Lateral lumbar interbody fusion (LLIF)

Lateral lumbar interbody fusion (LLIF)

Lateral lumbar interbody fusion (LLIF) is a minimally invasive technique first described by Ozgur et al. 1). LLIF allows the surgeon to access the intervertebral space via a minimally invasive direct lateral approach through the psoas muscle. The advantage of LLIF over the traditional anterior approach is the avoidance of exposure of the abdominal viscera, large vessels, and sympathetic plexus. Injury to the nerve roots and dura, and perineural fibrosis, which can occur after PLIF or TLIF, are minimized with this technique 2)3).

Indications

Used to treat leg pain or back pain generally caused by degenerative disc disease.

LLIF has been utilized to treat a variety of pathologies including adult degenerative scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration

They have become an increasingly popular surgical technique due to the benefits of minimal tissue disruption, excellent disc visualization, ability to insert a large intervertebral cage to lessen subsidence, and faster recovery times 4) 5).

Position

The LLIF procedure differs from other lumbar procedures in that the patient is positioned in the lateral decubitus position, often times utilizing bending the bed near the iliac crest region in order to facilitate access to the L4-5 disc space.

In awake volunteers, the pressure at the iliac crest or greater trochanter at the break of the bed increases by increasing the bed angle. Women with a lower BMI had high VAS pain scores when their greater trochanter was at maximal bed break. Men with higher BMI had high VAS pain scores when their iliac crest was at maximal bed break. An awareness of the iliac crest or greater trochanter at the break of the bed should be considered to prevent pain and increased pressure based on the patient’s sex and BMI 6).

As with most minimally invasive spine procedures, lateral lumbar interbody fusion (LLIF) requires the use of biplanar fluoroscopy for localization and safe interbody cage placement. Computed tomography (CT)-based intraoperative spinal navigation has been shown to be more effective than fluoroscopic guidance for posterior-based approaches such as pedicle screw instrumentation.

Use of an intraoperative cone-beam CT with an image-guided navigation system is feasible and safe and appears to be accurate, although a larger study is required to confirm these results 7).

Complications

Cost effectiveness

TLIF and LLIF produced equivalent 2-year patient outcomes at an equivalent cost-effectiveness profile 8).

Systematic reviews

Transpsoas lateral interbody fusion is one of the Lateral Lumbar Interbody Fusion minimally invasive approaches for lumbar spine surgery. Most surgeons insert the interbody cage laterally and then insert pedicle or cortical screw and rod instrumentation posteriorly. However, standalone cages have also been used to avoid posterior instrumentation.

The literature on comparison of the two approaches is sparse.

Alvi et al., performed a systematic review and meta-analysis of the available literature on transpsoas lateral interbody fusion by an electronic search of the PubMedEMBASE, and Scopus databases using PRISMA guidelines. They compared patients undergoing transpsoas standalone fusion (TP) with those undergoing transpsoas fusion with posterior instrumentation (TPP).

A total of 28 studies with 1462 patients were included. Three hundred and seventy-four patients underwent TPP, and 956 patients underwent TP. The mean patient age ranged from 45.7 to 68 years in the TP group, and 50 to 67.7 years in the TPP group. The incidence of reoperation was found to be higher for TP (0.08, 95% confidence interval [CI] 0.04-0.11) compared to TPP (0.03, 95% CI 0.01-0.06; p = 0.057). Similarly, the incidence of cage movement was found to be greater in TP (0.18, 95% CI 0.10-0.26) compared to TPP (0.03, 95% CI 0.00-0.05; p < 0.001). Oswestry Disability Index (ODI) and visual analog scale (VAS) scores and postoperative transient deficits were found to be comparable between the two groups.

These results appear to suggest that addition of posterior instrumentation to transpsoas fusion is associated with decreased reoperations and cage movements. The results of previous systematic reviews and meta-analysis should be reevaluated in light of these results, which seem to suggest that higher reoperation and subsidence rates may be due to the use of the standalone technique 9).


A systematic and critical review of recent literature was conducted in accordance with PRISMA guidelines. The sources of the data were PubMed, MEDLINE, Embase, Cochrane and Scopus. Key search terms were “transpsoas”, “interbody fusion”, “LLIF”, “XLIF” and “spondylolisthesis”. Papers included in the review were original research articles in peer-reviewed journals. The articles were thoroughly examined and compared on the basis of study design, outcomes, and results. Only studies which met the eligibility criteria were included. Eight studies were included in the qualitative and quantitative analysis (three retrospective, four prospective, one randomized controlled trial). A total of 308 patients (227 females) (pooled age 64.5 years) and a total of 353 operated levels were analyzed. Mean follow up time ranged from 6.2 to 24 months. There were no reported cases of durotomies or pseudarthrosis in any study. All neurologic complications were reported to be transient with no permanent deficits. Mean improvement in ODI scores ranged between 19.5 (38.6%) to 36 (54.5%). Mean improvement in slip ranged from 47 to 67.5%. Three studies also reported that patient satisfaction and willingness to undergo the procedure again approached 90%. Minimally invasive transpsoas interbody fusion possibly leads to favorable clinical and radiological outcomes while avoiding the possible complications of its more traditional open and minimally invasive counterparts. Further studies are needed to better establish its role in the management of low grade degenerative lumbar spondylolisthesis 10).

Case series

References

1) , 2)

Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–443.
3)

Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976) 2011;36:26–32.
4)

Rodgers WB, Gerber EJ. Outcomes of MIS spinal fusion: 12 and 24 months. The Spine Journal. 2010;10(9):S141.
5)

Isaacs RE, Hyde J, Goodrich JA, et al. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion of the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine. 2010;15(35):S322–30.
6)

Tatsumi RL. Lateral Pressure and VAS Pain Score Analysis for the Lateral Lumbar Interbody Fusion Procedure. Int J Spine Surg. 2015 Sep 28;9:48. doi: 10.14444/2048. eCollection 2015. PubMed PMID: 26512342; PubMed Central PMCID: PMC4610324.
7)

Park P. Three-Dimensional Computed Tomography-Based Spinal Navigation in Minimally Invasive Lateral Lumbar Interbody Fusion: Feasibility, Technique, and Initial Results. Neurosurgery. 2015 Mar 23. [Epub ahead of print] PubMed PMID: 25812070.
8)

Gandhoke GS, Shin HM, Chang YF, Tempel Z, Gerszten PC, Okonkwo DO, Kanter AS. A Cost-Effectiveness Comparison Between Open Transforaminal and Minimally Invasive Lateral Lumbar Interbody Fusions Using the Incremental Cost-Effectiveness Ratio at 2-Year Follow-up. Neurosurgery. 2016 Apr;78(4):585-95. doi: 10.1227/NEU.0000000000001196. PubMed PMID: 26726969.
9)

Alvi MA, Alkhataybeh R, Wahood W, Kerezoudis P, Goncalves S, Murad MH, Bydon M. The impact of adding posterior instrumentation to transpsoas lateral fusion: a systematic review and meta-analysis. J Neurosurg Spine. 2018 Oct 1:1-11. doi: 10.3171/2018.7.SPINE18385. [Epub ahead of print] Review. PubMed PMID: 30485206.
10)

Goyal A, Kerezoudis P, Alvi MA, Goncalves S, Bydon M. Outcomes following minimally invasive lateral transpsoas interbody fusion for degenerative low grade lumbar spondylolisthesis: A systematic review. Clin Neurol Neurosurg. 2018 Apr;167:122-128. doi: 10.1016/j.clineuro.2018.02.020. Epub 2018 Feb 16. Review. PubMed PMID: 29476935.

Neurologic Injury after Lateral Lumbar Interbody Fusion

Since the first description of LLIF in 2006, the indications for LLIF have expanded and the rate of LLIF procedures performed in the USA has increased. LLIF has several theoretical advantages compared to other approaches including the preservation of the anterior and posterior annular/ligamentous structures, insertion of wide cages resting on the dense apophyseal ring bilaterally, and augmentation of disc height with indirect decompression of neural elements. Favorable long-term outcomes and a reduced risk of visceral/vascular injuries, incidental dural tears, and perioperative infections have been reported. However, approach-related complications such as motor and sensory deficits remain a concern. In well-indicated patients, LLIF can be a safe procedure used for a variety of indications 1).

Hijji et al. published a systematic review analyzing the complication profile of LLIF. Their study included a total of 63 articles and 6819 patients. The most commonly reported complications were transient neurologic injury (36.07%). The clinical significance of those transient findings, however, is unclear since the rate of persistent neurologic complications was much lower (3.98%) 2)

The risk of lumbar plexus injury is particularly concerning at the L4-5 disc space. Although LLIF is associated with an increased prevalence of anterior thigh/groin pain as well as motor and sensory deficits immediately after surgery, our results support that pain and neurologic deficits decrease over time. The level treated appears to be a risk factor for lumbosacral plexus injury 3).

Interestingly, the use of rhBMP-2 was associated with higher rates of persistent motor deficits, which might be explained by a direct deleterious effect of this agent on the lumbosacral plexus 4).

In a retrospective chart review of 118 patients, Cahill et al. determined the incidence of femoral nerve injury, which is considered one of the worst neurological complications after LLIF. The authors reported an approximate 5% femoral nerve injury rate of all the LLIF procedures performed at L4-5. There were no femoral nerve injuries at any other levels 5).

During a 6-year time period of performing LLIF Aichmair et al., noted a learning curve with a decreasing proportional trend for anterior thigh pain, sensory as well as motor deficits 6)

Le et al. also observed a learning curve with a significant reduction in the incidence of postoperative thigh numbness during a 3-year period (from 26.1 to 10.7%) 7).

Levi AD from the University of Miami Hospital, adopted an exclusive mini-open muscle-splitting approach in LLIF with first-look inspection of the lumbosacral plexus nerve elements taht may improve motor and sensory outcomes in general and the incidence of postoperative groin/thighsensory dysfunction and psoas-pattern weakness in particular 8).

References

1)

Salzmann SN, Shue J, Hughes AP. Lateral Lumbar Interbody Fusion-Outcomes and Complications. Curr Rev Musculoskelet Med. 2017 Dec;10(4):539-546. doi: 10.1007/s12178-017-9444-1. Review. PubMed PMID: 29038952; PubMed Central PMCID: PMC5685966.
2)

Hijji FY, Narain AS, Bohl DD, Ahn J, Long WW, DiBattista JV, Kudaravalli KT, Singh K. Lateral lumbar interbody fusion: a systematic review of complication rates. Spine J. 2017 Oct;17(10):1412-1419. doi: 10.1016/j.spinee.2017.04.022. Epub 2017 Apr 26. Review. PubMed PMID: 28456671.
3)

Lykissas MG, Aichmair A, Hughes AP, Sama AA, Lebl DR, Taher F, Du JY, Cammisa FP, Girardi FP. Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J. 2014 May 1;14(5):749-58. doi: 10.1016/j.spinee.2013.06.066. Epub 2013 Sep 5. PubMed PMID: 24012428.
4)

Lykissas MG, Aichmair A, Hughes AP, Sama AA, Lebl DR, Taher F, Du JY, Cammisa FP, Girardi FP. Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J. 2014 May 1;14(5):749-58. doi: 10.1016/j.spinee.2013.06.066. Epub 2013 Sep 5. PubMed PMID: 24012428.
5)

Cahill KS, Martinez JL, Wang MY, Vanni S, Levi AD. Motor nerve injuries following the minimally invasive lateral transpsoas approach. J Neurosurg Spine. 2012 Sep;17(3):227-31. doi: 10.3171/2012.5.SPINE1288. Epub 2012 Jun 29. PubMed PMID: 22746272.
6)

Aichmair A, Lykissas MG, Girardi FP, Sama AA, Lebl DR, Taher F, Cammisa FP, Hughes AP. An institutional six-year trend analysis of the neurological outcome after lateral lumbar interbody fusion: a 6-year trend analysis of a single institution. Spine (Phila Pa 1976). 2013 Nov 1;38(23):E1483-90. doi: 10.1097/BRS.0b013e3182a3d1b4. PubMed PMID: 23873231.
7)

Le TV, Burkett CJ, Deukmedjian AR, Uribe JS. Postoperative lumbar plexus injury after lumbar retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine (Phila Pa 1976). 2013 Jan 1;38(1):E13-20. doi: 10.1097/BRS.0b013e318278417c. PubMed PMID: 23073358.
8)

Sellin JN, Brusko GD, Levi AD. Lateral Lumbar Interbody Fusion Revisited: Complication Avoidance and Outcomes with the Mini-Open Approach. World Neurosurg. 2019 Jan;121:e647-e653. doi: 10.1016/j.wneu.2018.09.180. Epub 2018 Oct 3. PubMed PMID: 30292030.

Minimally invasive lateral lumbar interbody fusion for adult spinal deformity

A multicenter retrospective review of a minimally invasive adult spinal deformity database was queried with a minimum of 2-yr follow-up. Patients were divided into 2 groups as determined by the side of the curve from which the LLIF was performed: concave or convex.

No differences between groups were noted in demographic, and preoperative or postoperative radiographic parameters (all P > .05). There were 8 total complications in the convex group (34.8%) and 21 complications in the concave group (52.5%; P = .17). A subgroup analysis was performed in 49 patients in whom L4-5 was in the primary curve and not in the fractional curve. In this subset of patients, there were 6 complications in the convex group (31.6%) compared to 19 in the concave group (63.3%; P < .05) and both groups experienced significant improvements in coronal Cobb angle, Oswestry Disability Index, and Visual Analog Scale score with no difference between groups.

Patients undergoing LLIF for ADS had no statistically significant clinical or operative complication rates regardless of a concave or convex approach to the curve. Clinical outcomes and coronal plane deformity improved regardless of approach side. However, in cases wherein L4-5 is in the primary curve, approaching the fractional curve at L4-5 from the concavity may be associated with a higher complication rate compared to a convex approach 1).


Park et al., evaluated the clinical and radiological efficacies of supplementing minimally invasive lateral lumbar interbody fusion (LLIF) with open posterior spinal fusion (PSF) in adult spinal deformity (ASD).

To evaluate the advantages of minimally invasive LLIF for ASD, patients who underwent minimally invasive LLIF followed by open PSF (combined group) were compared with patients who only underwent PSF (only PSF group). The clinical and radiological outcomes for deformity correction and indirect decompression were assessed. The occurrence of proximal junctional kyphosis (PJK) and proximal junctional failure (PJF) were also evaluated.

No significant differences were observed in the clinical outcomes of the Oswestry Disability Index (ODI), visual analog scale, and major complications including reoperations between the groups. No additional advantage was found for coronal deformity correction, but the restoration of lumbar lordosis in the combined group was significantly higher postoperatively (15.3° vs. 8.87°, P = 0.003) and last follow-up (6.69° vs. 1.02°, P = 0.029) compared to that of the only PSF group. In the subgroup analysis for indirect decompression for the combined group, a significant increase of canal area (104 vs. 122 mm) and foraminal height (16.2 vs. 18.5 mm) was noted. The occurrence of PJK or PJF was significantly higher in the combined group than in the only PSF group (P = 0.039).

LLIF has advantages of indirect decompression and greater improvements of sagittal correction compared to only posterior surgery. LLIF should be conducted considering the above-mentioned benefits and complications including PJK or PJF in ASD 2).

References

1)

Kanter AS, Tempel ZJ, Agarwal N, Hamilton DK, Zavatsky JM, Mundis GM, Tran S, Chou D, Park P, Uribe JS, Wang MY, Anand N, Eastlack R, Mummaneni PV, Okonkwo DO. Curve Laterality for Lateral Lumbar Interbody Fusion in Adult Scoliosis Surgery: The Concave Versus Convex Controversy. Neurosurgery. 2018 Dec 1;83(6):1219-1225. doi: 10.1093/neuros/nyx612. PubMed PMID: 29361052.
2)

Park HY, Ha KY, Kim YH, Chang DG, Kim SI, Lee JW, Ahn JH, Kim JB. Minimally Invasive Lateral Lumbar Interbody Fusion for Adult Spinal Deformity: Clinical and Radiological Efficacy With Minimum Two Years Follow-up. Spine (Phila Pa 1976). 2018 Jul 15;43(14):E813-E821. doi: 10.1097/BRS.0000000000002507. PubMed PMID: 29215493.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: