Lumbar spinal stenosis case series

Lumbar spinal stenosis case series

Nine hundred and eighteen patients of the Acıbadem Fulya Hospital and Acıbadem Taksim Hospital were treated for single or multilevel lumbar spinal stenosis (LSS) by bilateral decompression via unilateral approach (BDUA) between January 2002 and January 2016. 180 patients of the 918 underwent microdiscectomy with decompression. They were then followed up postoperatively, at 6 and 12 months with radiological investigations, Oswestry Disability Index (ODI) and 36-item short-form health survey (SF-36) tests.

Four hundred and ninety-two patients were females (53,6%), four hundred and twenty six were males (46,4) whose mean age was 63,83±10,16 (range: 43-79 years). Duration of symptoms ranged from 4 to 49 months. Average follow-up time was 98 months (range 25-168 months) and the reoperation rate (RR) was 2,5%. The ODI scores decreased significantly (30.65± 7.82, to 11.32 ± 2.50 at six months and 11.30 ± 2.49 at first year) and the SF-36 parameter scores demonstrated a significant improvement in the early and late follow-up results.

BDUA for LSS allowed a sufficient and safe decompression of the neural structures, resulted in a highly significant reduction of the symptoms and disability, acceptable RR, and improved health-related quality of life 1).


A successive series of 102 patients with lumbar spinal stenosis from Aachen (with and without previous lumbar surgery) were treated with decompression alone during a 3-year period. Data on pre- and postoperative back pain and leg pain (numerical rating scale [NRS] scale) were retrospectively collected from questionnaires with a return rate of 65% (n = 66). The complete cohort as well as patients with first-time surgery and re-decompression were analyzed separately. Patients were dichotomized to short-term follow-up (< 100 weeks) and long-term follow-up (> 100 weeks) postsurgery.

Overall, both back pain (NRS 4.59 postoperative versus 7.89 preoperative; p < 0.0001) and leg pain (NRS 4.09 versus 6.75; p < 0.0001) improved postoperatively. The short-term follow-up subgroup (50%, n = 33) showed a significant reduction in back pain (NRS 4.0 versus 6.88; p < 0.0001) and leg pain (NRS 2.49 versus 6.91: p < 0.0001). Similar results could be observed for the long-term follow-up subgroup (50%, n = 33) with significantly less back pain (NRS 3.94 versus 7.0; p < 0.0001) and leg pain (visual analog scale 3.14 versus 5.39; p < 0.002) postoperatively. Patients with previous decompression surgery benefit significantly regarding back pain (NRS 4.82 versus 7.65; p < 0.0024), especially in the long-term follow-up subgroup (NRS 4.75 versus 7.67; p < 0.0148). There was also a clear trend in favor of leg pain in patients with previous surgery; however, it was not significant.

Decompression of lumbar spinal stenosis without fusion led to a significant and similar reduction of back pain and leg pain in a short-term and a long-term follow-up group. Patients without previous surgery benefited significantly better, whereas patients with previous decompression benefited regarding back pain, especially for long-term follow-up with a clear trend in favor of leg pain 2).


A total of 25 patients between May 2015 and June 2016 affected by radiologically demonstrated one-level lumbar spinal stenosis (LSS) with facet joint degeneration and grade I spondylolisthesis were included in this prospective study. All the patients underwent laminectomyforaminotomy, and one-level facet fixation (Facet-Link, Inc., Rockaway, New Jersey, United States). Pre- and postoperative clinical (Oswestry Disability Index[ODI], Short Form 36 [SF-36]) and radiologic (radiographs, magnetic resonance imaging, computed tomography) data were collected and analyzed.

Mean follow-up was 12 months. The L4L5 level was involved in 18 patients (72%) and L5S1 in 7 patients (28%); the average operative time was 80 minutes (range: 65-148 minutes), and the mean blood loss was 160 mL (range: 90-200 mL). ODI and SF-36 showed a statistically significant (p < 0.05) improvement at last follow-up.

Transfacet fixation is a safe and effective treatment option in patients with single-level LSS, facet joint degeneration, and mild instability 3).

2017

A retrospective matched-pair cohort study included a total of 144 patients who underwent surgery for bisegmental spinal stenosis at the levels L3-4 and L4-5 between 2008 and 2012. There were 72 matching pairs that corresponded in sex, year of birth, and width of the stenosed segments. The patients’ impairments were reported before, immediately after, and 6 and 12 months after surgery using the Oswestry Disability Questionnaire (ODQ-D) and the EuroQol-5D (EQ-5D). The data were evaluated statistically. Results The comparison of both surgical procedures regarding walking ability (walking a distance with and without a walking aid) revealed a significant difference. Patients who underwent hemilaminectomy had better postoperative results. The individual criteria of the ODQ-D and EQ-5D revealed no significant differences between 2-level fenestration and hemilaminectomy; however, there is always significant postoperative improvement in comparison with preoperative status. Age, sex, body mass index, comorbidities, smoking, and alcohol consumption had no influence on the surgical results. The reoperation rate was between 13% and 15% for both surgical techniques, not being significantly different. Conclusion Fenestration and hemilaminectomy are equivalent therapies for bisegmental lumbar spinal canal stenosis. Regarding walking, the study revealed better results for hemilaminectomy than for fenestration in this cohort of patients. Pain intensity, personal care, lifting and carrying of objects, sitting, social life, and travel all improved significantly postoperatively as compared with preoperatively. In both groups, health status as the decisive predictor improved considerably after surgery. We could show that both surgical methods result in significant postoperative improvement of all the individual criteria of the ODQ-D and the EQ-5D 4).

2016

726 patients with lumbar stenosis (without spondylolisthesis or scoliosis) and a baseline back pain score ≥ 5 of 10 who underwent surgical decompression only. No patient was reported to have significant spondylolisthesis, scoliosis, or sagittal malalignment. Standard demographic and surgical variables were collected, as well as patient outcomes including back and leg pain scores, Oswestry Disability Index (ODI), and EuroQoL 5D (EQ-5D) at baseline and 3 and 12 months postoperatively. RESULTS The mean age of the cohort was 65.6 years, and 407 (56%) patients were male. The mean body mass index was 30.2 kg/m2, and 40% of patients had 2-level decompression, 29% had 3-level decompression, 24% had 1-level decompression, and 6% had 4-level decompression. The mean estimated blood loss was 130 ml. The mean operative time was 100.85 minutes. The vast majority of discharges (88%) were routine home discharges. At 3 and 12 months postoperatively, there were significant improvements from baseline for back pain (7.62 to 3.19 to 3.66), leg pain (7.23 to 2.85 to 3.07), EQ-5D (0.55 to 0.76 to 0.75), and ODI (49.11 to 27.20 to 26.38). CONCLUSIONS Through the 1st postoperative year, patients with lumbar stenosis-without spondylolisthesis, scoliosis, or sagittal malalignment-and clinically significant back pain improved after decompression-only surgery 5).

2015

88 patients with LSS (47 men and 41 women) who ranged in age from 39 to 86 years (mean age 68.7 years). All patients had undergone microendoscopic laminotomy at Osaka City University Graduate School of Medicine from May 2008 through October 2012. The minimum duration of clinical and radiological follow-up was 6 months. All patients were evaluated by Japanese Orthopaedic Association (JOA) and visual analog scale (VAS) scores for low back painleg pain, and leg numbness before and after surgery.

The distance between the C7 plumb line and the posterior corner of the sacrum (sagittal vertical axis [SVA]) was measured on lateral standing radiographs of the entire spine obtained before surgery.

Radiological factors and clinical outcomes were compared between patients with a preoperative SVA ≥ 50 mm (forward-bending trunk [F] group) and patients with a preoperative SVA < 50 mm (control [C] group).

A total of 35 patients were allocated to the F group (19 male and 16 female) and 53 to the C group (28 male and 25 female).

The mean SVA was 81.0 mm for patients in the F group and 22.0 mm for those in the C group. At final follow-up evaluation, no significant differences between the groups were found for the JOA score improvement ratio (73.3% vs 77.1%) or the VAS score for leg numbness (23.6 vs 24.0 mm); the VAS score for low-back pain was significantly higher for those in the F group (21.1 mm) than for those in the C group (11.0 mm); and the VAS score for leg pain tended to be higher for those in the F group (18.9 ± 29.1 mm) than for those in the C group (9.4 ± 16.0 mm).

Preoperative alignment of the spine in the sagittal plane did not affect JOA scores after microendoscopic laminotomy in patients with LSS. However, low-back pain was worse for patients with preoperative anterior translation of the C-7 plumb line than for those without 6).

References

1)

Yüce İ, Kahyaoğlu O, Çavuşoğlu HA, Çavuşoğlu H, Aydın Y. Long term clinical outcome and reoperation rate for microsurgical bilateral decompression via unilateral approach of lumbar spinal stenosis. World Neurosurg. 2019 Jan 30. pii: S1878-8750(19)30203-7. doi: 10.1016/j.wneu.2019.01.105. [Epub ahead of print] PubMed PMID: 30710724.
2)

Geiger MF, Bongartz N, Blume C, Clusmann H, Müller CA. Improvement of Back and Leg Pain after Lumbar Spinal Decompression without Fusion. J Neurol Surg A Cent Eur Neurosurg. 2018 Dec 5. doi: 10.1055/s-0038-1669473. [Epub ahead of print] PubMed PMID: 30517963.
3)

Trungu S, Pietrantonio A, Forcato S, Tropeano MP, Martino L, Raco A. Transfacet Screw Fixation for the Treatment of Lumbar Spinal Stenosis with Mild Instability: A Preliminary Study. J Neurol Surg A Cent Eur Neurosurg. 2018 Sep;79(5):358-364. doi: 10.1055/s-0038-1655760. Epub 2018 Jul 16. PubMed PMID: 30011420.
4)

Schüppel J, Weber F. Retrospective Matched-Pair Cohort Study on Effect of Bisegmental Fenestration versus Hemilaminectomy for Bisegmental Spinal Canal Stenosis at L3-L4 and L4-L5. J Neurol Surg A Cent Eur Neurosurg. 2017 Jan 9. doi: 10.1055/s-0036-1597617. [Epub ahead of print] PubMed PMID: 28068753.
5)

Crawford CH 3rd, Glassman SD, Mummaneni PV, Knightly JJ, Asher AL. Back pain improvement after decompression without fusion or stabilization in patients with lumbar spinal stenosis and clinically significant preoperative back pain. J Neurosurg Spine. 2016 Nov;25(5):596-601. PubMed PMID: 27285666.
6)

Dohzono S, Toyoda H, Matsumoto T, Suzuki A, Terai H, Nakamura H. The influence of preoperative spinal sagittal balance on clinical outcomes after microendoscopic laminotomy in patients with lumbar spinal canal stenosis. J Neurosurg Spine. 2015 Jul;23(1):49-54. doi: 10.3171/2014.11.SPINE14452. Epub 2015 Apr 3. PubMed PMID: 25840041.

Internal jugular vein stenosis

Internal jugular vein stenosis (IJVS) is gaining increasing attention from clinical researchers due to a series of confounding symptoms that impair the quality of life in affected individuals but cannot be explained by other well-established causes. In a study of Zhou et al.,from the Xuanwu Hospital, aimed to elucidate the clinical features, neuroimaging characteristics and pathogenesis of IJVS, and explore their possible correlations, in attempt to provide useful clues for clinical diagnosis and treatment. Forty-three eligible patients with unilateral or bilateral IJVS confirmed by contrast-enhanced magnetic resonance venography of the brain and neck were enrolled in a study. Magnetic resonance imaging along with magnetic resonance angiography or computed tomography angiography was applied to identify the radiological pattern of parenchymal or arterial lesions. Cerebral perfusion and metabolismwere evaluated by single-photon emission computed tomography (SPECT). Of the 43 patients (46.0 ± 16.0 years old; 30 female), 14 (32.6%) had bilateral and 29 had unilateral IJVS. The common clinical symptoms at admission were tinnitus (60.5%), tinnitus cerebri (67.6%), headache(48.8%), dizziness (32.6%), visual disorders (39.5%), hearing impairment (39.5%), neck discomfort (39.5%), sleep disturbance (60.5%), anxiety or depression (37.5%) and subjective memory impairment (30.2%). The presence of bilateral demyelination changes with cloudy-like appearance in the periventricular area and/or centrum semiovale was found in 95.3% (41/43) patients. SPECT findings showed that 92.3% (24/26) patients displayed cerebral perfusion and metabolism mismatch, depicted by bilaterally and symmetrically reduced cerebral perfusion and increased cerebral glucose consumption. IJVS may contribute to alterations in cerebral blood flow and metabolism, as well as white matter lesion formation, all of which may account for its clinical manifestations. 1).


Fifteen consecutive patients were screened from 46 patients suspected as IIH and were finally confirmed as isolated IJV stenosis. The stenotic IJV was corrected with stenting when the trans-stenotic mean pressure gradient (∆MPG) was equal to or higher than 5.44 cmH2 O. Dynamic magnetic resonance venography, computed tomographic venography and digital subtraction angiography of the IJV, ∆MPG, ICP, Headache Impact Test 6 and the Frisén papilledema grade score before and after stenting were compared.

All the stenotic IJVs were corrected by stenting. ∆MPG decreased and the abnormal collateral veins disappeared or shrank immediately. Headache, tinnitus, papilledema and ICP were significantly ameliorated at 14 ± 3 days of follow-up (all P < 0.01). At 12 ± 5.6 months of outpatient follow-up, headache disappeared in 14 out of 15 patients (93.3%), visual impairments were recovered in 10 of 12 patients (83.3%) and tinnitus resolved in 10 out of 11 patients (90.9%). In 12 out of 15 cases, the Frisén papilledema grade scores declined to 1 (0-2). The stented IJVs in all 15 patients kept to sufficient blood flows on computed tomographic venography follow-up without stenting-related adverse events.

Non-thrombotic IJV stenosis may be a potential etiology of IIH. Stenting seems to be a promising option to address the issue of intracranial hypertension from the etiological level, particularly after medical treatment failure 2).


Previous magnetic resonance imaging studies have shown abnormalities of the internal jugular veins in patients with thoracic outlet syndrome (TOS), but this finding has largely been ignored. We, thus, prospectively performed diagnostic brachiocephalic venograms in all patients with diagnosed neurogenic TOS from April 2008 to December 2011 (mean age, 42.6; r, 16-68; 77.8% women and 22.2% men). Stenosis of the left internal jugular vein, left subclavian vein, right internal jugular vein, and right subclavian vein were assessed, and significant stenoses of these vessels were seen in 63.49%, 65.08%, 60.32%, and 68.25% of patients, respectively. Internal jugular vein stenosis was not present in 23.81%, present unilaterally in 28.57%, and present bilaterally in 47.62% of patients. Subclavian vein stenosis was not present in 17.46%, present unilaterally in 28.57%, and present bilaterally in 53.97% of patients. Phi coefficients of correlation were 0.067 between left internal jugular vein and left subclavian vein stenoses, 0.061 between right internal jugular vein and right subclavian vein stenoses, and 0 between any internal jugular vein and any subclavian vein stenoses, indicating there is no correlation between jugular vein stenosis and subclavian vein stenosis in these patients. We conclude that right and left internal jugular vein stenosis is common in patients with neurogenic TOS symptoms. Treatment of internal jugular vein stenosis could potentially benefit these patients, and the implications of these findings warrant further study 3).

Clinical trials

References

1)

Zhou D, Ding J, Asmaro K, Pan L, Ya J, Yang Q, Fan C, Ding Y, Ji X, Meng R. Clinical Characteristics and Neuroimaging Findings in Internal Jugular Venous Outflow Disturbance. Thromb Haemost. 2019 Jan 3. doi: 10.1055/s-0038-1676815. [Epub ahead of print] PubMed PMID: 30605919.
2)

Zhou D, Meng R, Zhang X, Guo L, Li S, Wu W, Duan J, Song H, Ding Y, Ji X. Intracranial hypertension induced by internal jugular vein stenosiscan be resolved by stenting. Eur J Neurol. 2018 Feb;25(2):365-e13. doi: 10.1111/ene.13512. Epub 2017 Dec 7. PubMed PMID: 29114973.
3)

Ahn SS, Miller TJ, Chen SW, Chen JF. Internal jugular vein stenosis is common in patients presenting with neurogenic thoracic outlet syndrome. Ann Vasc Surg. 2014 May;28(4):946-50. doi: 10.1016/j.avsg.2013.12.009. Epub 2014 Jan 21. PubMed PMID: 24462538.

Carotid artery stenosis

Carotid artery stenosis is a narrowing or constriction of the inner surface (lumen) of the carotid artery, usually caused by atherosclerosis.

Carotid artery stenosis (CS) is a major cause of ischemic stroke.

Classification

Asymptomatic carotid artery stenosis.

Symptomatic carotid artery stenosis

Clinical features

The mechanisms underlying acute cerebrovascular syndrome in patients with carotid artery stenosis remain unclear.

Carotid artery stenosis can present with no symptoms or with symptoms such as transient ischemic attacks (TIAs) or strokes, contributing to up to 10%-20% of strokes or transient ischemic attacks.

Cortical infarction occurs as a result of vulnerable plaque. Reduced cerebral perfusión induces border-zone infarction. Both factors are implicated in mixed-pattern infarction. Developments in noninvasive diagnostic modalities allow us to explore the mechanisms behind acute cerebrovascular syndrome in carotid artery stenosis and to determine the ideal therapies 1).

Diagnosis

Currently, MRI is the gold standard in carotid plaque imaging, with its high resolution and high sensitivity for identifying intraplaque hemorrhage (IPH), ulceration, lipid-rich necrotic core (LRNC), and inflammation. However, MRI is limited due to time constraints.

CT also allows for high-resolution imaging and can accurately detect ulceration and calcification, but cannot reliably differentiate LRNC from IPH.

PET/CT is an effective technique to identify active inflammation within the plaque, but it does not allow for assessment of anatomy, ulceration, IPH, or LRNC.

Ultrasonography, with the aid of contrast enhancement, is a cost-effective technique to assess plaque morphology and characteristics, but it is limited in sensitivity and specificity for detecting LRNC, plaque hemorrhage, and ulceration compared with MRI.

US can detect congenital variants, dissection, stenosis, and vasculopathy. In addition, correlation of US findings with both magnetic resonance imaging and computed tomography more comprehensively demonstrates the complementary nature of these imaging modalities 2).

Also summarized is how these advanced imaging techniques are being used in clinical practice to risk stratify patients with low- and high-grade carotid artery stenosis. For example, identification of IPH on MRI in patients with low-grade carotid artery stenosis is a risk factor for failure of medical therapy, and studies have shown that such patients may fair better with carotid endarterectomy (CEA). MR plaque imaging has also been found to be useful in identifying revascularization candidates who would be better candidates for CEA than carotid artery stenting (CAS), as high intraplaque signal on time of flight imaging is associated with vulnerable plaque and increased rates of adverse events in patients undergoing CAS but not CEA 3).

Treatment

Case series

Sixty-seven consecutive procedures were performed for internal carotid artery stenosis with CAS at the Ise Red Cross Hospital between November 2015 and February 2018. Procedures for emergency CAS for stroke in evolution or crescendo transient ischemic attack were excluded (n = 12). The embolic debris from remaining procedures (n = 55) was stained with hematoxylineosin and the red blood cells, white blood cells, and fibrinwere quantified by color-based segmentation. Cholesterol crystals and calcification were examined histopathologically. Diffusion-weighted imaging (DWI) was performed 1-3 days after CAS, and the images were used to classify procedures according to the presence of new lesions.

Of the 55 CAS procedures, new DWI lesions were identified after 32. One patient had symptomatic cerebral embolism. Higher proportions of patients with cholesterol crystals in embolic debris (17 vs. 78%, p < 0.001) and higher proportion of white blood cells (mean 2.3 [0-9.9] vs. 4.2% [0-29.9%], p < 0.01) were observed in the embolic debris of procedures with and without new DWI lesions.

Cholesterol crystals were common in the embolic debris from patients with postoperative ischemic lesions after CAS. These results suggest that inflammatory destabilization of the intraplaque lipid component is related to postprocedural DWI lesions 4).

References

1)

Kashiwazaki D, Akioka N, Kuwayama N, Noguchi K, Tanaka K, Kuroda S. Pathophysiology of acute cerebrovascular syndrome in patients with carotid artery stenosis: a magnetic resonance imaging/single-photon emission computed tomography study. Neurosurgery. 2015 Apr;76(4):427-34. doi: 10.1227/NEU.0000000000000655. PubMed PMID: 25621983.
2)

Deurdulian C, Emmanuel N, Tchelepi H, Grant EG, Malhi H. Beyond the Bifurcation: There Is More to Cerebrovascular Ultrasound Than Internal Carotid Artery Stenosis! Ultrasound Q. 2015 Nov 19. [Epub ahead of print] PubMed PMID: 26588099.
3)

Brinjikji W, Huston J 3rd, Rabinstein AA, Kim GM, Lerman A, Lanzino G. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg. 2016 Jan;124(1):27-42. doi: 10.3171/2015.1.JNS142452. Epub 2015 Jul 31. PubMed PMID: 26230478.
4)

Maekawa K, Shibata M, Nakajima H, Kitano Y, Seguchi M, Kobayashi K, Sano T, Yabana T, Miya F. Cholesterol Crystals in Embolic Debris are Associated with Postoperative Cerebral Embolism after Carotid Artery Stenting. Cerebrovasc Dis. 2019 Jan 2;46(5-6):242-248. doi: 10.1159/000495795. [Epub ahead of print] PubMed PMID: 30602147.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: