Traumatic cervical spinal cord injury outcome

Injury to the spine and spinal cord is one of the common cause of disability and death. Several factors affect the outcome; but which are these factors (alone and in combination), are determining the outcomes are still unknown.

Based on parameters from the International Standards, physicians are able to inform patients about the predicted long-term outcomes, including the ability to walk, with high accuracy. In those patients who cannot participate in a reliable physical neurological examination, magnetic resonance imaging and electrophysiological examinations may provide useful diagnostic and prognostic information. As clinical research on this topic continues, the prognostic value of the reviewed diagnostic assessments will become more accurate in the near future. These advances will provide useful information for physicians to counsel tSCI patients and their families during the catastrophic initial phase after the injury 1).

Preclinical and class III clinical data suggest improved outcomes by maintaining the mean arterial pressure > 85 mm Hg and avoiding hypoxemia at least for 7 days following cervical SCI, and this level of monitoring and support should occur in the ICU 2).


100 cases of patients under 18 years at accident with acute traumatic cervical spinal cord injury admitted to spinal cord injury SCI centers participating in the European Multi-center study about SCI (EMSCI) between January 2005 and April 2016 were reviewed. According to their age at accident, age 13 to 17, patients were selected for the adolescent group. After applying in- and exclusion criteria 32 adolescents were included. Each adolescent patient was matched with two adult SCI patients for analysis.

ASIA Impairment scale (AIS) grade, neurological, sensory, motor level, total motor score, and Spinal Cord Independence Measure (SCIM III) total score.

Mean AIS conversion, neurological, motor and sensory levels as well as total motor score showed no significantly statistical difference in adolescents compared to the adult control group after follow up of 6 months. Significantly higher final SCIM scores (p < 0.05) in the adolescent group compared to adults as well as a strong trend for a higher gain in SCIM score (p < 0.061) between first and last follow up was found.

Neurological outcome after traumatic cervical SCI is not superior in adolescents compared to adults in this cohort. Significantly higher SCIM scores indicate more functional gain for the adolescent patients after traumatic cervical SCI. Juvenile age appears to be an independent predictor for a better functional outcome. 3).


A prospective observational study at single-center with all patients with cervical spinal cord injury (SCI), attending our hospital within a week of injury during a period of October 2011 to July 2013 was included for analysis. Demographic factors such as age, gender, etiology of injury, preoperative American Spinal Injury Association (ASIA) grade, upper (C2-C4) versus lower (C5-C7) cervical level of injury, imageological factors on magnetic resonance imaging (MRI), and timing of intervention were studied. Change in neurological status by one or more ASIA grade from the date of admission to 6 months follow-up was taken as an improvement. Functional grading was assessed using the functional independence measure (FIM) scale at 6 months follow-up.

A total of 39 patients with an acute cervical spine injury, managed surgically were included in this study. Follow-up was available for 38 patients at 6 months. No improvement was noted in patients with ASIA Grade A. Maximum improvement was noted in ASIA Grade D group (83.3%). The improvement was more significant in lower cervical region injuries. Patient with cord contusion showed no improvement as opposed to those with just edema wherein; the improvement was seen in 62.5% patients. Percentage of improvement in cord edema ≤3 segments (75%) was significantly higher than edema with >3 segments (42.9%). Maximum improvement in FIM score was noted in ASIA Grade C and patients who had edema (especially ≤3 segments) in MRI cervical spine.

Complete cervical SCI, upper-level cervical cord injury, patients showing MRI contusion, edema >3 segments group have worst improvement in neurological status at 6 months follow-up 4).


A total of 66 patients diagnosed with traumatic cervical SCI were selected for neurological assessment (using the International standards for neurological classification of spinal cord injury [ISNCSCI]) and functional evaluation (based on the Korean version Modified Barthel Index [K-MBI] and Functional Independence Measure [FIM]) at admission and upon discharge. All of the subjects received a preliminary electrophysiological assessment, according to which they were divided into two groups as follows: those with cervical radiculopathy (the SCI/Rad group) and those without (the SCI group).

A total of 32 patients with cervical SCI (48.5%) had cervical radiculopathy. The initial ISNCSCI scores for sensory and motor, K-MBI, and total FIM did not significantly differ between the SCI group and the SCI/Rad group. However, at discharge, the ISNCSCI scores for motor, K-MBI, and FIM of the SCI/Rad group showed less improvement (5.44±8.08, 15.19±19.39 and 10.84±11.49, respectively) than those of the SCI group (10.76±9.86, 24.79±19.65 and 17.76±15.84, respectively) (p<0.05). In the SCI/Rad group, the number of involved levels of cervical radiculopathy was negatively correlated with the initial and follow-up motors score by ISNCSCI.

Cervical radiculopathy is not rare in patients with traumatic cervical SCI, and it can impede neurological and functional improvement. Therefore, detection of combined cervical radiculopathy by electrophysiological assessment is essential for accurate prognosis of cervical SCI patients in the rehabilitation unit 5).

References

1)

van Middendorp JJ, Goss B, Urquhart S, Atresh S, Williams RP, Schuetz M. Diagnosis and prognosis of traumatic spinal cord injury. Global Spine J. 2011 Dec;1(1):1-8. doi: 10.1055/s-0031-1296049. PubMed PMID: 24353930; PubMed Central PMCID: PMC3864437.
2)

Schwartzbauer G, Stein D. Critical Care of Traumatic Cervical Spinal Cord Injuries: Preventing Secondary Injury. Semin Neurol. 2016 Dec;36(6):577-585. Epub 2016 Dec 1. Review. PubMed PMID: 27907962.
3)

Geuther M, Grassner L, Mach O, Klein B, Högel F, Voth M, Bühren V, Maier D, Abel R, Weidner N, Rupp R, Fürstenberg CH; EMSCI study group, Schneidmueller D. Functional outcome after traumatic cervical spinal cord injury is superior in adolescents compared to adults. Eur J Paediatr Neurol. 2018 Dec 11. pii: S1090-3798(18)30247-2. doi: 10.1016/j.ejpn.2018.12.001. [Epub ahead of print] PubMed PMID: 30579697.
4)

Srinivas BH, Rajesh A, Purohit AK. Factors affecting outcome of acute cervical spine injury: A prospective study. Asian J Neurosurg. 2017 Jul-Sep;12(3):416-423. doi: 10.4103/1793-5482.180942. PubMed PMID: 28761518; PubMed Central PMCID: PMC5532925.
5)

Kim SY, Kim TU, Lee SJ, Hyun JK. Prognosis for patients with traumatic cervical spinal cord injury combined with cervical radiculopathy. Ann Rehabil Med. 2014 Aug;38(4):443-9. doi: 10.5535/arm.2014.38.4.443. Epub 2014 Aug 28. PubMed PMID: 25229022; PubMed Central PMCID: PMC4163583.

Long-term outcome in intraspinal dermoid and epidermoid tumors

The purpose of the study of Wang et al. from the Peking Union Medical College Hospital, was to review the progression free survival (PFS), overall survival (OS), and long-term outcome in a consecutive series of 57 patients with intraspinal dermoid and epidermoid tumors.

A total of 57 patients who underwent surgery at the Peking Union Medical College Hospital between 2002 and 2010 were reviewed. Patients outcome were determined using the Japanese Orthopaedic Association scale (JOA) and the McCormick score.

The follow-up data were 100% complete and the median follow-up time was 9.2 years. Gross total resection was performed in 21 patients (36.84%) and subtotal resection in 36 patients (63.16%). The PFS and OS at 8 years were 78.95% and 100% respectively. A good outcome was observed in 56.14% of patients based on the JOA and McCormick score. The univariate analysis showed that a tumor size of more than 4 cm, subtotal resection and sphincter disturbances were the influencing factors of poor outcome.

The gold standard treatment for intraspinal tumors is gross total resection, but the operation needs to protect the remaining nerve function as much as possible and follow-up should be focused on patients with a high risk of poor outcome 1).Edit1) Wang X, Gao J, Wang T, Li Z, Li Y. Intraspinal dermoid and epidermoid cysts: Long-term outcome and risk factors. J Spinal Cord Med. 2018 Dec 5:1-6. doi: 10.1080/10790268.2018.1553008. [Epub ahead of print] PubMed PMID: 30517826.

UpToDate: Diffuse axonal injury outcome

Diffuse axonal injury outcome

Diffuse axonal injury, and more generally TBI, often results in physical, cognitive, and behavioral impairments that can be temporary or permanent1) 2) 3) 4) 5) 6) 7) 8) 9) 10).


The outcome of patients after DAI has been linked to the number of lesions identified through imaging. A longitudinal study that analyzed the evolution of traumatic axonal injury using magnetic resonance imaging (MRI) of 58 patients with moderate or severe TBI showed that the greater the number of lesions observed early after trauma, the greater the impairment of functionality after 12 months 11).

A study of 26 DAI patients indicated that the volume and number of lesions identified by MRI performed within 48 h of hospital admission strongly correlated with the level of disability observed at the time of hospital discharge 12).


DAI with hypoxia, as measured by peripheral oxygen saturation, and hypotension with New Injury Severity Score (NISS) value – had a statistically significant association with patient mortality; on the other hand, severity of DAI and length of hospital stay were the only significant predictors for dependence. Therefore, severity of DAI emerged as a risk factor for both mortality and dependence 13).


Clinical evidence of DAI on MRI may only be useful for predicting short-term in-hospital functional outcome. Given no association of DAI and long-term TBI outcomes, providers should be cautious in attributing DAI to future neurologic function, quality of life, and/or survival 14).


Brain atrophy progresses over time, but patients showed better executive function (EF) and verbal episodic memory (EVM) in some of the tests, which could be due to neuroplasticity 15).

References

1)

Gennarelli TA. Cerebral concussion and diffuse brain injuries. 2nd ed In: Cooper PR, editor. , editor. Head Injury. Baltimore: Williams & Wilkins; (1987). p. 108–24.
2)

Gennarelli TA. Cerebral concussion and diffuse brain injuries. 3rd ed In: Cooper PR, editor. , editor. Head Injury. Baltimore: Williams & Wilkins; (1993). p. 137–58.
3)

Lagares A, Ramos A, Alday R, Ballenilla F, Pérez-Nuñez A, Arrese I, et al. Magnetic resonance in moderate and severe head injury: comparative study of CT and MR findings. Characteristics related to the presence and location of diffuse axonal injury in MR. Neurocirugia (Astur) (2006) 17(2):105–18.10.1016/S1130-1473(06)70351-7
4)

Esbjörnsson E, Skoglund T, Sunnerhagen KS. Fatigue, psychosocial adaptation and quality of life one year after traumatic brain injury and suspected traumatic axonal injury; evaluations of patients and relatives: a pilot study. J Rehabil Med (2013) 45:771–7.10.2340/16501977-1170
5)

Chelly H, Chaari A, Daoud E, Dammak H, Medhioub F, Mnif J, et al. Diffuse axonal injury in patients with head injuries: an epidemiologic and prognosis study of 124 cases. J Trauma (2011) 71(4):838–46.10.1097/TA.0b013e3182127baa
6)

Jeong JH, Kim YZ, Cho YW, Kim JS. Negative effect of hypopituitarism following brain trauma in patients with diffuse axonal injury. J Neurosurg (2010) 113(3):532–8.10.3171/2009.10.JNS091152
7)

Ham TE, Sharp DJ. How can investigation of network function inform rehabilitation after traumatic brain injury? Curr Opin Neurol (2012) 25(6):662–9.10.1097/WCO.0b013e328359488f
8)

Sousa RMC. Comparisons among measurement tools in traumatic brain injury outcomes. Rev Esc Enferm USP (2006) 40(2):203–13.10.1590/S0080-62342006000200008
9)

Scholten AC, Haagsma JA, Andriessen TM, Vos PE, Steyerberg EW, van Beeck EF, et al. Health-related quality of life after mild, moderate and severe traumatic brain injury: patterns and predictors of suboptimal functioning during the first year after injury. Injury (2015) 46(4):616–24.10.1016/j.injury.2014.10.064
10)

Liew BS, Johari SA, Nasser AW, Abdullah J. Severe traumatic brain injury: outcome in patients with diffuse axonal injury managed conservatively in hospital Sultanah Aminah, Johor Bahru – an observational study. Med J Malaysia (2009) 64(4):280–8.
11)

Moen KG, Skandsen T, Folvik M, Brezova V, Kvistad KA, Rydland J, et al. A longitudinal MRI study of traumatic axonal injury in patients with moderate and severe traumatic brain injury. J Neurol Neurosurg Psychiatry (2012) 83(12):1193–200.10.1136/jnnp-2012-302644
12)

Schaefer PW, Huisman TA, Sorensen AG, Gonzalez RG, Schwamm LH. Diffusion-weighted MR imaging in closed head injury: high correlation with initial Glasgow Coma Scale score and score on modified Rankin scale at discharge. Radiology (2004) 233(1):58–66.10.1148/radiol.2323031173
13)

Vieira RC, Paiva WS, de Oliveira DV, Teixeira MJ, de Andrade AF, de Sousa RM. Diffuse Axonal Injury: Epidemiology, Outcome and Associated Risk Factors. Front Neurol. 2016 Oct 20;7:178. eCollection 2016. PubMed PMID: 27812349; PubMed Central PMCID: PMC5071911.
14)

Humble SS, Wilson LD, Wang L, Long DA, Smith MA, Siktberg JC, Mirhoseini MF, Bhatia A, Pruthi S, Day MA, Muehlschlegel S, Patel MB. Prognosis of diffuse axonal injury with traumatic brain injury. J Trauma Acute Care Surg. 2018 Jul;85(1):155-159. doi: 10.1097/TA.0000000000001852. PubMed PMID: 29462087; PubMed Central PMCID: PMC6026031.
15)

Stewan Feltrin F, Zaninotto AL, Guirado VMP, Macruz F, Sakuno D, Dalaqua M, Magalhães LGA, Paiva WS, Andrade AF, Otaduy MCG, Leite CC. Longitudinal changes in brain volumetry and cognitive functions after moderate and severe diffuse axonal injury. Brain Inj. 2018 Jul 19:1-10. doi: 10.1080/02699052.2018.1494852. [Epub ahead of print] PubMed PMID: 30024781.

UpToDate: Idiopathic normal pressure hydrocephalus outcome

Idiopathic normal pressure hydrocephalus outcome

Patients often present to the neurosurgeon frustrated and desperate after a long preoperative course. It is important to acknowledge the uncertainty regarding Idiopathic normal pressure hydrocephalus diagnosis and response to shunting when counseling patients. Comorbid conditions interfere with the ability to assess progression of iNPH and the effectiveness of the shunt. Patient caregivers play a large role in decision-making and clinical course, and should be included when counseling patients 1).

A 2001 meta-analysis of outcomes reported the Idiopathic normal pressure hydrocephalus treatment to have a 29% rate of significant improvement and a 6% significant complication rate 2).

A study in 2005 revealed greater improvements, with 75% of patients (n = 132) seeing postoperative improvements within 24 months of surgery 3), 68% of patients experiencing “very good” or “good” outcomes in a prospective study 4), and 69%–84% of patients seeing improvements by 1 year after surgery in a prospective multicenter study 5).

Studies that have established fixed protocols for follow-up have shown that short- and long-term periods after shunting are determined by many factors. Whereas short-term results were more likely to be influenced by shunt-associated risks, long-term results were independent of factors inherent to the shunt procedure and shunt complications, i.e., death and morbidity related to concomitant cerebrovascular and vascular diseases 6).

In 2013 a total of 64 studies of 3,063 patients were reviewed. Positive improvement following shunt insertion was reported in an average of 71 % of patients with an average 1 % mortality. Results from studies published in the last 5 years showed 82 % improvement following shunt insertion, mortality of 0.2 %, and combined common complications rate of 8.2 % 7).

Analysis of the efficacy of shunts for possible iNPH conducted in Japan indicated a significant improvement in the mRS grade between baseline and outcome within 1 year, regardless of the surgical technique, and shunt intervention was found to be effective 8).


Clinically, patients presenting with early or severe dementia have worse outcome, while those with a primary gait disturbance feature have better results 9) 10)

A growing body of evidence suggests that longer durations of preoperative symptoms may correlate with worse postoperative outcomes following cerebrospinal fluid diversion for treatment of idiopathic normal pressure hydrocephalus (iNPH).

Outcomes after ventriculoperitoneal shunting for idiopathic normal pressure hydrocephalus (INPH) are variable due to a lack of reliable, quantitative outcome data and inconsistent methods of selecting shunt candidates.


Clinical improvement of patients with iNPH can be sustained for 5-7 years in some patients, even if shunt revision surgery is needed multiple times. With earlier diagnosis and treatment and the increasing lifespan of the ageing population, the need for long-term follow-up after shunt surgery may be greater than it was in the past. Monitoring, identification and treatment of shunt obstruction is a key management principle 11).

Gait and Incontinence

Postoperative improvement of Gait and Urinary incontinence is obtained at an early stage 12) 13). In contrast, Dementia tends to improve gradually from after the third postoperative month. The family satisfaction increases as the symptom of Dementia improve. The satisfaction of the medical personnel tends to remain high after the first postoperative month 14).

Independent predictors

Independent predictors of improvement are the presence of gait impairment as the dominant symptom and shorter duration of symptoms 15).

Caregiver Burden

Shunt operations reduced the caregiver burden of iNPH patients 16)17).

Thirty-seven patients (median age 70 years, range 50-89 years) with Idiopathic normal pressure hydrocephalus were evaluated before and 6 months after surgery. Symptoms and signs were assessed by the iNPH scale, activities of daily living (ADL) with the Functional Independence Measure (FIM) and Assessment of Motor and Process Skills (AMPS), autonomy and participation with Impact on Participation and Autonomy (IPA), and caregiver burden with the Caregiver Burden Scale (CBS). HRQOL was evaluated with the EQ-5D (EuroQol Group-5 Dimension health survey).

Twenty-four patients (65%) improved clinically (iNPH scale score) and 31 (86%) improved their HRQOL after surgery, almost to the same level as found in the normal population. The patients became more independent in physical and cognition, and participation and autonomy improved. The caregiver burden was decreased among caregivers to male patients but remained unchanged on the overall group level. After shunt surgery, patients with iNPH showed improvement in most aspects of social life, they became more independent, and their quality of life returned to nearly normal 18).

References

1)

Subramanian HE, Mahajan A, Sommaruga S, Falcone GJ, Kahle KT, Matouk CC. The subjective experience of patients undergoing shunt surgery for idiopathic normal pressure hydrocephalus. World Neurosurg. 2018 Jul 4. pii: S1878-8750(18)31425-6. doi: 10.1016/j.wneu.2018.06.209. [Epub ahead of print] PubMed PMID: 29981467.
2)

Hebb AO, Cusimano MD: Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery 49:1166–1186, 2001
3) , 15)

McGirt MJ, Woodworth G, Coon AL, Thomas G, Williams MA, Rigamonti D. Diagnosis, treatment, and analysis of long-term outcomes in idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005 Oct;57(4):699-705; discussion 699-705. PubMed PMID: 16239882.
4)

Meier U, Kiefer M, Neumann U, Lemcke J: On the optimal opening pressure of hydrostatic valves in cases of idiopathic normal-pressure hydrocephalus: a prospective randomized study with 123 patients. Acta Neurochir Suppl 96:358–363, 2006
5)

Wikkelsø C, Hellström P, Klinge PM, Tans JT: The European iNPH Multicentre Study on the predictive values of resistance to CSF outflow and the CSF Tap Test in patients with idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 84:562–568, 2013
6)

Klinge P, Marmarou A, Bergsneider M, Relkin N, Black PM. Outcome of shunting in idiopathic normal-pressure hydrocephalus and the value of outcome assessment in shunted patients. Neurosurgery. 2005 Sep;57(3 Suppl):S40-52; discussion ii-v. Review. PubMed PMID: 16160428.
7)

Toma AK, Papadopoulos MC, Stapleton S, Kitchen ND, Watkins LD. Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus. Acta Neurochir (Wien). 2013 Oct;155(10):1977-80. doi: 10.1007/s00701-013-1835-5. Epub 2013 Aug 23. Review. PubMed PMID: 23975646.
8)

Nakajima M, Miyajima M, Ogino I, Akiba C, Kawamura K, Kurosawa M, Kuriyama N, Watanabe Y, Fukushima W, Mori E, Kato T, Sugano H, Karagiozov K, Arai H. Shunt Intervention for Possible Idiopathic Normal Pressure Hydrocephalus Improves Patient Outcomes: A Nationwide Hospital-Based Survey in Japan. Front Neurol. 2018 Jun 7;9:421. doi: 10.3389/fneur.2018.00421. eCollection 2018. PubMed PMID: 29942280; PubMed Central PMCID: PMC6004916.
9)

Bugalho P, Alves L, Ribeiro O. Normal pressure hydrocephalus: a qualitative study on outcome. Arq Neuropsiquiatr. 2013 Nov;71(11):890-5. doi: 10.1590/0004-282×20130173. PubMed PMID: 24394877.
10)

Poca MA, Mataró M, Matarín M, Arikan F, Junqué C, Sahuquillo J. Good outcome in patients with normal-pressure hydrocephalus and factors indicating poor prognosis. J Neurosurg. 2005 Sep;103(3):455-63. PubMed PMID: 16235677.
11)

Pujari S, Kharkar S, Metellus P, Shuck J, Williams MA, Rigamonti D. Normal pressure hydrocephalus: long-term outcome after shunt surgery. J Neurol Neurosurg Psychiatry. 2008 Nov;79(11):1282-6. doi: 10.1136/jnnp.2007.123620. Epub 2008 Mar 20. PubMed PMID: 18356257.
12)

Savolainen S, Hurskainen H, Paljärvi L, Alafuzoff I, Vapalahti M: Five-year outcome of normal pressure hydrocephalus with or without a shunt: predictive value of the clinical signs, neuropsychological evaluation and infusion test. Acta Neurochir (Wien) 144:515–523, 2002
13) , 14)

Takeuchi T, Goto H, Izaki K, Tamura S, Sasanuma Z, Maeno K, Kikuchi Y, Tomii M, Koizumi Z, Watanabe Z, Numazawa S, Ito Y, Ohara H, Kowada M, Watanabe K. Postoperative patterns of improvement of symptoms and degrees of satisfaction in families of patients after operations for definite idiopathic normal pressure hydrocephalus: a long-term follow-up study]. No Shinkei Geka. 2007 Aug;35(8):773-9. Japanese. PubMed PMID: 17695775.
16)

Kazui H, Mori E, Hashimoto M, Ishikawa M, Hirono N, Takeda M. Effect of shunt operation on idiopathic normal pressure hydrocephalus patients in reducing caregiver burden: evidence from SINPHONI. Dement Geriatr Cogn Disord. 2011;31(5):363-70. doi: 10.1159/000328625. Epub 2011 May 27. PubMed PMID: 21625136.
17) , 18)

Petersen J, Hellström P, Wikkelsø C, Lundgren-Nilsson A. Improvement in social function and health-related quality of life after shunt surgery for idiopathic normal-pressure hydrocephalus. J Neurosurg. 2014 Oct;121(4):776-84. doi:10.3171/2014.6.JNS132003. Epub 2014 Jul 18. PubMed PMID: 25036194.

Update: Antiepileptic drug treatment outcome

Antiepileptic drug treatment outcome

Careful antiepileptic drug selection for epileptic patients must be highlighted in order to improve outcome, reduce adverse drug reactions (ADRs) and improve patient compliance 1).
The goal in treating patients with epilepsy is a cost-effective approach to the elimination of seizures or a reduction in their number and frequency while avoiding drug interactions and side effects, so as to achieve the best possible quality of life. Among the desirable outcomes are an enhanced understanding of epilepsy by patients, caregivers, and society, and a lessening of the psychosocial risks of this disease. Patients fail to achieve their goals and outcomes when they fail to adhere to the drug regimen or when a less-than-adequate drug regimen is prescribed. To help improve adherence, once- or twice-daily formulations should be used. Working together, patients and clinicians can maximize the effectiveness of AED therapy and the potential for achieving desired goals and outcomes 2).
Despite the availability of many new AEDs with differing mechanisms of action, overall outcomes in newly diagnosed epilepsy have not improved. Most patients who attain control do so with the first or second AED. The probability of achieving seizure freedom diminishes substantially with each subsequent AED regimen tried. More than one-third of patients experience epilepsy that remains uncontrolled.
This was the conclusion of a longitudinal observational cohort study that was conducted at the Epilepsy Unit of the Western Infirmary in GlasgowScotland. A total of 1795 individuals who were newly treated for epilepsy with AEDs between July 1, 1982, and October 31, 2012, were included in this analysis. All patients were followed up for a minimum of 2 years (until October 31, 2014) or until death, whichever came sooner. Data analysis was completed between March 2015 and May 2016.
Seizure control was assessed at the end of the study period. Probability of achieving 1-year seizure freedom was estimated for each AED regimen prescribed. Multivariable models assessed the associations between risk factors and AED treatment outcome after adjustments were made for demographic and clinical characteristics.
Of the 1795 included patients, 964 (53.7%) were male; the median age was 33 years (range, 9-93 years). At the end of the study period, 1144 patients (63.7%) had been seizure free for the previous year or longer. Among those achieving 1-year seizure freedom, 993 (86.8%) were taking monotherapy and 1028 (89.9%) had achieved seizure control with the first or second AED regimens. Of the total patient pool, 906 (50.5%) remained seizure free for 1 year or longer with the initial AED. If this AED failed, the second and third regimens provided an additional 11.6% and 4.4% likelihoods of seizure freedom, respectively. Only 2.12% of patients attained optimal seizure control with subsequent AEDs. Epilepsy that was not successfully controlled with the first AED had 1.73 times greater odds of not responding to treatment for each subsequent medication regimen (odds ratio, 1.73; 95% CI, 1.56-1.91; P < .001). 3).


Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life 4).
1)

Horváth L, Fekete K, Márton S, Fekete I. Outcome of antiepileptic drug treatment of 1282 patients with epilepsy, their pharmacovigilance reports and concomitant medication on CNS in an East-Hungarian adult database. J Neurol Sci. 2016 Oct 15;369:220-226. doi: 10.1016/j.jns.2016.08.039. Epub 2016 Aug 17. PubMed PMID: 27653893.
2)

Garnett WR. Antiepileptic drug treatment: outcomes and adherence. Pharmacotherapy. 2000 Aug;20(8 Pt 2):191S-199S. Review. PubMed PMID: 10937819.
3)

Chen Z, Brodie MJ, Liew D, Kwan P. Treatment Outcomes in Patients With Newly Diagnosed Epilepsy Treated With Established and New Antiepileptic Drugs: A 30-Year Longitudinal Cohort Study. JAMA Neurol. 2018 Mar 1;75(3):279-286. doi: 10.1001/jamaneurol.2017.3949. PubMed PMID: 29279892; PubMed Central PMCID: PMC5885858.
4)

Colic S, Wither RG, Lang M, Zhang L, Eubanks JH, Bardakjian BL. Prediction of antiepileptic drug treatment outcomes using machine learning. J Neural Eng. 2017 Feb;14(1):016002. doi: 10.1088/1741-2560/14/1/016002. Epub 2016 Nov 30. PubMed PMID: 27900948.

Book: Glioblastoma Multiforme: Symptoms, Diagnosis, Therapeutic Management and Outcome

Glioblastoma Multiforme: Symptoms, Diagnosis, Therapeutic Management and Outcome
By Isabelle Germano

 Glioblastoma Multiforme: Symptoms, Diagnosis, Therapeutic Management and Outcome
List Price: $190.00 

Product Details

  • Published on: 2015-09-10
  • Original language: English
  • Binding: Hardcover
  • 209 pages

The Role of Hemosiderin Excision in Seizure Outcome in Cerebral Cavernous Malformation Surgery: A Systematic Review and Meta-Analysis

The T2-weighted image show a cavernous malformation as heterogeneous and “popcorn-like” with a mixed signal intensity core and a hypointense hemosiderin rim.


T2WI and T2* gradient echo show multiple cavernomas. Notice the popcorn appearance with peripheral rim of hemosiderin on the T2WI. The lesions are almost completely black on the gradient echo due to blooming artefacts. T2* and susceptibility weighted imaging (SWI) markedly increase the sensitivity of MRI to detect small cavernomas. The five black dots in the left cerebral hemisphere on the T2* are also cavernomas and are not visible on the T2WI.

Importance

In ten studies comparing extended hemosiderin excision with only lesion resection were identified by searching the English-language literature. Meta-analyses, subgroup analyses and sensitivity analysis were conducted to determine the association between hemosiderin excision and seizure outcome after surgery.
Patients who underwent extended surrounding hemosiderin excision could exhibit significantly improved seizure outcomes compared to patients without hemosiderin excision. However, further well-designed prospective multiple-center RCT studies are still needed 1).
Previous works showed that extent of resection and its surrounding hemosiderin rim were found to consistently correlate with a more favorable post-operative seizure-free outcome 2) 3).
Patients with short duration of epilepsy associated with cavernous malformations could benefit greatly from complete resection of hemosiderin rim and cavernous malformations 4).
High field intraoperative MRI imaging (iopMRI) and neuronavigation might play a crucial role to achieve both goals 5).
26 patients (14 female, 12 male, mean age 39·1 years, range: 17-63 years) with CM related epilepsy were identified. Eighteen patients suffered from drug resistant epilepsy (69·2%). Mean duration of epilepsy was 11·9 years in subjects with drug resistant epilepsy (n = 18) and 0·3 years in subjects presenting with first-time seizures (n = 8).
24 lesionectomies and two lesionectomies combined with extended temporal resections were performed.
Seven lesions were located extratemporally.
Complete CM removal was documented by postsurgical MRI in all patients. As direct consequence of iopMRI, refined surgery was necessary in 11·5% of patients to achieve complete cavernoma removal and in another 11·5% for complete resection of additional adjacent epileptogenic cortex. Removal of the hemosiderin rim was confirmed by iopMRI in 92% of patients. Two patients suffered from mild (7·7%) and one from moderate (3·8%) visual field deficits. Complete seizure control (Engel class 1A) was achieved in 80·8% of patients with a mean follow-up period of 47·7 months 6).
1) Ruan D, Yu XB, Shrestha S, Wang L, Chen G. The Role of Hemosiderin Excision in Seizure Outcome in Cerebral Cavernous Malformation Surgery: A Systematic Review and Meta-Analysis. PLoS One. 2015 Aug 25;10(8):e0136619. doi: 10.1371/journal.pone.0136619. eCollection 2015. PubMed PMID: 26305879.
2) Stavrou I, Baumgartner C, Frischer JM, Trattnig S, Knosp E. Long-term seizure control after resection of supratentorial cavernomas: a retrospective single-center study in 53 patients. Neurosurgery. 2008 Nov;63(5):888-96; discussion 897. doi: 10.1227/01.NEU.0000327881.72964.6E. PubMed PMID: 19005379.
3) Kim W, Stramotas S, Choy W, Dye J, Nagasawa D, Yang I. Prognostic factors for post-operative seizure outcomes after cavernous malformation treatment. J Clin Neurosci. 2011 Jul;18(7):877-80. doi: 10.1016/j.jocn.2010.12.008. Epub 2011 May 10. Review. PubMed PMID: 21561775.
4) Jin Y, Zhao C, Zhang S, Zhang X, Qiu Y, Jiang J. Seizure outcome after surgical resection of supratentorial cavernous malformations plus hemosiderin rim in patients with short duration of epilepsy. Clin Neurol Neurosurg. 2014 Apr;119:59-63. doi: 10.1016/j.clineuro.2014.01.013. Epub 2014 Jan 25. PubMed PMID: 24635927.
5) Xie HW, Wang DM, Yuan QG, Sha C, Yang YM, Jiang HZ. [The utility of neuronavigation in the microsurgery for cerebral cavernous malformations]. Zhonghua Wai Ke Za Zhi. 2011 Aug 1;49(8):712-5. Chinese. PubMed PMID: 22168935.
6) Sommer B, Kasper BS, Coras R, Blumcke I, Hamer HM, Buchfelder M, Roessler K. Surgical management of epilepsy due to cerebral cavernomas using neuronavigation and intraoperative MR imaging. Neurol Res. 2013 Oct 23:0. [Epub ahead of print] PubMed PMID: 24070413.

New Book: Craniopharyngiomas: Comprehensive Diagnosis, Treatment and Outcome

Craniopharyngiomas: Comprehensive Diagnosis, Treatment and Outcome

Craniopharyngiomas: Comprehensive Diagnosis, Treatment and Outcome
List Price: $200.00
ADD TO SHOPPING CART
Authors:
James J. Evans
Tyler J.Kenning
It is a comprehensive guide to the science, diagnosis and treatment of craniopharyngiomas, that grow near the pituitary gland. Even though these tumors are generally benign, due to the location, prognosis was often bleak. This reference provides a resource for specialists requiring a comprehensive overview of this tumor, outlining new diagnostic, imaging and surgical techniques, including endoscopic endonasal cranial base surgery.
With a better prognosis, patients require multidisciplinary management from neurology, otolaryngology, radiation oncology, endocrinology, and neuropathology.

  • The only comprehensive guide to the science, diagnosis and treatment of craniopharyngiomas
  • Includes multidisciplinary management from neurology, otolaryngology, radiation oncology, endocrinology, and neuropathology
  • Detailed coverage of the impacts of new diagnostic, imaging and neurosurgical techniques including endoscopic endonasal cranial base surgery

Product Details

  • Published on: 2015-01-22
  • Original language: English
  • Number of items: 1
  • Dimensions: 9.25″ h x .0″ w x 7.52″ l, .0 pounds
  • Binding: Hardcover
  • 612 pages

About the Author

Assistant Professor of Neurosurgery, Albany Medical Center. Dr. Kenning is fellowship trained in surgery of pathology of the cranial base and specifically endoscopic endonasal surgery, Dr. Kenning heads the cranial base surgery program at a major academic center in Albany, NY. He has authored many peer-reviewed papers in neurosurgical and neuro-oncological journals as well as contributed several book chapters.
Professor, Department of Neurological Surgery and Otolaryngology, Director, Cranial Base and Pituitary Surgery, Co-Director, Jefferson Center for Minimally Invasive Cranial Base Surgery, Thomas Jefferson University Hospital. Dr. Evans is a fellowship-trained cranial base surgeon, board-certified, and has been in practice for over ten years. He has held numerous prominent positions in national societies, is well-known in the field of cranial base surgery, and is an innovator in the field of endoscopic endonasal surgery. He is well-published and co-authored Clinical Manual of Trigeminal Neuralgia (CRC Press, 2007).

UpToDate:Outcome in idiopathic normal pressure hydrocephalus

To date, there is no standard outcome assessment scale for shunt treatment.
In designing such scale, the relative weight of each of the common presentations of the condition from the patient’s or his/her carer’s point of view should be taken into consideration.
Clinical improvement of patients with iNPH can be sustained for 5-7 years in some patients, even if shunt revision surgery is needed multiple times. With earlier diagnosis and treatment and the increasing lifespan of the ageing population, the need for long-term follow-up after shunt surgery may be greater than it was in the past. Monitoring, identification and treatment of shunt obstruction is a key management principle 1).

Gait and Incontinence

Postoperative improvement of Gait and Urinary incontinence is obtained at an early stage 2) 3). In contrast, Dementia tends to improve gradually from after the third postoperative month. The family satisfaction increases as the symptom of Dementia improve. The satisfaction of the medical personnel tends to remain high after the first postoperative month 4).

Independent predictors

Independent predictors of improvement are the presence of gait impairment as the dominant symptom and shorter duration of symptoms 5).

Caregiver Burden

Shunt operations reduced the caregiver burden of iNPH patients 6)7).
Thirty-seven patients (median age 70 years, range 50-89 years) with Idiopathic normal pressure hydrocephalus were evaluated before and 6 months after surgery. Symptoms and signs were assessed by the iNPH scale, activities of daily living (ADL) with the Functional Independence Measure (FIM) and Assessment of Motor and Process Skills (AMPS), autonomy and participation with Impact on Participation and Autonomy (IPA), and caregiver burden with the Caregiver Burden Scale (CBS). HRQOL was evaluated with the EQ-5D (EuroQol Group-5 Dimension health survey).
Twenty-four patients (65%) improved clinically (iNPH scale score) and 31 (86%) improved their HRQOL after surgery, almost to the same level as found in the normal population. The patients became more independent in physical and cognition, and participation and autonomy improved. The caregiver burden was decreased among caregivers to male patients but remained unchanged on the overall group level. After shunt surgery, patients with iNPH showed improvement in most aspects of social life, they became more independent, and their quality of life returned to nearly normal 8).
1) Pujari S, Kharkar S, Metellus P, Shuck J, Williams MA, Rigamonti D. Normal pressure hydrocephalus: long-term outcome after shunt surgery. J Neurol Neurosurg Psychiatry. 2008 Nov;79(11):1282-6. doi: 10.1136/jnnp.2007.123620. Epub 2008 Mar 20. PubMed PMID: 18356257.
2) Savolainen S, Hurskainen H, Paljärvi L, Alafuzoff I, Vapalahti M: Five-year outcome of normal pressure hydrocephalus with or without a shunt: predictive value of the clinical signs, neuropsychological evaluation and infusion test. Acta Neurochir (Wien) 144:515–523, 2002
3) , 4) Takeuchi T, Goto H, Izaki K, Tamura S, Sasanuma Z, Maeno K, Kikuchi Y, Tomii M, Koizumi Z, Watanabe Z, Numazawa S, Ito Y, Ohara H, Kowada M, Watanabe K. Postoperative patterns of improvement of symptoms and degrees of satisfaction in families of patients after operations for definite idiopathic normal pressure hydrocephalus: a long-term follow-up study]. No Shinkei Geka. 2007 Aug;35(8):773-9. Japanese. PubMed PMID: 17695775.
5) McGirt MJ, Woodworth G, Coon AL, Thomas G, Williams MA, Rigamonti D. Diagnosis, treatment, and analysis of long-term outcomes in idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005 Oct;57(4):699-705; discussion 699-705. PubMed PMID: 16239882.
6) Kazui H, Mori E, Hashimoto M, Ishikawa M, Hirono N, Takeda M. Effect of shunt operation on idiopathic normal pressure hydrocephalus patients in reducing caregiver burden: evidence from SINPHONI. Dement Geriatr Cogn Disord. 2011;31(5):363-70. doi: 10.1159/000328625. Epub 2011 May 27. PubMed PMID: 21625136.
7) , 8) Petersen J, Hellström P, Wikkelsø C, Lundgren-Nilsson A. Improvement in social function and health-related quality of life after shunt surgery for idiopathic normal-pressure hydrocephalus. J Neurosurg. 2014 Oct;121(4):776-84. doi:10.3171/2014.6.JNS132003. Epub 2014 Jul 18. PubMed PMID: 25036194.

Outcome after surgical or conservative management of cerebral cavernous malformations

There have been few comparative studies of microsurgical excision vs conservative management of cerebral cavernous malformations (CCM) and none of them has reliably demonstrated a statistically and clinically significant difference.

A prospective, population-based study to identify and independently validate definite CCM diagnoses first made in 1999-2003 in Scottish adult residents, used multiple sources of prospective follow-up to assess adults’ dependence and to identify and independently validate outcome events.
Moultrie et al., used univariate and multivariable survival analyses to test the influence of CCM excision on outcome, adjusted for prognostic factors and baseline imbalances.
Of 134 adults, 25 underwent CCM excision; these adults were younger (34 vs 43 years at diagnosis, p = 0.004) and more likely to present with symptomatic intracranial hemorrhage or focal neurological deficit than adults managed conservatively (48% vs 26%; odds ratio 2.7, 95% confidence interval [CI] 1.1-6.5). During 5 years of follow-up, CCM excision was associated with a deterioration to an Oxford Handicap Scale score 2-6 sustained over at least 2 successive years (adjusted hazard ratio [HR] 2.2, 95% CI 1.1-4.3) and the occurrence of symptomatic intracranial hemorrhage or new focal neurologic deficit (adjusted HR 3.6, 95% CI 1.3-10.0).
CCM excision was associated with worse outcomes over 5 years compared to conservative management. Long-term follow-up will determine whether this difference is sustained over patients’ lifetimes. Meanwhile, a randomized controlled trial appears justified.
CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that CCM excision worsens short-term disability scores and increases the risk of symptomatic intracranial hemorrhage and new focal neurologic deficits 1).
1) Moultrie F, Horne MA, Josephson CB, Hall JM, Counsell CE, Bhattacharya JJ, Papanastassiou V, Sellar RJ, Warlow CP, Murray GD, Al-Shahi Salman R; Scottish Audit of Intracranial Vascular Malformations (SAIVMs) steering committee and collaborators. Outcome after surgical or conservative management of cerebral cavernous malformations. Neurology. 2014 Aug 12;83(7):582-9. doi: 10.1212/WNL.0000000000000684. Epub 2014 Jul 3. PubMed PMID: 24994841.
WhatsApp WhatsApp us
%d bloggers like this: