Shunt malfunction

Shunt malfunction

Cerebrospinal fluid diversion by way of ventriculoperitoneal shunt (or other terminus) is a commonly performed neurosurgical procedure but one that is fraught with high rates of failure. Up to one-third of adult patients undergoing CSF shunting will experience a shunt failure 1).

Shunt dysfunction or failure was defined as shunt revision, subsequent endoscopic third ventriculostomy, or shunt infection 2).

Mechanical shunt obstruction is the most common reason for failure, and in proximal catheter failure, this typically means obstruction by the choroid plexus 3).

Shunt surgery consumes a large amount of pediatric neurosurgical health care resources. Although many studies have sought to identify risk factors for shunt failure, there is no consensus within the literature on variables that are predictive or protective.

Patients with cerebrospinal fluid shunts frequently present to the emergency department (ED) with suspected shunt malfunction.

Once there is a suspicion of a shunt dysfunction, a CT scan or MRI scan is used to compare the ventricular size and show the most definitive signs of a malfunction. This is only useful if a previous scan can be used for comparison. In cases where the symptoms of a shunt malfunction are present but the scanning shows no evidence, the next step involves a shunt tap test.

Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure cerebrospinal fluid flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data.

To address these needs, a preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drainages (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor’s capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor’s ability to identify these changes.

A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient’s neurological status and their time points were noted.

The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow.

The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml/hr, diagnoses the blockage or lack of flow, and records real-time continuous flow data in patients with EVDs. Calculations of a wide variety of diagnostic parameters can be made from the waveform recordings, including resistance and compliance of the ventricular catheters and the compliance of the brain. The sensor’s clinical applications may be of particular importance to the noninvasive diagnosis of shunt malfunctions with the development of an implantable device 4).

Classification

Shunt overdrainage

Shunt disconnection

Shunt obstruction

Shunt migration

Ventricular catheter misplacement

see Ventriculoperitoneal shunt malfunction

Distal shunt malfunction due to a mechanical failure is a common reason for shunt revision 5).

As many as one third of patients presenting with shunt malfunction will not have the diagnosis of shunt malfunction supported by a prospective radiologic interpretation of brain imaging. Although the neurosurgical community can assess the clinical situation to determine the need for surgery, other clinicians can be easily reassured by a radiographic report that does not mention or diagnose shunt malfunction. Today, more than ever, nonneurosurgeons are being called on to evaluate complex clinical situations and may rely on radiographic reports 6).

Diagnosis

Various invasive diagnostic test procedures for the verification of shunt function have been described:

Invasive CSF pressure and flow measurements

CSF tap test and drip interval test

Infusion tests

Radioactive shuntogram.

By comparison, publications addressing the noninvasive pumping test are rare.

Noninvasive pumping test of all formerly published results are values derived from tests with a variety of reservoirs and valves (at least 2 types).

In a few reports, the shunt/reservoir type used is not even specified, although the technical parameters of such reservoirs and valves are obviously essential.

To judge occlusions distally from the reservoir other authors have had to close the pVC transcutaneously by manual compression.

This is never possible with a sufficient certainty and, if ever undertaken, it usually does provide a source of error.


Rapid cranial MRI was not inferior to CT for diagnosing ventricular shunt malfunction and offers the advantage of sparing a child ionizing radiation exposure 7).

Treatment

ETV can be considered a primary treatment modality in children with shunt malfunction and has a good success rate in cases presenting with closure of previously performed ETV stoma 8).

Outcome

Case series

Case reports

1)

Reddy GK, Bollam P, Shi R, Guthikonda B, Nanda A: Management of adult hydrocephalus with ventriculoperitoneal shunts: long-term single-institution experience. Neurosurgery 69:774–781, 2011
2)

Riva-Cambrin J, Kestle JR, Holubkov R, Butler J, Kulkarni AV, Drake J, Whitehead WE, Wellons JC 3rd, Shannon CN, Tamber MS, Limbrick DD Jr, Rozzelle C, Browd SR, Simon TD; Hydrocephalus Clinical Research Network. Risk factors for shunt malfunction in pediatric hydrocephalus: a multicenter prospective cohort study. J Neurosurg Pediatr. 2016 Apr;17(4):382-90. doi: 10.3171/2015.6.PEDS14670. Epub 2015 Dec 4. PubMed PMID: 26636251.
3)

Korinek AM, Fulla-Oller L, Boch AL, Golmard JL, Hadiji B, Puybasset L: Morbidity of ventricular cerebrospinal fluid shunt surgery in adults: an 8-year study. Neurosurgery 68:985–995, 2011
4)

Pennell T, Yi JL, Kaufman BA, Krishnamurthy S. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study. J Neurosurg Pediatr. 2016 Mar;17(3):270-7. doi: 10.3171/2015.7.PEDS1577. Epub 2015 Nov 13. PubMed PMID: 26565943.
5)

Sribnick EA, Sklar FH, Wrubel DM. A Novel Technique for Distal Shunt Revision: Retrospective Analysis of Guidewire-Assisted Distal Catheter Replacement. Neurosurgery. 2015 May 1. [Epub ahead of print] PubMed PMID: 25938689.
6)

Iskandar BJ, McLaughlin C, Mapstone TB, Grabb PA, Oakes WJ. Pitfalls in the diagnosis of ventricular shunt dysfunction: radiology reports and ventricular size. Pediatrics. 1998 Jun;101(6):1031-6. PubMed PMID: 9606231.
7)

Boyle TP, Paldino MJ, Kimia AA, Fitz BM, Madsen JR, Monuteaux MC, Nigrovic LE. Comparison of rapid cranial MRI to CT for ventricular shunt malfunction. Pediatrics. 2014 Jul;134(1):e47-54. doi: 10.1542/peds.2013-3739. Epub 2014 Jun 2. PubMed PMID: 24918222.
8)

Shaikh S, Deopujari CE, Karmarkar V, Muley K, Mohanty C. Role of Secondary Endoscopic Third Ventriculostomy in Children: Review of an Institutional Experience. Pediatr Neurosurg. 2019 Jun 3:1-8. doi: 10.1159/000500641. [Epub ahead of print] PubMed PMID: 31158842.

UpToDate: Shunt dependency syndrome

Shunt dependency syndrome

Intraventricular hemorrhage (IVH) is a common affliction of preterm infants and often results in posthemorrhagic hydrocephalus (PHH). These patients typically eventually require permanent CSF diversion and are presumed to be indefinitely shunt-dependent.

In a cohort of patients with clinical grade aneurysmal subarachnoid hemorrhage (aSAH) at admission, larger amounts of subarachnoid blood and large ventricular size on preoperative cerebral CT, and CSF drainage in excess of 1,500 ml during the 1st week after the ictus were significant predictors of shunt dependency. Shunt dependency did not hamper outcome 1).

Aneurysmal subarachnoid hemorrhage (SAH) has been reported to induce an intrathecal inflammatory reaction reflected by cytokine release, particularly interleukin 6 (IL-6), which correlates with early brain damage and poor outcome.

CSF IL-6 values of ≥10,000 pg/ml in the early post-SAH period may be a useful diagnostic tool for predicting shunt dependency in patients with acute posthemorrhagic hydrocephalus. The development of shunt-dependent posthemorrhagic hydrocephalus remains a multifactorial process 2).

Graeb Score or LeRoux scores improve the prediction of shunt dependency and in parts of case fatality rate (CFR) in aneurysmal SAH patients therefore confirming the relevance of the extent and distribution of intraventricular hemorrhage for the clinical course in SAH 3).

A significantly higher rate of shunt dependency was observed for age older than 65 years, poor initial neurological status, and thick SAH with presence of initial intraventricular hemorrhage. By understanding these factors related to development of SDHC and results, it is expected that management of aneurysmal SAH will result in a better prognosis 4).

In a study SD after aSAH showed no correlations with three of the parameters previously identified as risk factors for shunt dependent hydrocephalus, namely, the amount of SAH, the presence of IVH, or acute hydrocephalus. Instead, a longer duration of CSF drainage correlated with SD as an independent factor. These data suggest that a longer duration of CSF drainage may be one of the risk factors for SD after aSAH 5).

Case series

2015

A total of 471 patients who were part of the Barrow Ruptured Aneurysm Trial (BRAT) from 2003 to 2007 were retrospectively reviewed. All variables including demographic data, medical history, treatment, imaging, and functional outcomes were included as part of the trial. No additional variables were retrospectively collected.

Ultimately, 147 patients (31.2%) required a ventriculoperitoneal shunt (VPS) in this series. Age, dissecting aneurysm type, ruptured vertebrobasilar aneurysm, Fisher grade, Hunt and Hess grade, admission intraventricular hemorrhage, admission intraparenchymal hemorrhage, blood in the fourth ventricle on admission, perioperative ventriculostomy, and hemicraniectomy were significant risk factors (P < .05) associated with shunt-dependent hydrocephalus on univariate analysis. On multivariate analysis, intraventricular hemorrhage and intraparenchymal hemorrhage were independent risk factors for shunt dependency (P < .05). Clipping vs coiling treatment was not statistically associated with VPS after SAH on both univariate and multivariate analyses. Patients who did not receive a VPS at discharge had higher Glasgow Outcome Scale and Barthel Index scores and were more likely to be functionally independent and to return to work 72 months after surgery (P < .05).

There is no difference in shunt dependency after SAH among patients treated by endovascular or microsurgical means. Patients in whom shunt-dependent hydrocephalus does not develop after SAH tend to have improved long-term functional outcomes 6).


Wang et al. analyzed retrospectively collected data for 89 preterm patients diagnosed with grades III and IV IVH and PHH from 1998 to 2011.

Sixty-nine out of 89 patients (77.5 %) underwent ventriculoperitoneal shunt placement, and 33 (47.8 %) required at least one shunt revision and 18 (26.1 %) required multiple revisions. The mean ± standard deviation follow-up time for shunted patients was 5.0 ± 3.3 years. The majority of early failures were due to proximal catheter malfunction, while later failures were mostly due to distal catheter problems. There was a significant difference in the number of patients requiring revisions in the first 3 years following initial VP shunt insertion compared after 3 years, with 28 revisions versus 10 (p < 0.004). In 8 out of 10 patients who underwent shunt revisions after 3 years, evidence of obstructive hydrocephalus was found on imaging either in the form of an isolated fourth ventricular cyst or aqueductal stenosis.

The results suggest that in a distinct subset of patients with PHH, obstructive hydrocephalus may develop, resulting in long-term dependence on CSF diversion. Further study on the factors associated with long-term shunt dependence and revision requirements within the PHH group is warranted 7).

2014

88 consecutive patients with aneurysmal SAH requiring external ventricular drain placement and endovascular aneurysm closure were included. Functional outcome and shunt dependency were assessed 90 days after event. A matched controlled sub-analysis was carried out to investigate the effects of IVF treatment (n = 14; matching criteria: age, neuro-status and imaging). Multivariate modeling was performed to identify independent predictors for permanent shunt dependency.

In IVF-patients neurological status was significantly poorer [Hunt&Hess: IVF = 4(3-5) vs. non-IVF = 3(1-5); p = 0.035] and the extent of ventricular hemorrhage was increased [Graeb Score: IVF = 7(6-8) vs. non-IVF = 3(1-4); p ≤ 0.001]. Consecutive matched controlled sub-analysis revealed no significant therapeutic effect of IVF with respect to shunt dependency rate and functional outcome. Multivariate analysis revealed Graeb score [OR = 1.34(1.02-1.76); p = 0.035] and sepsis [OR = 11.23(2.28-55.27); p = 0.003] as independent predictors for shunt dependency, whereas IVF did not exert significant effects (p = 0.820).

In endovascular-treated SAH patients IVF neither reduced permanent shunt dependency nor influenced functional outcome. Despite established effects on intraventricular clot resolution IVF appears less powerful in SAH as compared to ICH. Given the reported positive effects of lumbar drainage (LD) in SAH, a prospective analysis of a combined treatment approach of IVF and subsequent lumbar drain sOeems warranted aiming to reduce permanent shunting and improve functional outcome 8).

1999

Of 138 patients treated for ruptured aneurysms the development of shunt dependent hydrocephalus was evaluated regarding possible predictive factors. In 15 patients (11%) ventriculo-atrial shunt was implanted due to hydrocephalus. One predictive factor was the localisation of aneurysms as patients with hydrocephalus had PcoA aneurysms in 40% compared to 20% in the group of patients without hydrocephalus and only 7% compared to 28% MCA aneurysms. An other predictive factor was the severity of the subarachnoid haemorrhage (SAH) as 7 patients out of the 15 were graded Fisher IV on admission. Furthermore, an important predictive factor was the presence of acute hydrocephalus as 13 out of the 15 patients (87%) with shunt dependent hydrocephalus had acute hydrocephalus requiring external ventricular drainage. An other possible factor was the intraoperative opening of the lamina terminalis as in 73% of the patients with shunt dependent hydrocephalus compared to 82% in the group of patients without hydrocephalus this procedure was performed during surgery. The results suggest that shunt dependency is more likely after severe SAH especially in the presence of an acute hydrocephalus and in patients with aneurysms located in the basal cisterns. Therefore treatment of the acute hydrocephalus and possible the opening of the lamina terminalis could have a positive effect on the development of shunt dependent hydrocephalus after SAH 9).

1979

Five patients with shunt dependency were observed to have apparently normal ventricular size despite marked increases in ventricular pressure after shunt malfunctionElastance (dP/dV) was determined in four of these patients by removing increments of cerebrospinal fluid and measuring the resulting pressure. These patients without ventricular enlargement and with markedly increased ventricular pressure had high elastance. This group of patients with “normal volume” hydrocephalus had distal shunt occlusions, in contrast to previously reported patients with cephalic shunt obstructions after ventricular decompression. Initial shunting in early infancy, prolonged shunt dependency, and lack of recent shunt revision were common factors in these patients. Markedly elevated pressure with normal volume is a threatening clinical entity, requiring prompt surgical intervention 10).

1975

In suitable cases, intermittent cranial compression by means of an elastic bandage or a helmet with an inflatable inner-lining may be effective. There was arrested hydrocephalus in nine of 14 children treated with this method, eight of whom have developed normally. When cranial compression is contra-indicated or not successful, the preferred method of treatment is an ‘on-off’ type of valve which is used intermittently to drain a fixed volume of cerebrospinal fluid. Of 18 children who had such shunts inserted, 10 have become totally independent of their shunts and their hydrocephalus has become compensated. All are of normal intelligence. Subtemporal craniectomy was performed on seven shunt-dependent children with recurrent catheter obstruction. Four have been followed for six months and three for two years and in no case has there been further malfunction of the proximal catheter 11).

Case reports

Dong et al., from the Tongji Hospital, Huazhong University of Science and Technology, WuhanChina report two children with middle fossa arachnoid cysts who underwent cystoperitoneal shunt with fixed pressure valve at an opening pressure of 7 cmH2O and then developed dependency syndrome. Both patients were effectively treated by mini-invasive cyst wall excision with the shunts reserved. The clinical manifestation, radiological findings, treatment methods, and therapeutic outcomes were reviewed retrospectively.

The time from shunt surgery to shunt dependency syndrome occurrence was 4 and 2 years, respectively. Computed tomography/magnetic resonance findings of the brain showed remarkably collapsed cysts with normal or small ventricles. Both patients underwent secondary mini-invasive cyst wall excision and shunt catheters were reserved. After the operations, their symptoms were resolved except one case with marginally improved visual impairment.

Shunt dependency syndrome is a rare but dangerous complication of CP shunt and should be treated in time. Collapsed and thickened cyst wall intermittent covering the catheter head end, decreased brain compliance due to chronic fibrosis, as well as regression of cerebrospinal fluidabsorption could be the pathogenesis. They suggest keyhole resection of the residual cyst wall as an effective and mini-invasive treatment option12).


Sonobe et al. report two cases of high shunt dependency, which were first thought to be shunt independent arrested hydrocephalus. Though their shunt systems didn’t seem to work, symptoms of rapid increasing intracranial pressure were observed after obstruction or replacement of shunt tube. Their ventricles looked so small like a slit on CT scan and PVG that the apex of the ventricular tube were easily obstructed by a ventricle wall. This is the reason why we misjudged them to be shunt independent arrested hydrocephalus. The cause of slit-like ventricles was overflow of CSF fluid due to the low pressure valve and the siphon effect. In general, after the shunt operation, most of the cases with thickening of cerebral mantle show the shunt dependency. Especially the cases showing rapid and marked thickening of the cerebral mantle are highly shunt dependent. Therefore, we must observe such cases carefully, in which the ventricle becomes small. Short interval follow-ups by CT scan after the shunt operation are quite necessary in order to observe the ventricle size. Easy and reliable judging method to know whether the shunt system is working or not is required to be developed 13).

References

1)

Erixon HO, Sorteberg A, Sorteberg W, Eide PK. Predictors of shunt dependency after aneurysmal subarachnoid hemorrhage: results of a single-center clinical trial. Acta Neurochir (Wien). 2014 Nov;156(11):2059-69. doi: 10.1007/s00701-014-2200-z. Epub 2014 Aug 22. PubMed PMID: 25143185.
2)

Wostrack M, Reeb T, Martin J, Kehl V, Shiban E, Preuss A, Ringel F, Meyer B, Ryang YM. Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage: The Role of Intrathecal Interleukin-6. Neurocrit Care. 2014 May 20. [Epub ahead of print] PubMed PMID: 24840896.
3)

Czorlich P, Ricklefs F, Reitz M, Vettorazzi E, Abboud T, Regelsberger J, Westphal M, Schmidt NO. Impact of intraventricular hemorrhage measured by Graeb and LeRoux score on case fatality risk and chronic hydrocephalus in aneurysmal subarachnoid hemorrhage. Acta Neurochir (Wien). 2015 Mar;157(3):409-15. doi: 10.1007/s00701-014-2334-z. Epub 2015 Jan 21. PubMed PMID: 25599911.
4)

Bae IS, Yi HJ, Choi KS, Chun HJ. Comparison of Incidence and Risk Factors for Shunt-dependent Hydrocephalus in Aneurysmal Subarachnoid Hemorrhage Patients. J Cerebrovasc Endovasc Neurosurg. 2014 Jun;16(2):78-84. doi: 10.7461/jcen.2014.16.2.78. Epub 2014 Jun 30. PubMed PMID: 25045646; PubMed Central PMCID: PMC4102754.
5)

Sugawara T, Maehara T, Tadashi N, Aoyagi M, Ohno K. Independent predictors of shunt-dependent normal pressure hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurosurg Sci. 2014 Jul 29. [Epub ahead of print] PubMed PMID: 25069541.
6)

Zaidi HA, Montoure A, Elhadi A, Nakaji P, McDougall CG, Albuquerque FC, Spetzler RF, Zabramski JM. Long-term functional outcomes and predictors of shunt-dependent hydrocephalus after treatment of ruptured intracranial aneurysms in the BRAT trial: revisiting the clip vs coil debate. Neurosurgery. 2015 May;76(5):608-13; discussion 613-4; quiz 614. doi: 10.1227/NEU.0000000000000677. PubMed PMID: 25714521.
7)

Wang JY, Jackson EM, Jallo GI, Ahn ES. Shunt revision requirements after posthemorrhagic hydrocephalus of prematurity: insight into the time course of shunt dependency. Childs Nerv Syst. 2015 Nov;31(11):2123-30. doi: 10.1007/s00381-015-2865-5. Epub 2015 Aug 7. PubMed PMID: 26248674.
8)

Gerner ST, Kuramatsu JB, Abel H, Kloska SP, Lücking H, Eyüpoglu IY, Doerfler A, Schwab S, Huttner HB. Intraventricular fibrinolysis has no effects on shunt dependency and functional outcome in endovascular-treated aneurysmal SAH. Neurocrit Care. 2014 Dec;21(3):435-43. doi: 10.1007/s12028-014-9961-3. PubMed PMID: 24566979.
9)

Schmieder K, Koch R, Lücke S, Harders A. Factors influencing shunt dependency after aneurysmal subarachnoid haemorrhage. Zentralbl Neurochir. 1999;60(3):133-40. PubMed PMID: 10726336.
10)

Engel M, Carmel PW, Chutorian AM. Increased intraventricular pressure without ventriculomegaly in children with shunts: “normal volume” hydrocephalus. Neurosurgery. 1979 Nov;5(5):549-52. PubMed PMID: 534062.
11)

Epstein FJ, Hochwald GM, Wald A, Ransohoff J. Avoidance of shunt dependency in hydrocephalus. Dev Med Child Neurol Suppl. 1975;(35):71-7. PubMed PMID: 812752.
12)

Dong F, Wang Z, Li Y, Chen Z, Zhang S, Wan F. Shunt Dependency Syndrome after Cyst-Peritoneal Shunt Resolved by Keyhole Microsurgical Cyst Resection: Two Case Reports and Literature Review. Neuropediatrics. 2018 Jul 12. doi: 10.1055/s-0038-1661395. [Epub ahead of print] PubMed PMID: 30001565.
13)

Sonobe M, Kodama N, Fujiwara S, Takaku A, Suzuki J. [On-off mechanism of shunt system due to slit ventricle (author’s transl)]. No Shinkei Geka. 1978 Dec;6(12):1193-6. Japanese. PubMed PMID: 732936.

UpToDate: Retrograde VentriculoSinus Shunt

Retrograde VentriculoSinus Shunt

A retrograde ventriculosinus (RVS) shunt is a watertight connection that delivers excess cerebrospinal fluid(CSF) to the superior sagittal sinus (SSS) against the direction of blood flow. This method of CSF shunting utilizes the impact pressure (IP) of the bloodstream in the SSS to maintain the intraventricular pressure (IVP) more than the sinus pressure (SP) regardless of changes in posture or intrathoracic pressure (ITP) and discourages stagnation and clotting of blood at the venous end of the connection. It also utilizes collapse of the internal jugular vein (IJV) in the erect posture to prevent siphonage.

Since the 1950‘s, hydrocephalus can be treated with cerebrospinal fluid shunts, usually to the peritoneal cavityor to the right cardiac hearth atrium. However, due to their siphon effect, these shunts lead to non-physiological cerebrospinal fluid drainage, with possible co-morbidity and high revision rates. More sophisticated shunt valvesystems significantly increase costs and technical complexity and remain unsuccessful in a subgroup of patients. In an attempt to obtain physiological cerebrospinal fluid shunting, many neurosurgical pioneers shunted towards the dural sinuses, taking advantage of the physiological antisiphoning effect of the internal jugular veins. Despite several promising reports, the ventriculosinus shunts did not yet become standard neurosurgical practice.


50 RVS shunts were successfully implanted using valveless shunting catheters. There were no problems related to incorrect CSF drainage or sinus thrombosis. The results indicated arrest of the hydrocephalic process, normalization of the IVP and proper shunt function 1).

In 2016 Oliveira et al., published 3 consecutive cases who had previously undergone VPS revision and in which peritoneal space was full of adhesions and fibrosis. RVSS was performed as described by Shafei et al., with some modifications to each case. All 3 patients kept the same clinical profile after RVSS, with no perioperative or postoperative complications. However, revision surgery was performed in the first operative day in 1 out of 3 patients, in which the catheter was not positioned in the superior sagittal sinus. They propose that in cases where VPS is not feasible, RVSS may be a safe and applicable second option. Nevertheless, the long-term follow-up of patients and further learning curve must bring stronger evidence 2).


Baert et al., from the Department of Neurosurgery of Ghent University Hospital, Belgium implanted the retrograde ventriculosinus shunt, as advocated by El-Shafei, in 10 patients. They reports on the operation technique and long-term outcome, including 4 patients in whom this shunt was implanted as a rescue.

Implantation of a ventriculosinus shunt proved to be a feasible technique, warranting physiological drainage of cerebrospinal fluid. However, only in 3 out of 14 patients, functionality of the retrograde ventriculosinus shunt was maintained during more than 6 years follow-up. In there opinion, these shunts fail because present venous access devices are difficult to implant correctly and get too easily obstructed. After discussing possible causes of this frequent obstruction, a new dural venous sinus access device is presented.

An easy to implant and thrombogenic-resistant dural venous sinus access device needs to be developed before ventriculosinus shunting can become general practice 3).

1)

El-Shafei IL, El-Shafei HI. The retrograde ventriculosinus shunt: concept and technique for treatment of hydrocephalus by shunting the cerebrospinal fluid to the superior sagittal sinus against the direction of blood flow. Preliminary report. Childs Nerv Syst. 2001 Aug;17(8):457-65; discussion 466. PubMed PMID: 11508534.
2)

Oliveira MF, Teixeira MJ, Reis RC, Petitto CE, Gomes Pinto FC. Failed Ventriculoperitoneal Shunt: Is Retrograde Ventriculosinus Shunt a Reliable Option? World Neurosurg. 2016 Aug;92:445-453. doi: 10.1016/j.wneu.2016.05.038. Epub 2016 May 27. PubMed PMID: 27237416.
3)

Baert E, Dewaele F, Vandersteene J, Hallaert G, Okito Kalala JP, Roost DV. Treating Hydrocephalus with Retrograde VentriculoSinus Shunt Prospective Clinical Study. World Neurosurg. 2018 Jun 25. pii: S1878-8750(18)31313-5. doi: 10.1016/j.wneu.2018.06.097. [Epub ahead of print] PubMed PMID: 29953953.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: