Convexity meningioma surgery

Convexity meningioma surgery

Convexity meningioma surgery indications.

Preoperative embolization of intracranial meningioma.

see Surgical safety checklist.

see Preoperative antibiotic prophylaxis.

see Skin Preparation.

For convexity meningioma, the head is positioned so that the center of the tumor is uppermost, the same position as described for parasagittal tumors or for tumors close to the midline.

The incision and bone flap must be large enough to allow for excision of a good margin of dura around the tumor attachments.

The meningeal arteries are occluded as they are exposed.

These tumors can be removed intact by placing gentle traction on the dural attachment and working circumferentially around the tumor to divide the attachments to the cortex. However, if the surface of the tumor cannot be easily visualized without placing significant retraction on the cortex, internal decompression of the tumor is done and the capsule is reflected into the area of decompression.

In a situation where the tumor arises over the frontal temporal junction and grows into the sylvian fissure, the medial capsule and the dural attachment may extend down onto the lateral floor of the anterior fossa and anterior wall of the middle fossa, and the medial capsule of the tumor can be attached to branches of the middle cerebral artery.

A study showed that meningioma recurrence was unlikely when autologous cranioplasty was done with refashioned hyperostotic bone. This could be done in the same setting with meningioma excision. There was no recurrence at a mean of 5-year follow-up in convexity meningiomas 1).

Right Convexity Meningioma from Surgical Neurology International on Vimeo.

Left Frontal Convexity Meningioma from Surgical Neurology International on Vimeo.

An accurate and real-time model of soft tissue is critical for surgical simulation for which a user interacts haptically and visually with simulated patients. A paper focuses on the real-time deformation model of brain tissue for the interactive surgical simulation, such as neurosurgical simulation.

A new Finite Element Method (FEM) based model with constraints is proposed for the brain tissue in neurosurgical simulation. A new energy function of constraints characterizing the interaction between the virtual instrument and the soft tissue is incorporated into the optimization problem derived from the implicit integration scheme. Distance and permanent deformation constraints are introduced to describe the interaction in the convexity meningioma dissection and hemostasis. The proposed model is particularly suitable for GPU-based computing, making it possible to achieve real-time performance.

Simulation results show that the simulated soft tissue exhibits the behaviors of adhesion and permanent deformation under the constraints. Experiments show that the proposed model is able to converge to the exact solution of the implicit Euler method after 96 iterations. The proposed model was implemented in the development of a neurosurgical simulator, in which surgical procedures such as dissection of convexity meningioma and hemostasis were simulated 2).


1)

Lau BL, Che Othman MI, Fakhri M, San Liew DN, San Lim S, Bujang MA, Hieng Wong AS. Does putting back hyperostotic bone flap in meningioma surgery causes tumor recurrence? An observational prospective study. World Neurosurg. 2019 Mar 26. pii: S1878-8750(19)30863-0. doi: 10.1016/j.wneu.2019.03.183. [Epub ahead of print] PubMed PMID: 30926555.
2)

Hou W, Liu PX, Zheng M. A new model of soft tissue with constraints for interactive surgical simulation. Comput Methods Programs Biomed. 2019 Jul;175:35-43. doi: 10.1016/j.cmpb.2019.03.018. Epub 2019 Apr 1. PubMed PMID: 31104713.

Spinal meningioma epidemiology

Spinal meningioma epidemiology

Because spinal meningiomas are infrequently encountered in any one center, a large portion of the literature relating to spinal meningiomas consists of case reports or case series 1)


In The Surveillance, Epidemiology and End Results, the age-adjusted incidence rate was 0.37 cases per 1,000,000 person-years between 2004 and 2016. Spinal meningiomas represented 4.25% of all meningiomas. A total of 4204 patients with spinal meningiomas were included in the study. Most of the patients were white and diagnosed at 60-69 years of age, and the female:male ratio was 4:1. Most of the tumors were benign and less than 3 cm in size. The most common pathological type was psammomatous meningioma. Surgery was the first choice of treatment for patients with spinal meningiomas. Male and pediatric patients were more vulnerable to borderline or malignant spinal meningiomas. Survival analysis showed that married, female, and younger patients with benign meningiomas had better overall survival than their counterparts 2).


Approximately 1000 spinal meningiomas were diagnosed in the United States per year, and the incidence was relatively stable. Advanced age, female sex, Asian Pacific Islander and Caucasian race, and Hispanic ethnicity were all associated with an increased incidence of spinal meningioma. The study of represents the most comprehensive evaluation of population-based descriptive epidemiology of spinal meningiomas in the United States to date 3).


Spinal meningiomas represent a significant fraction of all primary intradural spinal tumors and of all meningiomas. The results of a study of Westwick and Shamji established the association of lesion incidence and survival with sex, with a less frequent incidence in but greater mortality among males 4).

Meningiomas arising from the coverings of the spinal cord are one of the two most common intradural extramedullary spinal tumors, representing 25-30% of all such tumor5)

Amongst the intraspinal location, meningiomas account for 25% to 46% of primary spinal neoplasms, while the incidence of spinal meningiomas is 7.5% to 12.7% of all meningiomas

They have a peak incidence in the fifth and sixth decades. Interestingly, and unlike intracranial meningiomas, in the adult population, females are approximately ten times more commonly affected than males. In children, there does not appear to be a sex predilection.

There is an increased incidence of spinal meningiomas in patients with neurofibromatosis type 2 (NF2), and in fact in the paediatric population, meningiomas uncommonly occur outside of the setting of NF2.


Except in cases of neurofibromatosis, it is very rare for tumors of different pathological types to exist concurrently at the same spinal level, with only 9 cases reported to date, in which spinal meningioma was found with spinal schwannoma in 7 cases and with spinal neurofibroma in 2 cases 6).


2)

Cao Y, Jiang Y, Liu C, Jin R, Jin Z, Hong X, Zhao L, Zhao G, Wang Y. Epidemiology and survival of patients with spinal meningiomas: A SEER analysis. Eur J Surg Oncol. 2021 Jan 22:S0748-7983(21)00039-1. doi: 10.1016/j.ejso.2021.01.012. Epub ahead of print. PMID: 33546961.
3)

Kshettry VR, Hsieh JK, Ostrom QT, Kruchko C, Benzel EC, Barnholtz-Sloan JS. Descriptive Epidemiology of Spinal Meningiomas in the United States. Spine (Phila Pa 1976). 2015 Aug 1;40(15):E886-9. doi: 10.1097/BRS.0000000000000974. PMID: 25996535.
4)

Westwick HJ, Shamji MF. Effects of sex on the incidence and prognosis of spinal meningiomas: a Surveillance, Epidemiology, and End Results study. J Neurosurg Spine. 2015 Sep;23(3):368-73. doi: 10.3171/2014.12.SPINE14974. Epub 2015 May 29. PMID: 26023898.
5)

Osborn AG. Diagnostic neuroradiology. Mosby Inc. (1994) ISBN:0801674867.
6)

Zhan Z, Yan X, Nie W, Ding Y, Xu W, Huang H. Neurofibroma and Meningioma within a Single Dumbbell-Shaped Tumor at the Same Cervical Level without Neurofibromatosis: a Case Report and Literature Review. World Neurosurg. 2019 Jun 26. pii: S1878-8750(19)31788-7. doi: 10.1016/j.wneu.2019.06.142. [Epub ahead of print] PubMed PMID: 31254713.

Meningioma

Meningioma

Meningiomas are leptomeningeal neoplasms thought to originate from arachnoid membranes that form the cranial and spinal meninge1).

Written with Louise Eisenhardt and published in 1938Meningiomas is a monograph of incredible description and detail. The meticulous categorization of meningiomas, their presentation, clinical outcome, and surgical therapies are even further supplemented by Cushing‘s personal commentary, questions, and recollections. Cushing’s genius was evident in his ability not only to make insightful clinical observations, but also to synthesize these ideas within the neurosurgical context of his era. As he says in Meningiomas, “Thus the pathological curiosity of one day becomes in its proper time a commonplace… most of which are one and the same disorder–had, for their interpretation, to await the advent of the Neurosurgeon 2).

Meningioma epidemiology.

see Meningioma classification.

see Meningioma cell lines.

see Meningioma etiology.

see Meningioma Pathogenesis.

Meningioma clinical features

see Asymptomatic meningioma

see Meningioma Diagnosis.

see Meningioma differential diagnosis.

see Meningioma treatment.

see Meningioma outcome.

see Meningioma recurrence.

see Simpson grading system.

In November 2016, Almutairi et al. performed a title-specific search of the Scopus database using “Meningioma” as the search query term without publication date restrictions. The top 100 most cited articles were obtained and reviewed.

The top 100 most cited articles received a mean 198 citations per paper. Publication dates ranged from 1953 to 2013; most articles were published between 1994 and 2003, with 50 articles published during that period. NEUROSURGERY published the greatest number of top cited articles (22 of 100). The most frequent study categories were laboratorial studies (31 of 100) and natural history studies (28 of 100). Non-operative management studies were twice as common as operative management studies in the top cited articles. Neurosurgery as a specialty contributed to 50% of the top 100 list. The most contributing institute was the Mayo Clinic (11%); the majority of the top cited articles originated in the United States (53%).

They identified the top 100 most-cited articles on meningioma that may be considered significant and impactful works, as well as the most noteworthy. Additionally, they recognized the historical development and advances in meningioma research, and the important contributions of various authors, specialty fields, and countries. A large proportion of the most cited articles were written by authors other than neurosurgeons, and many of these articles were published in non-neurosurgery journals 3).

Meningioma case series.


1)

Smith MJ, O’Sullivan J, Bhaskar SS, Hadfield KD, Poke G, Caird J, Sharif S, Eccles D, Fitzpatrick D, Rawluk D, du Plessis D, Newman WG, Evans DG. Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet. 2013 Mar;45(3):295-8. doi: 10.1038/ng.2552. Epub 2013 Feb 3. PubMed PMID: 23377182.
2)

Shrivastava RK, Segal S, Camins MB, Sen C, Post KD. Harvey Cushing’s Meningiomas text and the historical origin of resectability criteria for the anterior one third of the superior sagittal sinus. J Neurosurg. 2003 Oct;99(4):787-91. PubMed PMID: 14567620.
3)

Almutairi O, Albakr A, Al-Habib A, Ajlan A. The Top 100 Most Cited Articles on Meningioma. World Neurosurg. 2017 Aug 10. pii: S1878-8750(17)31318-9. doi: 10.1016/j.wneu.2017.08.021. [Epub ahead of print] Review. PubMed PMID: 28804043.
WhatsApp WhatsApp us
%d bloggers like this: