Rechargeable deep brain stimulation implantable pulse generator

Rechargeable deep brain stimulation implantable pulse generator

The Activa PC implantable pulse generator (IPG) demonstrates a significantly reduced batterylife of 2.1 years, with a median battery life of 4.5 years in comparison to 6.6 years in the KinetraIPG. Future technology developments should therefore be focused on improving the battery life of the newer IPG systems 1).

Nonrechargeable deep brain stimulation implantable pulse generators (IPGs) for movement disorders require surgical replacement every few years due to battery depletion. Rechargeable IPGs reduce frequency of replacement surgeries and inherent risks of complications but require frequent recharging 2).

Rechargeable deep brain stimulation implantable pulse generator for movement disorders are well received by patients as initial therapy and after conversion. Mild reduction in stimulation parameters might be allowed after conversion to RC IPG 3).

However, there is now a choice between fixed-life and rechargeable batteries, with each having their own advantages and disadvantages.

Most patients in a adult cohort with movement disorders chose the fixed-life battery. The better lifestyle associated with a fixed-life battery is a major factor influencing their choice. Rechargeable batteries may be more acceptable if the recharging process is improved, more convenient, and discreet 4).


Mitchell et al., evaluated patient experience with rechargeable IPGs and define predictive characteristics for higher satisfaction.

They contacted all patients implanted with rechargeable IPGs at a single center in a survey-based study. They analyzed patient satisfaction with respect to agediagnosis, target, charging duration, and body mass index. They tabulated hardware-related adverse events.

Dystonia patients had significantly higher satisfaction than Parkinson’s disease patients in recharging, display, programmer, and training domains. Common positive responses were “fewer surgeries” and “small size.” Common negative responses were “difficulty finding the right position to recharge” and “need to recharge every day.” Hardware-related adverse events occurred in 21 of 59 participants.

Patient experience with rechargeable IPGs was largely positive; however, frustrations with recharging and adverse events were common. Dystonia diagnosis was most predictive of high satisfaction across multiple categories, potentially related to expected long disease duration with need for numerous IPG replacements 5).


Hitti et al., implanted rechargeable stimulators in 206 patients undergoing DBS surgery, and demonstrated the cost-effectiveness and high patient satisfaction associated with this procedure 6).

References

1)

Fisher B, Kausar J, Garratt H, Hodson J, White A, Ughratdar I, Mitchell R. Battery Longevity Comparison of Two Commonly Available Dual Channel Implantable Pulse Generators Used for Subthalamic Nucleus Stimulation in Parkinson’s Disease. Stereotact Funct Neurosurg. 2018;96(3):151-156. doi: 10.1159/000488684. Epub 2018 Jun 19. PubMed PMID: 29920479.
2) , 5)

Mitchell KT, Volz M, Lee A, San Luciano M, Wang S, Starr PA, Larson P, Galifianakis NB, Ostrem JL. Patient Experience with Rechargeable Implantable Pulse Generator Deep Brain Stimulation for Movement Disorders. Stereotact Funct Neurosurg. 2019 Jul 9:1-7. doi: 10.1159/000500993. [Epub ahead of print] PubMed PMID: 31288242.
3)

Waln O, Jimenez-Shahed J. Rechargeable deep brain stimulation implantable pulse generators in movement disorders: patient satisfaction and conversion parameters. Neuromodulation. 2014 Jul;17(5):425-30; discussion 430. doi: 10.1111/ner.12115. Epub 2013 Sep 24. PubMed PMID: 24112630.
4)

Khaleeq T, Hasegawa H, Samuel M, Ashkan K. Fixed-Life or Rechargeable Battery for Deep Brain Stimulation: Which Do Patients Prefer? Neuromodulation. 2019 Jun;22(4):489-492. doi: 10.1111/ner.12810. Epub 2018 Aug 22. PubMed PMID: 30133071.
6)

Hitti FL, Vaughan KA, Ramayya AG, McShane BJ, Baltuch GH. Reduced long-term cost and increased patient satisfaction with rechargeable implantable pulse generators for deep brain stimulation. J Neurosurg. 2018 Sep 1:1-8. doi: 10.3171/2018.4.JNS172995. [Epub ahead of print] PubMed PMID: 30265199.

Access Card for Online Flash Cards Deep Brain Stimulation Management

Access Card for Online Flash Cards Deep Brain Stimulation Management

From $9.99

Buy

Q & A FlashCards, online (180 days). Textbooks, Courses, Books Simplified as FlashCards by Powell Publications.Very effective study tools especially when you only have a limited amount of time. They work with your textbook or without a textbook and can help you to review and learn essential terms, people, places, events, and key concepts. Q & A FlashCards run in any modern browser on any device. Registrations are not transferable.

Deep brain stimulation of the nucleus basalis of Meynert

Deep brain stimulation of the nucleus basalis of Meynert

Deep brain stimulation of the nucleus basalis of Meynert (NBM DBS) has been proposed as a treatment option for Parkinson disease dementia.

Low-frequency NBM DBS was safely conducted in patients with Parkinson disease dementia; however, no improvements were observed in the primary cognitive outcomes. Further studies may be warranted to explore its potential to improve troublesome neuropsychiatric symptoms 1).


Nombela et al., from Hospital Clínico San CarlosToronto Western Hospital, reported a Parkinson’s disease (PD) patient diagnosed with mild cognitive impairment who underwent DBS surgery targeting the Globus pallidus internus (GPi; to treat motor symptoms) and the nucleus basalis of Meynert (NBM; to treat cognitive symptoms) using a single electrode per hemisphere.

Compared to baseline, 2-month follow-up after GPi stimulation was associated with motor improvements, whereas partial improvements in cognitive functions were observed 3 months after the addition of NBM stimulation to GPi stimulation.

This case explores an available alternative for complete DBS treatment in PD, stimulating 2 targets at different frequencies with a single electrode lead 2).


A global experience is emerging for the use of DBS for these conditions, targeting key nodes in the memory circuit, including the fornix and nucleus basalis of Meynert. Such work holds promise as a novel therapeutic approach for one of medicine’s most urgent priorities 3).

A unique feature in the course of both Alzheimer disease (AD) and Parkinson’s dementia (PDD) is basal forebrain degeneration including the latter’s cholinergic projections to the cortex. Neurostimulation of ascending basal forebrain projections of the Nucleus basalis of Meynert (NBM) may, therefore, represent a new strategy for enhancing the residual nucleus basalis output. The relevance of the cholinergic forebrain for brain plasticity has, for instance, been illustrated by the reshaping of auditory receptive fields during and after stimulation of the NBM in the adult brain 4).

Deep brain stimulation of the nucleus basalis of Meynert is thought to positively affect cognition and might counteract the deterioration of nutritional status and progressive weight loss observed in Alzheimer disease (AD).

A study aims to assess the nutritional status of patients with AD before receiving DBS of the nucleus basalis of Meynert and after 1 year, and to analyze potential associations between changes in cognition and nutritional status.

Nutritional status was assessed using a modified Mini Nutritional Assessment, bioelectrical impedance analysis, a completed 3-day food diary, and analysis of serum levels of vitamin B12 and folate.

With a normal body mass index (BMI) at baseline (mean 23.75 kg/m²) and after 1 year (mean 24.59 kg/m²), all but one patient gained body weight during the period of the pilot study (mean 2.38 kg, 3.81% of body weight). This was reflected in a mainly stable or improved body composition, assessed by bioelectrical impedance analysis, in five of the six patients. Mean energy intake increased from 1534 kcal/day (min 1037, max 2370) at baseline to 1736 kcal/day (min 1010, max 2663) after 1 year, leading to the improved fulfillment of energy needs in four patients. The only nutritional factors that were associated with changes in cognition were vitamin B12 level at baseline (Spearman’s rho = 0.943, p = 0.005) and changes in vitamin B12 level (Spearman’s rho = -0.829, p = 0.042).

Patients with AD that received DBS of the nucleus basalis of Meynert demonstrated a mainly stable nutritional status within a 1-year period. Whether DBS is causative regarding these observations must be investigated in additional studies 5).

Case series

Case reports

References

1)

Gratwicke J, Zrinzo L, Kahan J, Peters A, Beigi M, Akram H, Hyam J, Oswal A, Day B, Mancini L, Thornton J, Yousry T, Limousin P, Hariz M, Jahanshahi M, Foltynie T. Bilateral Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia: A Randomized Clinical Trial. JAMA Neurol. 2018 Feb 1;75(2):169-178. doi: 10.1001/jamaneurol.2017.3762. PubMed PMID: 29255885; PubMed Central PMCID: PMC5838617.
2)

Nombela C, Lozano A, Villanueva C, Barcia JA. Simultaneous Stimulation of the Globus Pallidus Interna and the Nucleus Basalis of Meynert in the Parkinson-Dementia Syndrome. Dement Geriatr Cogn Disord. 2019 Jan 10;47(1-2):19-28. doi: 10.1159/000493094. [Epub ahead of print] PubMed PMID: 30630160.
3)

Sankar T, Lipsman N, Lozano AM. Deep brain stimulation for disorders of memory and cognition. Neurotherapeutics. 2014 Jul;11(3):527-34. doi: 10.1007/s13311-014-0275-0. Review. PubMed PMID: 24777384; PubMed Central PMCID: PMC4121440.
4)

Kilgard MP, Merzenich MM. Cortical map reorganization enabled by nucleus basalis activity. Science (1998) 279(5357):1714–810.1126/science.279.5357.1714
5)

Noreik M, Kuhn J, Hardenacke K, Lenartz D, Bauer A, Bührle CP, Häussermann P, Hellmich M, Klosterkötter J, Wiltfang J, Maarouf M, Freund HJ, Visser-Vandewalle V, Sturm V, Schulz RJ. Changes in Nutritional Status after Deep Brain Stimulation of the Nucleus Basalis of Meynert in Alzheimer’s Disease – Results of a Phase I Study. J Nutr Health Aging. 2015;19(8):812-8. doi: 10.1007/s12603-015-0496-x. PubMed PMID: 26412285.
WhatsApp WhatsApp us
%d bloggers like this: