Severe traumatic brain injury treatment

Severe traumatic brain injury treatment

There are currently no established treatments for the underlying pathophysiology in TBI and while neuro-rehabilitation efforts are promising, there are currently is a lack of consensus regarding rehabilitation following TBI of any severity 1).

see Severe traumatic brain injury guidelines.

see also Pediatric traumatic brain injury guidelines.

Severe traumatic brain injury (TBI) is currently managed in the intensive care unit with a combined medical-surgical approach. Treatment aims to prevent additional brain damage and to optimise conditions for brain recovery. TBI is typically considered and treated as one pathological entity, although in fact it is a syndrome comprising a range of lesions that can require different therapies and physiological goals. Owing to advances in monitoring and imaging, there is now the potential to identify specific mechanisms of brain damage and to better target treatment to individuals or subsets of patients. Targeted treatment is especially relevant for elderly people-who now represent an increasing proportion of patients with TBI-as preinjury comorbidities and their therapies demand tailored management strategies. Progress in monitoring and in understanding pathophysiological mechanisms of TBI could change current management in the intensive care unit, enabling targeted interventions that could ultimately improve outcomes 2).

Monitoring

see Intracranial pressure monitoring for severe traumatic brain injury.

Hormonal replacement

Hormonal analysis should be considered in patients with moderate-to-severe traumatic brain injury, so that appropriate hormonal replacement can be done to optimize the clinical outcome 3).

Case series

Data from 729 severe traumatic brain injury patients admitted between 1996 and 2016 were used. Treatment was guided by controlling intracranial pressure and cerebral perfusion pressure according to a local protocol.

Cerebral perfusion pressurepressure reactivity index curves were fitted automatically using a previously published curve-fitting heuristic from the relationship between pressure reactivity index and cerebral perfusion pressure. The cerebral perfusion pressure values at which this “U-shaped curve” crossed the fixed threshold from intact to impaired pressure reactivity (pressure reactivity index = 0.3) were denoted automatically the “lower” and “upper” cerebral perfusion pressure limits of reactivity, respectively. The percentage of time with cerebral perfusion pressure below (%cerebral perfusion pressure < lower limit of reactivity), above (%cerebral perfusion pressure > upper limit of reactivity), or within these reactivity limits (%cerebral perfusion pressure within limits of reactivity) was calculated for each patient and compared across dichotomized Glasgow Outcome Scores. After adjusting for age, initial Glasgow Coma Scale, and mean intracranial pressure, percentage of time with cerebral perfusion pressure less than lower limit of reactivity was associated with unfavorable outcome (odds ratio %cerebral perfusion pressure < lower limit of reactivity, 1.04; 95% CI, 1.02-1.06; p < 0.001) and mortality (odds ratio, 1.06; 95% CI, 1.04-1.08; p < 0.001).

Individualized autoregulation-guided cerebral perfusion pressure management may be a plausible alternative to fixed cerebral perfusion pressure threshold management in severe traumatic brain injury patients. Prospective randomized research will help define which autoregulation-guided method is beneficial, safe, and most practical 4).

Medicaments

Despite the incidence of these injuries and their substantial socioeconomic implications, no specific pharmacological intervention is available for clinical use.

see Progesterone for acute traumatic brain injury.

see 21-aminosteroids for severe traumatic brain injury.

Neuroprotection

see Neuroprotection in traumatic Brain Injury

see Decompressive craniectomy for severe traumatic brain injury.

Cell-based therapies

Cell-based therapies are currently being investigated in treating neurotrauma due to their ability to secrete neurotrophic factors and anti-inflammatory cytokines that can regulate the hostile milieu associated with chronic neuroinflammation found in TBI. In tandem, the stimulation and mobilization of endogenous stem/progenitor cells from the bone marrow through granulocyte colony stimulating factor (G-CSF) poses as an attractive therapeutic intervention for chronic TBI.

The potential of a combined therapy of human umbilical cord blood cells (hUCB) and G-CSF at the acute stage of TBI to counteract the progressive secondary effects of chronic TBI using the controlled cortical impact model.

Four different groups of adult Sprague Dawley rats were treated with saline alone, G-CSF+saline, hUCB+saline or hUCB+G-CSF, 7-days post CCI moderate TBI. Eight weeks after TBI, brains were harvested to analyze hippocampal cell loss, neuroinflammatory response, and neurogenesis by using immunohistochemical techniques. Results revealed that the rats exposed to TBI treated with saline exhibited widespread neuroinflammation, impaired endogenous neurogenesis in DG and SVZ, and severe hippocampal cell loss. hUCB monotherapy suppressed neuroinflammation, nearly normalized the neurogenesis, and reduced hippocampal cell loss compared to saline alone. G-CSF monotherapy produced partial and short-lived benefits characterized by low levels of neuroinflammation in striatum, DG, SVZ, and corpus callosum and fornix, a modest neurogenesis, and a moderate reduction of hippocampal cells loss. On the other hand, combined therapy of hUCB+G-CSF displayed synergistic effects that robustly dampened neuroinflammation, while enhancing endogenous neurogenesis and reducing hippocampal cell loss. Vigorous and long-lasting recovery of motor function accompanied the combined therapy, which was either moderately or short-lived in the monotherapy conditions. These results suggest that combined treatment rather than monotherapy appears optimal for abrogating histophalogical and motor impairments in chronic TBI 5).

Research

Research in traumatic brain injury (TBI) is challenging for several reasons; in particular, the heterogeneity between patients regarding causes, pathophysiology, treatment, and outcome. Advances in basic science have failed to translate into successful clinical treatments, and the evidence underpinning guideline recommendations is weak. Because clinical research has been hampered by non-standardised data collection, restricted multidisciplinary collaboration, and the lack of sensitivity of classification and efficacy analyses, multidisciplinary collaborations are now being fostered. Approaches to deal with heterogeneity have been developed by the IMPACT study group. These approaches can increase statistical power in clinical trials by up to 50% and are also relevant to other heterogeneous neurological diseases, such as stroke and subarachnoid haemorrhage. Rather than trying to limit heterogeneity, we might also be able to exploit it by analysing differences in treatment and outcome between countries and centres in comparative effectiveness research. This approach has great potential to advance care in patients with TBI 6).

Anticoagulation Resumption after traumatic brain injury

Anticoagulation Resumption after traumatic brain injury.

Thromboprophylaxis

The early administration of venous thromboembolism (VTE) chemoprophylaxis within 24 h after admission in patients with severe TBI did not increase the risk of intracranial bleeding progression 7).

Transcutaneous Vagus Nerve Stimulation for Severe Traumatic Brain Injury

see Transcutaneous Vagus Nerve Stimulation for Severe Traumatic Brain Injury.

References

1)

Marklund N, Bellander BM, Godbolt A, Levin H, McCrory P, Thelin EP. Treatments and rehabilitation in the acute and chronic state of traumatic brain injury. J Intern Med. 2019 Mar 18. doi: 10.1111/joim.12900. [Epub ahead of print] PubMed PMID: 30883980.
2)

Stocchetti N, Carbonara M, Citerio G, Ercole A, Skrifvars MB, Smielewski P, Zoerle T, Menon DK. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017 Jun;16(6):452-464. doi: 10.1016/S1474-4422(17)30118-7. Review. PubMed PMID: 28504109.
3)

Prasanna KL, Mittal RS, Gandhi A. Neuroendocrine dysfunction in acute phase of moderate-to-severe traumatic brain injury: A prospective study. Brain Inj. 2015;29(3):336-342. PubMed PMID: 25671810.
4)

Donnelly J, Czosnyka M, Adams H, Robba C, Steiner LA, Cardim D, Cabella B, Liu X, Ercole A, Hutchinson PJ, Menon DK, Aries MJH, Smielewski P. Individualizing Thresholds of Cerebral Perfusion Pressure Using Estimated Limits of Autoregulation. Crit Care Med. 2017 Sep;45(9):1464-1471. doi: 10.1097/CCM.0000000000002575. PubMed PMID: 28816837.
5)

Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, Song S, Kaneko Y, Borlongan CV. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One. 2014 Mar 12;9(3):e90953. doi: 10.1371/journal.pone.0090953. eCollection 2014. PubMed PMID: 24621603.
6)

Maas AI, Murray GD, Roozenbeek B, Lingsma HF, Butcher I, McHugh GS, Weir J, Lu J, Steyerberg EW; International Mission on Prognosis Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) Study Group. Advancing care for traumatic brain injury: findings from the IMPACT studies and perspectives on future research. Lancet Neurol. 2013 Dec;12(12):1200-10. doi: 10.1016/S1474-4422(13)70234-5. Epub 2013 Oct 17. PubMed PMID: 24139680; PubMed Central PMCID: PMC3895622.
7)

Störmann P, Osinloye W, Freiman TM, Seifert V, Marzi I, Lustenberger T. Early Chemical Thromboprophylaxis Does not Increase the Risk of Intracranial Hematoma Progression in Patients with Isolated Severe Traumatic Brain Injury. World J Surg. 2019 Jul 2. doi: 10.1007/s00268-019-05072-1. [Epub ahead of print] PubMed PMID: 31267142.

Severe traumatic brain injury outcome

Severe traumatic brain injury outcome

There has been a secular trend towards reduced incidence of severe traumatic brain injury in the first world, driven by public health interventions such as seatbelt legislation, helmet use, and workplace health and safety regulations. This has paralleled improved outcomes following TBI delivered in a large part by the widespread establishment of specialised neurointensive care 1).

Effect of trauma center designation in severe traumatic brain injury outcome

see Effect of trauma center designation in severe traumatic brain injury outcome


Mortality or severe disability affects the majority of patients after severe traumatic brain injury (TBI). Adherence to the brain trauma foundation severe traumatic brain injury guidelines has overall improved outcomes; however, traditional as well as novel interventions towards intracranial hypertension and secondary brain injury have come under scrutiny after series of negative randomized controlled trials. In fact, it would not be unfair to say there has been no single major breakthrough in the management of severe TBI in the last two decades. One plausible hypothesis for the aforementioned failures is that by the time treatment is initiated for neuroprotection, or physiologic optimization, irreversible brain injury has already set in. Lazaridis et al., and others, have developed predictive models based on machine learning from continuous time series of intracranial pressure and partial pressure of brain tissue oxygen. These models provide accurate predictions of physiologic crises events in a timely fashion, offering the opportunity for an earlier application of targeted interventions. In a article, Lazaridis et al., review the rationale for prediction, discuss available predictive models with examples, and offer suggestions for their future prospective testing in conjunction with preventive clinical algorithms 2).


Determining the prognostic significance of clinical factors for patients with severe head injury can lead to an improved understanding of the pathophysiology of head injury and to improvement in therapy. A technique known as the sequential Bayes method has been used previously for the purpose of prognosis. The application of this method assumes that prognostic factors are statistically independent. It is now known that they are not. Violation of the assumption of independence may produce errors in determining prognosis. As an alternative technique for predicting the outcome of patients with severe head injury, a logistic regression model is proposed. A preliminary evaluation of the method using data from 115 patients with head injury shows the feasibility of using early data to predict outcome accurately and of being able to rank input variables in order of their prognostc significance. 3).


A prospective and consecutive series of 225 patients with severe head injuries who were managed in a uniform way was analyzed to relate outcome to several clinical variables. Good recovery or moderate disability were achieved by 56% of the patients, 10% remained severely disabled or vegetative, and 34% died. Factors important in predicting a poor outcome included the presence of intracranial hematoma, increasing age, motor impairment, impaired or absent eye movements or pupillary light reflexes, early hypotension, hypoxemia or hypercarbia, and raised intracranial pressure over 20 mm Hg despite artificial ventilation. Most of these predictive factors were assessed on admission, but a subset of 158 patients was identified in whom coma was present on admission and was known to have persisted at least until the following day. Although the mortality in this subset (40%) was higher than in the total series, it was lower than in several comparable reported series of patients with severe head injury. Predictive correlations were equally strong in the entire series and in the subset of 158 patients with coma. A plea is made for inclusion in the definition of “severe head injury” of all patients who do not obey commands or utter recognizable words on admission to the hospital after early resuscitation 4).


Survival rate of isolated severe TBI patients who required an emergent neurosurgical intervention could be time dependent. These patients might benefit from expedited process (computed tomographic scan, neurosurgical consultation, etc.) to shorten the time to surgical intervention 5).

The impact of a moderate to severe brain injury can include:

Cognitive deficits including difficulties with:

Attention Concentration Distractibility Memory Speed of Processing Confusion Perseveration Impulsiveness Language Processing “Executive functions” Speech and Language

not understanding the spoken word (receptive aphasia) difficulty speaking and being understood (expressive aphasia) slurred speech speaking very fast or very slow problems reading problems writing Sensory

difficulties with interpretation of touch, temperature, movement, limb position and fine discrimination Perceptual

the integration or patterning of sensory impressions into psychologically meaningful data Vision

partial or total loss of vision weakness of eye muscles and double vision (diplopia) blurred vision problems judging distance involuntary eye movements (nystagmus) intolerance of light (photophobia) Hearing

decrease or loss of hearing ringing in the ears (tinnitus) increased sensitivity to sounds Smell

loss or diminished sense of smell (anosmia) Taste

loss or diminished sense of taste Seizures

the convulsions associated with epilepsy that can be several types and can involve disruption in consciousness, sensory perception, or motor movements Physical Changes

Physical paralysis/spasticity Chronic pain Control of bowel and bladder Sleep disorders Loss of stamina Appetite changes Regulation of body temperature Menstrual difficulties Social-Emotional

Dependent behaviors Emotional ability Lack of motivation Irritability Aggression Depression Disinhibition Denial/lack of awareness


Both single predictors from early clinical examination and multiple hospitalization variables/parameters can be used to determine the long-term prognosis of TBI. Predictive models like the IMPACT or CRASH prognosis calculator (based on large sample sizes) can predict mortality and unfavorable outcomes. Moreover, imaging techniques like MRI (Magnetic Resonance Imaging) can also predict consciousness recovery and mental recovery in severe TBI, while biomarkers associated with stress correlate with, and hence can be used to predict, severity and mortality. All predictors have limitations in clinical application. Further studies comparing different predictors and models are required to resolve limitations of current predictors 6).

References

1)

Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury. J Neurol. 2019 Sep 28. doi: 10.1007/s00415-019-09541-4. [Epub ahead of print] PubMed PMID: 31563989.
2)

Lazaridis C, Rusin CG, Robertson CS. Secondary Brain Injury: Predicting and Preventing Insults. Neuropharmacology. 2018 Jun 6. pii: S0028-3908(18)30279-X. doi: 10.1016/j.neuropharm.2018.06.005. [Epub ahead of print] Review. PubMed PMID: 29885419.
3)

Stablein DM, Miller JD, Choi SC, Becker DP. Statistical methods for determining prognosis in severe head injury. Neurosurgery. 1980 Mar;6(3):243-8. PubMed PMID: 6770283.
4)

Miller JD, Butterworth JF, Gudeman SK, Faulkner JE, Choi SC, Selhorst JB, Harbison JW, Lutz HA, Young HF, Becker DP. Further experience in the management of severe head injury. J Neurosurg. 1981 Mar;54(3):289-99. PubMed PMID: 7463128.
5)

Matsushima K, Inaba K, Siboni S, Skiada D, Strumwasser AM, Magee GA, Sung GY, Benjaminm ER, Lam L, Demetriades D. Emergent operation for isolated severe traumatic brain injury: Does time matter? J Trauma Acute Care Surg. 2015 Aug 28. [Epub ahead of print] PubMed PMID: 26317818.
6)

Gao L, Wu X. Prediction of clinical outcome in severe traumatic brain injury. Front Biosci (Landmark Ed). 2015 Jan 1;20:763-771. PubMed PMID: 25553477.

Pediatric Severe Traumatic Brain Injury

Pediatric Severe Traumatic Brain Injury

see Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition.

New level II and level III evidence-based recommendations and an algorithm provide additional guidance for the development of local protocols to treat pediatric patients with severe traumatic brain injury. The intention is to identify and institute a sustainable process to update these Guidelines as new evidence becomes available 1).

Greenan et al., used database research to evaluate admission clinical and CT scan characteristics for use as a decision tool to help clinicians caring for children with very severe traumatic brain injury. It may help clinicians identify children who can benefit the most from aggressive medical and surgical intervention 2).


Sarnaik et al., failed to detect mortality differences across age strata in children with severe TBI. We have discerned novel associations between age and various markers of injury-unrelated to AHT-that may lead to testable hypotheses in the future 3).

References

1)

Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, Davis-O’Reilly C, Hart EL, Bell MJ, Bratton SL, Grant GA, Kissoon N, Reuter-Rice KE, Vavilala MS, Wainwright MS. Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: Update of the Brain Trauma Foundation Guidelines, Executive Summary. Pediatr Crit Care Med. 2019 Mar;20(3):280-289. doi: 10.1097/PCC.0000000000001736. PubMed PMID: 30830016.
2)

Greenan K, Taylor SL, Fulkerson D, Shahlaie K, Gerndt C, Krueger EM, Zwienenberg M. Selection of children with ultra-severe traumatic brain injury for neurosurgical intervention. J Neurosurg Pediatr. 2019 Apr 5:1-10. doi: 10.3171/2019.1.PEDS18293. [Epub ahead of print] PubMed PMID: 30952132.
3)

Sarnaik A, Ferguson NM, O’Meara AMI, Agrawal S, Deep A, Buttram S, Bell MJ, Wisniewski SR, Luther JF, Hartman AL, Vavilala MS; Investigators of the ADAPT Trial. Age and Mortality in Pediatric Severe Traumatic Brain Injury: Results from an International Study. Neurocrit Care. 2018 Jun;28(3):302-313. doi: 10.1007/s12028-017-0480-x. PubMed PMID: 29476389.
WhatsApp WhatsApp us
%d bloggers like this: