. administered a survey to neurosurgeons worldwide with questions relating to the surgical treatment of chronic subdural hematoma, with an emphasis on their practices concerning the use of a drain.

The preferred surgical technique was burr-hole drainage (89%). Most surgeons prefer to place a drain (80%), whereas in 56% of the cases the reason for not placing a drain was brain expansion after evacuation. Subdural drains are placed by 50% and subperiosteal drains by 27% of the responders, whereas 23% place primarily a subdural drain if possible and otherwise a subperiosteal drain. Three quarters of the responders leave the drain for 48 hours and give prophylactic antibiotic treatment, mostly a single-shot dose intraoperatively (70%). Routine postoperative computed tomography is done by 59% mostly within 24-48 hours after surgery (94%). Adjunct treatment to surgery rarely is used (4%).

The publication of grade I evidence in favor of drain use influenced positively this practice worldwide. Some surgeons are still reluctant to insert a drain, especially when the subdural space is narrow after drainage of the hematoma. The insertion of a subperiosteal drain could be a good alternative solution. However, its outcome and efficacy must be evaluated in larger studies 3).


Tommiska et al., conducted a retrospective observational study including consecutive patients undergoing burr hole trephinations for chronic subdural hematomas (CSDHs). They compared outcomes between a six-month time period when the SD placement was arbitrary (July to December 2015) and a time period when subdural drain (SD) placement for 48 h was routine (July to December 2017). The primary outcome of interest was recurrences requiring reoperation within six months. Furthermore, patient outcomeinfections and other complications were assessed.

A total of 161 patients were included, of which 71 (44%) were in the SD group and 90 (56%) in the non-drain group. There were no differences in age, comorbidities, history of trauma or use of antithrombotic medication between the groups (p>0.05). Recurrences within six months occurred in 18% of patients in the non-drain group compared to 6% in the SD group (p=0.028; OR 0.28; 95% CI 0.09-0.87). There were no differences in neurological outcome (p=0.72), mortality rate (p=0.55), infection rate (p=0.96) or other complications (p=0.20).

The change in practice from no drain to SD after burr-hole craniostomies for CSDHs effectively reduced the six-month recurrence rate without any effect on patient outcome, infections or other complications 4).

Subdural drain for chronic subdural hematoma complications.


1)

Takroni R, Zagzoog N, Patel N, Martyniuk A, Farrokhyar F, Singh S, Trivedi A, Alotaibi M, Algird A. Comparison of two drainage systems on chronic subdural hematoma (CSDH) recurrence. J Neurol Surg A Cent Eur Neurosurg. 2021 Nov 16. doi: 10.1055/a-1698-6212. Epub ahead of print. PMID: 34784622.
2)

Peng D, Zhu Y. External drains versus no drains after burr-hole evacuation for the treatment of chronic subdural haematoma in adults. Cochrane Database Syst Rev. 2016 Aug 31;(8):CD011402. doi: 10.1002/14651858.CD011402.pub2. Review. PubMed PMID: 27578263.
3)

Soleman J, Kamenova M, Lutz K, Guzman R, Fandino J, Mariani L. Drain Insertion in Chronic Subdural Hematoma: An International Survey of Practice. World Neurosurg. 2017 Aug;104:528-536. doi: 10.1016/j.wneu.2017.04.134. Epub 2017 Apr 28. PubMed PMID: 28461277.
4)

Tommiska P, Lönnrot K, Raj R, Luostarinen T, Kivisaari R. Transition of a clinical practice to use of subdural drains after burr-hole evacuation of chronic subdural haematomas: The Helsinki experience. World Neurosurg. 2019 May 31. pii: S1878-8750(19)31507-4. doi: 10.1016/j.wneu.2019.05.230. [Epub ahead of print] PubMed PMID: 31158547.

Spontaneous cervical epidural hematoma

Spontaneous cervical epidural hematoma

This spontaneous spinal epidural hematoma in the cervical region is an uncommon cause of acute spinal cord compression.

Currently, the incidence of SSEH is expected to increase. Pain physicians must include SSEH in their differential diagnosis for patients with axial pain or radicular symptoms alone, particularly when risk factors are present 1).

The cause of bleeding in the current literature is both venous and arterial in origin. Venous bleeding owing is the commonly accepted hypothesis for the source of the hematoma because spinal epidural venous plexus have no sphincters, and thus have no protection against pressure changing 2). This theory seems to be invalid in the cervical region because the venous pressure is low. It is said that the cervical epidural hematoma has an arterial source from free anastomotic arteries in connection with radicular arteries that exist in the epidural space 3).

Acute cervical epidural hematoma is definitely a condition of neurologic emergency. Although it is a rare condition, it must be considered in nontraumatic patients with sudden onset of neurologic deficits. Patients with spontaneous spinal epidural hematoma typically present with acute onset of severe back pain, and they rapidly develop signs of compression of the spinal cord or cauda equina 4)


High index of suspicion followed by T2-weighted gradient echo sequences are particularly useful in early diagnosis. 5)

Cervical spontaneous spinal epidural hematoma is a serious neurosurgical pathology that often requires prompt surgical intervention.

Prompt surgical evacuation of the hematoma leads to a favorable neurological outcome, whereas delay in treatment can be disastrous. The role of conservative management needs to be proven and should be tailored on an individual basis 6)

This is a rare idiopathic condition that leads to acute onset of neurologic deficits, which if not recognized early can have catastrophic consequences.

Hines et al. from the Thomas Jefferson University Hospital presented the first case in the literature of cervical disc extrusion provoking epidural hematoma and acute neurological deterioration.

A 65 year old male presented with six months of worsening signs and symptoms of cervical myelopathy. He had progressive deterioration over the course of two weeks leading to ambulatory dysfunction requiring a cane for assistance. While undergoing his medical workup in the emergency department, the patient became acutely plegic in the right lower extremity prompting emergent surgical decompression and stabilization.

Based on imaging, pathology, and intraoperative findings, it was concluded that the patient had an extruded disc segment that may have precipitated venous bleeding in the epidural space and findings of acute cervical spinal cord compression. Cervical disc extrusion may lead to venous damage, epidural hematoma, and spinal cord compression. If this unique presentation is recognized and addressed in a timely manner, patient outcomes may still be largely positive as this case demonstrates 7).

A 41-year-old male, diagnosed with SCEH, with a presenting chief complaint of cervical pain followed by progressive quadriparesis and urgency of micturition who was managed surgically.

SCEH is a rare pathologic entity. Due to the high risk of poor neurological outcome without treatment, SCEH should be a diagnostic possibility when the presentation is even slightly suggestive. Prompt surgical evacuation of the hematoma and hemostasis leads to a favorable neurological outcome, whereas delay in treatment can be disastrous 8).


A 31-year-old man who presented with acute onset of neck pain with radicular component with progressive neurologic deficit. Emergent magnetic resonance imaging revealed cervical extradural hematoma with cord compression that was promptly evacuated. Functional recovery was achieved within 48 hours. The level of preoperative neurologic deficit and its severity, as well as operative interval, are important factors significantly affecting the postoperative outcome 9)


A 28-year-old healthy man developed a sudden onset of severe neck and right shoulder pain with mild arm weakness. The MRI revealed an SSEH that was compressing his spinal cord in the right posterolateral epidural space from C2-C6. On the second hospital day, his symptoms suddenly improved, and most of the hematoma had spontaneously resolved Currently, the incidence of SSEH is expected to increase. Pain physicians must include SSEH in their differential diagnosis for patients with axial pain or radicular symptoms alone, particularly when risk factors are present 10).


A 70-year-old man presented with acute onset neck pain with a radicular component and rapidly progressive quadriparesis. Magnetic resonance imaging revealed a posteriorly located cervical extradural hematoma with cord compression that was promptly evacuated. Functional recovery to near normal function occurred within 24 hours of surgery.

SSEH in its true idiopathic form is a rare pathologic entity. Because of the high risk of poor outcome without treatment, SSEH should be a diagnostic possibility when presentation is even slightly suggestive. Prompt surgical evacuation of the hematoma leads to a favorable neurological outcome, whereas delay in treatment can be disastrous. The role of conservative management needs to be proven and should be tailored on an individual basis 11)


A 25-year-old male presented with a history of sudden onset of complete quadriplegia with sensory loss below the neck along with loss of bowel and bladder control. He had no history of any constitutional symptoms. He reported 10 days later. He was managed conservatively and after two weeks of intensive rehabilitation he had complete neural recovery. The spontaneous recovery of neurological impairment is attributed to the spreading of the hematoma throughout the epidural space, thus decreasing the pressure with partial neural recovery. Conservative treatment is a fair option in young patients who present late and show neurological improvement. The neurological status on presentation will guide the further approach to management 12).


1) , 10)

Huh J, Kwak HY, Chung YN, Park SK, Choi YS. Acute Cervical Spontaneous Spinal Epidural Hematoma Presenting with Minimal Neurological Deficits: A Case Report. Anesth Pain Med. 2016 Aug 27;6(5):e40067. eCollection 2016 Oct. PubMed PMID: 27853682; PubMed Central PMCID: PMC5106555.
2) , 5) , 6) , 11)

Gopalkrishnan CV, Dhakoji A, Nair S. Spontaneous cervical epidural hematoma of idiopathic etiology: case report and review of literature. J Spinal Cord Med. 2012 Mar;35(2):113-7. doi: 10.1179/2045772312Y.0000000001. Epub 2012 Feb 4. PMID: 22333537; PMCID: PMC3304555.
3)

Beatty RM, Winston KR. Spontaneous cervical epidural hematoma. A consideration of etiology. J Neurosurg. 1984 Jul;61(1):143-8. doi: 10.3171/jns.1984.61.1.0143. PMID: 6726389.
4) , 9)

Salehpour F, Mirzaei F, Kazemzadeh M, Alavi SAN. Spontaneous Epidural Hematoma of Cervical Spine. Int J Spine Surg. 2018 Mar 30;12(1):26-29. doi: 10.14444/5005. PMID: 30280079; PMCID: PMC6162037.
7)

Hines K, Hafazalla K, Bailey JW, Jallo J. Extruded disc causes acute cervical epidural hematoma and cord compression: a case report. Spinal Cord Ser Cases. 2021 May 21;7(1):39. doi: 10.1038/s41394-021-00403-8. PMID: 34021115.
8)

Taha MM, Elsharkawy AM, Al Menshawy HA, AlBakry A. Spontaneous cervical epidural hematoma: A case report and review of literature. Surg Neurol Int. 2019 Dec 13;10:247. doi: 10.25259/SNI_543_2019. PMID: 31893148; PMCID: PMC6935966.
12)

Halim TA, Nigam V, Tandon V, Chhabra HS. Spontaneous cervical epidural hematoma: report of a case managed conservatively. Indian J Orthop. 2008 Jul;42(3):357-9. doi: 10.4103/0019-5413.41863. PMID: 19753167; PMCID: PMC2739458.

Middle meningeal artery embolization for chronic subdural hematoma

Middle meningeal artery embolization for chronic subdural hematoma

middlemeningealartery.jpg

Perioperative prophylactic Middle meningeal artery embolization in the setting of surgical evacuation, via either craniotomy or subdural evacuating port system (SEPS), may help to lower the recurrence rate of cSDH 1).

It can be used safely and effectively as an alternative or adjunctive minimally invasive chronic subdural hematoma treatment in elderly and advanced elderly patients 2).

It has been proposed as a curative treatment for chronic subdural hematoma (cSDH), but evidence for the indication and timing is not definitive.

Given the encouraging results with a 91% long-term success rate in the series of Link et al., a large scale clinical trial is warranted 3).

https://clinicaltrials.gov/ct2/show/NCT03307395

Middle meningeal artery embolization for chronic subdural hematoma systematic reviews.

Middle meningeal artery embolization for chronic subdural hematoma case series

A case of a 74-year-old male on aspirin with a history of recurrent symptomatic chronic right-sided subdural hematoma treated successfully with a SEPS and right middle meningeal artery embolization with poly vinyl alcohol (PVA) microparticles. The patient initially presented to the emergency department with headaches, difficulty walking, and left sided hemiparesis. CT Head showed a large chronic right-sided subdural hematoma measuring 2.7 cm thick with 1 cm of leftward shift. Patient underwent placement of a right-sided SEPS and the subdural hematoma decreased in size to 1.0 cm with 2 mm of leftward shift. The patient had resolution of headaches and neurological symptoms and was discharged home. Three months later, the patient returned to the emergency department with headache and left hand numbness. CT Head showed an acute on chronic right-sided subdural hematoma measuring 1.4 cm with 3 mm of leftward shift. Patient underwent right-sided SEPS placement. Repeat CT Head showed reduction in the subdural hematoma to 1.2 cm. The SEPS was removed and the patient had resolution of neurological symptoms. The patient then had a diagnostic cerebral angiogram with PVA microparticle embolization of the right middle meningeal artery. A SEPS was placed at the time of the angiogram to further reduce the size of the subdural hematoma.

Repeat CT Head after SEPS and middle meningeal artery embolization showed decrease in size of the subdural hematoma. Follow-up CT Head showed stability of the subdural hematoma and patient had no further neurological symptoms. Patient was discharged home.

Middle meningeal artery embolization is a useful endovascular technique for reducing the arterial supply to the membranes in chronic subdural hematomas. Middle meningeal artery embolization can reduce the recurrence rate of subdural hematomas 4).


In 1994 a rare case of chronic subdural hematoma associated with a middle meningeal arteriovenous fistula was treated by a combination of embolization and burr hole drainage. This clinical situation might be missed in this era of computed tomography, when cerebral angiography is seldom indicated for the diagnosis of neuro-traumatic diseases. We should bear in mind the possibility of this clinical situation of a chronic subdural hematoma associated with a linear skull fracture crossing the middle meningeal groove in order to avoid possible hemorrhagic complications during surgery for chronic subdural hematoma 5)


1)

Schwarz J, Carnevale JA, Goldberg JL, Ramos AD, Link TW, Knopman J. Perioperative prophylactic middle meningeal artery embolization for chronic subdural hematoma: a series of 44 cases. J Neurosurg. 2021 May 21:1-9. doi: 10.3171/2020.10.JNS202856. Epub ahead of print. PMID: 34020417.
2)

Joyce E, Bounajem MT, Scoville J, Thomas AJ, Ogilvy CS, Riina HA, Tanweer O, Levy EI, Spiotta AM, Gross BA, Jankowitz BT, Cawley CM, Khalessi AA, Pandey AS, Ringer AJ, Hanel R, Ortiz RA, Langer D, Levitt MR, Binning M, Taussky P, Kan P, Grandhi R. Middle meningeal artery embolization treatment of nonacute subdural hematomas in the elderly: a multiinstitutional experience of 151 cases. Neurosurg Focus. 2020 Oct;49(4):E5. doi: 10.3171/2020.7.FOCUS20518. PMID: 33002874.
3)

Link TW, Boddu S, Paine SM, Kamel H, Knopman J. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma: A Series of 60 Cases. Neurosurgery. 2019 Dec 1;85(6):801-807. doi: 10.1093/neuros/nyy521. PMID: 30418606.
5)

Komiyama M, Yasui T, Tamura K, Nagata Y, Fu Y, Yagura H. Chronic subdural hematoma associated with middle meningeal arteriovenous fistula treated by a combination of embolization and burr hole drainage. Surg Neurol. 1994 Oct;42(4):316-9. doi: 10.1016/0090-3019(94)90400-6. PMID: 7974127.