Acute ischemic stroke in COVID-19 pandemic

Acute ischemic stroke in COVID-19 pandemic

Patients infected with SARS-CoV-2 develop arterial thrombosis including strokemyocardial infarction and peripheral arterial thrombosis, all of which result in poor outcomes despite maximal medical, endovascular, and microsurgical treatment compared with non-COVID-19-infected patients 1).


Evidence now suggests that 1-6% of hospitalized COVID-19 patients develop stroke. According to some reports, stroke risk is more than sevenfold greater in patients with COVID-19 than influenza. Concerningly, outcomes of COVID-19-related stroke are often worse than in stroke patients without COVID-19 from the same cohorts. In a review, Stein et al. highlight the emerging association between COVID-19 and stroke and discuss putative pathogenetic mechanisms. The etiology of stroke in COVID-19 patients is likely multifactorial, related to coagulopathyinflammationplatelet activation, and alterations to the vascular endothelium. Significant work remains to be done to better understand the pathogenesis of COVID-19-related stroke and for designing optimal primary and secondary prevention strategies 2).


The risk of discharge to destination other than home or death increased 2-fold with occurrence of acute ischemic stroke in patients with COVID-19 3).


Large Vessel Occlusion was predominant in patients with acute ischemic stroke and COVID-19 across 2 continents, occurring at a significantly younger age and affecting African Americans disproportionately in the USA 4).

The goal of a study of Shahjouei et al. was to better depict the short-term risk of stroke and its associated factors among SARS-CoV-2 hospitalized patients.

This multicentre, multinational observational study includes hospitalized SARS-CoV-2 patients from North and South America (United States, Canada, and Brazil), Europe (Greece, Italy, Finland, and Turkey), Asia (Lebanon, Iran, and India), and Oceania (New Zealand). The outcome was the risk of subsequent stroke. Centres were included by non-probability sampling. The counts and clinical characteristics including laboratory findings and imaging of the patients with and without a subsequent stroke were recorded according to a predefined protocol. Quality, risk of bias, and heterogeneity assessments were conducted according to ROBINS-E and Cochrane Q-test. The risk of subsequent stroke was estimated through meta-analyses with random effect models. Bivariate logistic regression was used to determine the parameters with predictive outcome value. The study was reported according to the STROBE, MOOSE, and EQUATOR guidelines.

Shahjouei et al. received data from 26,175 hospitalized SARS-CoV-2 patients from 99 tertiary centres in 65 regions of 11 countries until May 1st, 2020. A total of 17,799 patients were included in meta-analyses. Among them, 156(0.9%) patients had a stroke-123(79%) ischaemic stroke, 27(17%) intracerebral/subarachnoid hemorrhage, and 6(4%) cerebral sinus thrombosis. Subsequent stroke risks calculated with meta-analyses, under low to moderate heterogeneity, were 0.5% among all centres in all countries, and 0.7% among countries with higher health expenditures. The need for mechanical ventilation (OR: 1.9, 95% CI:1.1-3.5, p = 0.03) and the presence of ischaemic heart disease (OR: 2.5, 95% CI:1.4-4.7, p = 0.006) were predictive of stroke.

Interpretation: The results of this multi-national study on hospitalized patients with SARS-CoV-2 infection indicated an overall stroke risk of 0.5%(pooled risk: 0.9%). The need for mechanical ventilation and the history of ischaemic heart disease are the independent predictors of stroke among SARS-CoV-2 patients 5).

Based on a literature review, a series of consensus recommendations were established by the Madrid Stroke multidisciplinary group and its neurology committee.

These recommendations address 5 main objectives: 1) coordination of action protocols to ensure access to hospital care for stroke patients; 2) recognition of potentially COVID-19-positive stroke patients; 3) organisation of patient management to prevent SARS-CoV-2 infection among healthcare professionals; 4) avoidance of unnecessary neuroimaging studies and other procedures that may increase the risk of infection; and 5) safe, early discharge and follow-up to ensure bed availability. This management protocol has been called CORONA (Coordinate, Recognise, Organise, Neuroimaging, At home).

The recommendations presented may assist in the organisation of acute stroke care and the optimisation of healthcare resources, while ensuring the safety of healthcare professionals 6).

A series of 10 ischemic stroke patients with concomitant COVID-19 disease. Out of 10, 8 had large infarcts (3 massive middle cerebral artery, 2 basilar artery, 2 posterior cerebral artery, and 1 internal carotid artery infarct territory). Two had cardiogenic embolic stroke due to atrial fibrillation. Almost half of our patients did not have a vascular risk factor. Nine did not have fever and were diagnosed with COVID-19 upon admission for stroke. Stroke occurred in the first week of respiratory symptoms with moderate pulmonary involvement. Most Patients did not have hypoxia and did not establish respiratory failure or acute respiratory distress syndrome. The blood pressures were low and hemorrhagic transformation did not occur even after antiplatelet or anticoagulant therapy. Patients had markedly increased levels of lactate dehydrogenase, C-reactive protein, and D-dimer. Three patients died. It seems that ischemic strokes in COVID-19 patients tend to occur as large infarct and can be seen in patients with mild to moderate pulmonary involvement 7).


1)

Zakeri A, Jadhav AP, Sullenger BA, Nimjee SM. Ischemic stroke in COVID-19-positive patients: an overview of SARS-CoV-2 and thrombotic mechanisms for the neurointerventionalist. J Neurointerv Surg. 2021 Mar;13(3):202-206. doi: 10.1136/neurintsurg-2020-016794. Epub 2020 Dec 9. PMID: 33298508.
2)

Stein LK, Mayman NA, Dhamoon MS, Fifi JT. The emerging association between COVID-19 and acute stroke. Trends Neurosci. 2021 Apr 8:S0166-2236(21)00071-0. doi: 10.1016/j.tins.2021.03.005. Epub ahead of print. PMID: 33879319.
3)

Qureshi AI, Baskett WI, Huang W, Shyu D, Myers D, Raju M, Lobanova I, Suri MFK, Naqvi SH, French BR, Siddiq F, Gomez CR, Shyu CR. Acute Ischemic Stroke and COVID-19: An Analysis of 27 676 Patients. Stroke. 2021 Mar;52(3):905-912. doi: 10.1161/STROKEAHA.120.031786. Epub 2021 Feb 4. PMID: 33535779; PMCID: PMC7903982.
4)

Khandelwal P, Al-Mufti F, Tiwari A, Singla A, Dmytriw AA, Piano M, Quilici L, Pero G, Renieri L, Limbucci N, Martínez-Galdámez M, Schüller-Arteaga M, Galván J, Arenillas-Lara JF, Hashim Z, Nayak S, Desousa K, Sun H, Agarwalla PK, Nanda A, Roychowdhury JS, Nourollahzadeh E, Prakash T, Gandhi CD, Xavier AR, Lozano JD, Gupta G, Yavagal DR. Incidence, Characteristics and Outcomes of Large Vessel Stroke in COVID-19 Cohort: An International Multicenter Study. Neurosurgery. 2021 Mar 18:nyab111. doi: 10.1093/neuros/nyab111. Epub ahead of print. PMID: 33734404.
5)

Shahjouei S, Naderi S, Li J, et al. Risk of stroke in hospitalized SARS-CoV-2 infected patients: A multinational study [published online ahead of print, 2020 Aug 17]. EBioMedicine. 2020;59:102939. doi:10.1016/j.ebiom.2020.102939
6)

Rodríguez-Pardo J, Fuentes B, Alonso de Leciñana M, Campollo J, Calleja Castaño P, Carneado Ruiz J, Egido Herrero J, García Leal R, Gil Núñez A, Gómez Cerezo JF, Martín Martínez A, Masjuán Vallejo J, Palomino Aguado B, Riera López N, Simón de Las Heras R, Vivancos Mora J, Díez Tejedor E; en nombre del Grupo Multidisciplinar del Plan Ictus Madrid. Acute stroke care during the COVID-19 pandemic. Ictus Madrid Program recommendations. Neurologia. 2020 May;35(4):258-263. English, Spanish. doi: 10.1016/j.nrl.2020.04.008. Epub 2020 Apr 24. PMID: 32364127; PMCID: PMC7180371.
7)

Ahmadi Karvigh S, Vahabizad F, Banihashemi G, Sahraian MA, Gheini MR, Eslami M, Marhamati H, Mirhadi MS. Ischemic Stroke in Patients with COVID-19 Disease: A Report of 10 Cases from Iran. Cerebrovasc Dis. 2020 Dec 15:1-6. doi: 10.1159/000513279. Epub ahead of print. PMID: 33321492; PMCID: PMC7801957.

COVID-19 Pandemic

COVID-19 Pandemic

On 30 December 2019, a report of a cluster of pneumonia of unknown etiology was published on ProMED-mail, possibly related to contact with a seafood market in WuhanChina 1).

Hospitals in the region held an emergency symposium, and support from federal agencies is reportedly helping to determine the source of infection and causative organism. The seafood market has since been closed, but purportedly sold a variety of live animal species. On 5 January 2019, the World Health Organization (WHO) published a document outlining their request for more information from Chinese public health authorities and detailed 44 patients had ‘pneumonia of unknown etiology’, with 121 close contacts under surveillance (www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/). The WHO reported that 11 patients were severely ill, and many affected individuals had contact with the Huanan Seafood market. Some patients were reported to have feverdyspnea and pulmonary infiltrates on chest radiography 2).

It was declared a public health emergency of international concern on Jan 30, 2020, by WHO 3).

By early January, terms like “the new coronavirus” and “Wuhan coronavirus” were in common use. On February 11, 2020, a taxonomic designation “severe acute respiratory syndrome coronavirus 2” (SARS-CoV-2) became the official means to refer to the virus strain, that was previously termed as 2019-nCoV and Wuhan coronavirus. Within a few hours on the same day, the WHO officially renamed the disease as COVID-19.

The infection spread quickly and was declared a pandemic by the World Health Organization (WHO) on March 11, 2019 4).

By March 30, more than 782 365 confirmed cases were reported and a third of the world population were living in confinement to try to contain the virus 5).

Epidemiology

COVID-19 Epidemiology

Etiology

COVID-19 has high homology to other pathogenic coronaviruses, such as those originating from bat-related zoonosis (SARS-CoV), which caused approximately 646 deaths in China at the start of the decade.

The COVID-19 generally had a high reproductive number, a long incubation period, a short serial interval and a low case fatality rate (much higher in patients with comorbidities) than SARS and MERS. Clinical presentation and pathology of COVID-19 greatly resembled SARS and MERS, with less upper respiratory and gastrointestinal symptoms, and more exudative lesions in post-mortems. Potential treatments included remdesivir, chloroquine, tocilizumab, convalescent plasma and vaccine immunization (when possible) 6).

Transmission

COVID-19 Transmission.

COVID-19 virus genome

The complete genome of SARS-CoV-2 from Wuhan, China was submitted on January 17, 2020 in the National Center for Biotechnology 7) (NCBI) database, with ID NC_045512. The genome of SARS-CoV-2 is a 29,903 bp single-stranded RNA (ss-RNA) coronavirus. It has now been shown that the virus causing COVID-19 is a SARS-like coronavirus that had previously been reported in bats in China.

COVID-19 and central nervous system

COVID-19 and central nervous system.

Essential care of critical illness

Essential care of critical illness must not be forgotten in the COVID-19 pandemic 8).

COVID-19 for neurologists

COVID-19 for neurologists.

COVID-19 for Neurosurgeons

see COVID-19 for neurosurgeons.

COVID-19 in Spinal Disorders

Effects of the COVID-19 Pandemic on the Management of Spinal Disorders.

COVID-19 for Vascular surgeons

see COVID-19 for Vascular surgeons.

COVID-19 for Dermatologists

COVID-19 for Dermatologists.

COVID-19 for Gastroenterologists

COVID-19 for Gastroenterologists

COVID-19 for Pediatricians

COVID-19 for Pediatricians

COVID-19 for Psychiatrists

COVID-19 for Psychiatrists.

COVID-19 for Oncologists

COVID-19 for Oncologists.

COVID-19 for Otolaryngologists

COVID-19 for Otolaryngologists.

COVID-19 for Cardiologists

COVID-19 for Cardiologists.

COVID-19 for Gynecologists

COVID-19 for Gynecologists.

Diagnosis

COVID-19 Diagnosis.

Treatment

COVID-19 Treatment.

Palliative Care

COVID-19 Palliative Care.

Prevention

COVID-19 Prevention.

Operating room preparation for COVID-19

see Operating room preparation for COVID-19.

Telemedicine in the COVID-19 era

see Telemedicine in the COVID-19 era.

Outcome

COVID-19 Outcome.

Case reports

2019 novel coronavirus infection in a three-month-old baby 9).


3 cases of SARS-CoV-2 infected children diagnosed from February 3 to February 17, 2020 in Tianjin, China. All of these three cases experienced mild illness and recovered soon after treatment, with the nucleic acid of throat swab turning negative within 14, 11, 7 days after diagnosis respectively. However, after been discharged, all the three cases were tested SARS-CoV-2 positive in the stool samples within 10 days, in spite of their remained negative nucleic acid in throat swab specimens. Therefore, it is necessary to be aware of the possibility of fecal-oral transmission of SARS-CoV-2 infection, especially for children cases 10).


Lv et al. reported the dynamic change process of target genes by RT-PCR testing of SARS-Cov-2 during the course of a COVID-19 patient: from successive negative results to successive single positive nucleocapsid gene, to two positive target genes (orf1ab and nucleocapsid) by RT-PCR testing of SARS-Cov-2, and describe the diagnosis, clinical course, and management of the case. In this case, negative results of RT-PCR testing was not excluded to diagnose a suspected COVID-19 patient, clinical signs and symptoms, other laboratory findings, and chest CT images should be taken into account for the absence of enough positive evidence. This case highlights the importance of successive sampling and testing SARS-Cov-2 by RT-PCR as well as the increased value of single positive target gene from pending to positive in two specimens to diagnose laboratory-confirmed COVID-19 11).

Literature

see COVID-19 Literature

References

1)

Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733.
2)

Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MUG, Khan K. Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel. J Travel Med. 2020 Mar 13;27(2). pii: taaa008. doi: 10.1093/jtm/taaa008. PubMed PMID: 31943059; PubMed Central PMCID: PMC7107534.
3)

WHO. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). Jan 30, 2020. https://www.who.int/newsroom/detail/30-01-2020-statement-on-thesecond-meeting-of-the-international-healthregulations-(2005)-emergency-committeeregarding-the-outbreak-of-novel-coronavirus- (2019-ncov) (accessed Feb 1, 2020).
4)

World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. World Health Organization. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarksat-the-media-briefing– on-covid-19–11-march-2020. Accessed March 30, 2020
5)

Center for Systems Science and Engineering, Johns Hopkins Coronavirus Resource Center. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, March 2020. https://coronavirus.jhu.edu/map.html. Accessed March 30, 2020
6)

Xie M, Chen Q. Insight into 2019 novel coronavirus – an updated intrim review and lessons from SARS-CoV and MERS-CoV. Int J Infect Dis. 2020 Apr 1. pii: S1201-9712(20)30204-6. doi: 10.1016/j.ijid.2020.03.071. [Epub ahead of print] Review. PubMed PMID: 32247050.
7)

Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1, complete genome. Nucleotide, National Center for Biotechnology Information (NCBI), National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD, https://www. ncbi.nlm.nih.gov/nuccore/1798174254 (accessed on 2020-02-28).
8)

Baker T, Schell CO, Petersen DB, Sawe H, Khalid K, Mndolo S, Rylance J, McAuley DF, Roy N, Marshall J, Wallis L, Molyneux E. Essential care of critical illness must not be forgotten in the COVID-19 pandemic. Lancet. 2020 Apr 1. pii: S0140-6736(20)30793-5. doi: 10.1016/S0140-6736(20)30793-5. [Epub ahead of print] PubMed PMID: 32246914.
9)

Zhang YH, Lin DJ, Xiao MF, Wang JC, Wei Y, Lei ZX, Zeng ZQ, Li L, Li HA, Xiang W. [2019 novel coronavirus infection in a three-month-old baby]. Zhonghua Er Ke Za Zhi. 2020 Mar 2;58(3):182-184. doi: 10.3760/cma.j.issn.0578-1310.2020.03.004. Chinese. PubMed PMID: 32135587.
10)

Zhang T, Cui X, Zhao X, Wang J, Zheng J, Zheng G, Guo W, Cai C, He S, Xu Y. Detectable SARS-CoV-2 Viral RNA in Feces of Three Children during Recovery Period of COVID-19 Pneumonia. J Med Virol. 2020 Mar 29. doi: 10.1002/jmv.25795. [Epub ahead of print] PubMed PMID: 32222992.
11)

Lv DF, Ying QM, Weng YS, Shen CB, Chu JG, Kong JP, Sun DH, Gao X, Weng XB, Chen XQ. Dynamic change process of target genes by RT-PCR testing of SARS-Cov-2 during the course of a Coronavirus Disease 2019 patient. Clin Chim Acta. 2020 Mar 27. pii: S0009-8981(20)30134-0. doi: 10.1016/j.cca.2020.03.032. [Epub ahead of print] PubMed PMID: 32229107.
WhatsApp WhatsApp us
%d bloggers like this: