Fluorescence-Guided Neurosurgery

Fluorescence-Guided Neurosurgery

see 5 aminolevulinic acid fluorescence guided resection.

see Fluorescein sodium guided resection.

see Fluorescence guided surgery of glioma.

The first use of fluorescence for brain tumour surgery was in 1948 by G.E. Moore 1) using fluorescein sodium.

Achieving a maximal safe extent of resection during brain tumor surgery is the goal for improved patient prognosisFluorescence-guided neurosurgery using 5-aminolevulinic acid (5-ALA) induced Protoporphyrin IX has thereby become a valuable tool enabling a high frequency of complete resections and a prolonged progression free survival in glioblastoma patients.

Erkkilä et al., from the Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Advanced Development Microsurgery, Carl Zeiss Meditec AG, Christian Doppler Laboratory for Innovative Optical Imaging and Its Translation to Medicine, Medical University of Vienna, Institute of Neurology, Department of Neurosurgery, General Hospital and Medical University of Vienna, presented a widefield fluorescence lifetime imaging device with 250 mm working distance working under similar conditions like surgical microscopes based on a time-of-flight based dual tap CMOS camera. In contrast to intensity-based fluorescence imaging this method is invariant to light scattering and absorption while being sensitive to the molecular composition of the tissue. They evaluated the feasibility of lifetime imaging of Protoporphyrin IX using the system to analyze brain tumor phantoms and fresh 5-ALA labeled human tissue samples. The results demonstrate the potential of this lifetime sensing device to go beyond the limitation of current intensity-based fluorescence-guided neurosurgery 2).

Books

Fluorescence-Guided Neurosurgery: Neuro-oncology and Cerebrovascular Applications September 10, 2018 The definitive textbook on state-of-the-art fluorescence-guided neurosurgery

Advances in fluorescence-guided surgery (FGS) have resulted in a paradigm shift in neurosurgical approaches to neuro-oncological and cerebrovascular pathologies. Edited by two of the foremost authorities on the topic, Fluorescence-Guided Neurosurgery: Neuro-oncology and Cerebrovascular Applications encompasses the depth and breadth of this groundbreaking, still nascent technology. The book reflects significant contributions made by world renowned neurosurgeons Constantinos Hadjipanayis, Walter Stummer, and esteemed contributors on the growing uses of 5-aminolevulinic acid (5-ALA) and other FGS agents.

The European Medicine Agency approved 5-ALA in 2007, heralding the birth of FGS globally. In 2017, the U.S. Food and Drug Administration approved 5-ALA (Gleolan) as an imaging agent to facilitate realtime detection and visualization of malignant tissue during glioma surgery. In the two decades since Dr. Stummer’s initial description of 5-ALA FGS in a human patient, major strides have been made in its practical applications, leading to improved resection outcomes. As FGS is increasingly incorporated into neurosurgical practice, it holds promise for future innovations. Generously-illustrated and enhanced with online videos, this textbook is the definitive resource on the subject.

Key Features

The improved efficacy of 5-ALA for resecting high- and low-grade gliomas, recurrences, meningiomas, brain metastases, spinal cord tumors, pediatric brain tumors, and other adult tumors The future of fluorescence, including potentially powerful new fluorophores molecularly targeted specifically to tumors The use of the fluorescent agent indocyanine green (ICG) for brain tumors, cerebral aneurysms, AVMs, and cerebral vascularization Special topics such as fluorescein, illuminating tumor paint, confocal microscopy, Raman spectroscopy, and integrating FGS with intraoperative imaging and brain mapping This single accessible reference presents the current state-of-the-art on this emerging, exciting surgical technology. As such, it is a must-have for neurosurgical residents, fellows, and practicing neurosurgeons.

1)

Moore GE, Peyton WT, French LA, Walker WW (1948) The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J Neurosurg 5:392–398
2)

Erkkilä MT, Bauer B, Hecker-Denschlag N, Madera Medina MJ, Leitgeb RA, Unterhuber A, Gesperger J, Roetzer T, Hauger C, Drexler W, Widhalm G, Andreana M. Widefield fluorescence lifetime imaging of protoporphyrin IX for fluorescence-guided neurosurgery: an ex vivo feasibility study. J Biophotonics. 2019 Jan 12. doi: 10.1002/jbio.201800378. [Epub ahead of print] PubMed PMID: 30636030.

Fluorescence-Guided Neurosurgery: Neuro-oncology and Cerebrovascular Applications

The definitive textbook on state-of-the-art fluorescence-guided neurosurgery

Advances in fluorescence-guided surgery (FGS) have resulted in a paradigm shift in neurosurgical approaches to neuro-oncological and cerebrovascular pathologies. Edited by two of the foremost authorities on the topic, Fluorescence-Guided Neurosurgery: Neuro-oncology and Cerebrovascular Applications encompasses the depth and breadth of this groundbreaking, still nascent technology. The book reflects significant contributions made by world renowned neurosurgeons Constantinos Hadjipanayis, Walter Stummer, and esteemed contributors on the growing uses of 5-aminolevulinic acid (5-ALA) and other FGS agents.

The European Medicine Agency approved 5-ALA in 2007, heralding the birth of FGS globally. In 2017, the U.S. Food and Drug Administration approved 5-ALA (Gleolan) as an imaging agent to facilitate realtime detection and visualization of malignant tissue during glioma surgery. In the two decades since Dr. Stummer’s initial description of 5-ALA FGS in a human patient, major strides have been made in its practical applications, leading to improved resection outcomes. As FGS is increasingly incorporated into neurosurgical practice, it holds promise for future innovations. Generously-illustrated and enhanced with online videos, this textbook is the definitive resource on the subject.

Key Features

  • The improved efficacy of 5-ALA for resecting high- and low-grade gliomas, recurrences, meningiomas, brain metastases, spinal cord tumors, pediatric brain tumors, and other adult tumors
  • The future of fluorescence, including potentially powerful new fluorophores molecularly targeted specifically to tumors
  • The use of the fluorescent agent indocyanine green (ICG) for brain tumors, cerebral aneurysms, AVMs, and cerebral vascularization
  • Special topics such as fluorescein, illuminating tumor paint, confocal microscopy, Raman spectroscopy, and integrating FGS with intraoperative imaging and brain mapping

This single accessible reference presents the current state-of-the-art on this emerging, exciting surgical technology. As such, it is a must-have for neurosurgical residents, fellows, and practicing neurosurgeons.

 

 

The 44th Congress of the Romanian Society of Neurosurgery

September 5 — September 8

Timisoara, Romania

More information: http://rsncongress.medevents.ro/

This year, The 44th Congress of the Romanian Society of Neurosurgery will be held in a distinctive and multicultural place in Romania: Timișoara. This city, located in the historical region of Banat in the Western side of the country, with a multiethnic population and a spectacular economic development over the past ten years, represents a regional center for academic training in the medical field.

Timișoara is also an authentic Central European space, with an unique architecture that still preserves the fin de siècle atmosphere of the Austro-Hungarian Empire. It is an urban development where the vibrant cultural life, the cosmopolitan student community, the international economic expansion of the IT sector form an excellent context for a high academic event.

Handbook of Pediatric Neurosurgery

Handbook of Pediatric Neurosurgery 1st Edition

by George I. Jallo (Editor), Karl Kothbauer (Editor), Violette Recinos (Editor)
List Price: $124.99
ADD TO SHOPPING CART
Pediatric neurosurgery has witnessed considerable technological advances, resulting in more efficacious outcomes for young patients with hydrocephalus, epilepsy, brain tumors, spinal deformities, and a host of other conditions. The art of pediatric neurosurgery is a delicate balancing act—taking into account child and parents and emotional and disease challenges. As such, the management of serious neurological conditions in pediatric patients must encompass the big picture in addition to treating underlying pathologies.
Handbook of Pediatric Neurosurgery by George Jallo, Karl Kothbauer, and Violette Recinos covers the full depth and breadth of this uniquely rewarding subspecialty including congenital, developmental, and acquired disorders. The latest information is provided on anatomy, radiological imaging, and principles guiding the surgical and nonsurgical management of a full spectrum of neurological pathologies impacting infants and children. The book is divided into 11 sections and 56 chapters with state-of-the-art procedures, best practices, and clinical pearls from top pediatric neurosurgeons.
Key Features
Cranial disorders including Chiari malformations, encephaloceles, Dandy-Walker malformation, and craniosynostosis
Benign and malignant tumors—from the hypothalamus and optic pathways to the brainstem and spinal column
Spinal abnormalities such as spina bifida, tethered cord, and scoliosis
Clinical questions and answers at the end of chapters—ideal for self-testing and exam prep
Comprehensive and compact, this is the perfect backpack reference for neurosurgery residents and pediatric neurosurgery fellows to carry on rounds. It is also a must-have resource for seasoned pediatric neurosurgeons and all practitioners entrusted with the neurological care of pediatric patients.

12th Annual Meeting of the Saudi Association of Neurological Surgery & 8th Neurosurgery Update Conference (SANS 2018)

12th Annual Meeting of the Saudi Association of Neurological Surgery & 8th Neurosurgery Update Conference (SANS 2018)

15 – 16 April 2018
http://www.sans.org.sa/index.php/event/sans-20

WhatsApp WhatsApp us
%d bloggers like this: