Chronic subdural hematoma recurrence prevention

Chronic subdural hematoma recurrence prevention

In total, 402 studies were included in this analysis and 32 potential risk factors were evaluated. Among these, 21 were significantly associated with the postoperative recurrence of CSDH. Three risk factors (male, bilateral hematoma, and no drainage) had convincing evidence 1).

The single most important factor appears to be the residual subdural space after drainage of the chronic subdural hematoma and an effort should be made by the surgeon to facilitate the expansion of the underlying brain. The presence of a functioning drain for 48–72 h draining the subdural fluid and promoting brain expansion will reduce the subdural space, thus reducing the recurrence of the CSDH. Some of the relevant surgical nuances include placement of at least two burr holes with the burr holes located to drain multiple cavities, copious irrigation of the subdural space, placement of the drain in the dependent burr hole site, near-total filling of the subdural space with irrigation to prevent a pneumocephalus and placing a subdural drain. Closure of the site with a large piece of Gelfoam prevents the subgaleal blood to migrate into the subdural space.

Postoperative subdural drain of maximal 48 h is effective in reducing recurrent hematomas. However, the shortest possible drainage time without increasing the recurrence rate is unknown

see Subdural drain for chronic subdural hematoma

The effect of a physical property of irrigation solution (at body vs room temperature) on the chronic subdural hematoma recurrence rate needs further study.

Objective: To explore whether irrigation fluid temperature has an influence on cSDH recurrence.

Design, setting, and participants: This was a multicenter randomized clinical trial performed between March 16, 2016, and May 30, 2020. The follow-up period was 6 months. The study was conducted at 3 neurosurgical departments in Sweden. All patients older than 18 years undergoing cSDH evacuation during the study period were screened for eligibility in the study.

Interventions: The study participants were randomly assigned by 1:1 block randomization to the cSDH evacuation procedure with irrigation fluid at room temperature (RT group) or at body temperature (BT group).

Main outcomes and measures: The primary end point was recurrence requiring reoperation within 6 months. Secondary end points were mortality, health-related quality of life, and complication frequency.

Results: At 6 months after surgery, 541 patients (mean [SD] age, 75.8 [9.8] years; 395 men [73%]) had a complete follow-up according to protocol. There were 39 of 277 recurrences (14%) requiring reoperation in the RT group, compared with 16 of 264 recurrences (6%) in the BT group (odds ratio, 2.56; 95% CI, 1.38-4.66; P < .001). There were no significant differences in mortality, health-related quality of life, or complication frequency.

Conclusions and Relevance: In this study, irrigation at body temperature was superior to irrigation at room temperature in terms of fewer recurrences. This is a simple, safe, and readily available technique to optimize outcome in patients with cSDH. When irrigation is used in cSDH surgery, irrigation fluid at body temperature should be considered standard of care.

Trial registration: ClincalTrials.gov Identifier: NCT02757235 2).

A study aimed to evaluate the efficacy and safety of half-saline solution for irrigation in burr hole trephination for chronic subdural hematoma.

This randomized clinical trial was conducted in university hospital referral centers from 2020 to 2021. Sixty-three patients with chronic subdural hematoma eligible for burr hole trephination were primarily enrolled. Two patients were excluded because of concurrent stroke. Sixty-one patients were randomly allocated into case (HS=30) and control (normal-saline [NS]=31) groups. HS was used to irrigate the hematoma in the case group and NS was used in the control group. The patients were followed-up. Clinical variables including demographic and medical findings, postoperative computed tomography findings, postoperative complications, hospitalization period, recurrence rate, and functional status measured by the Barthel type B index were recorded.

Forty-six of 61 patients were male (75.4%), and the patients’ mean age was 65.4±16.9 years, with equal distribution between the 2 groups. Postoperative effusion and postoperative hospital stay duration were significantly lower in the HS group than in the NS group (p=0.002 and 0.033, respectively). The postoperative recurrence within 3 months in both groups was approximately equal (6.6%). In terms of functional outcomes and postoperative complications, HS showed similar results to those of NS.

Conclusion: HS as an irrigation fluid in BHC effectively reduced postoperative effusion and hospital stay duration without considerable complications.

Trial registration: Iranian Registry of Clinical Trials Identifier: IRCT20200608047688N1 3).


1)

Zhu F, Wang H, Li W, Han S, Yuan J, Zhang C, Li Z, Fan G, Liu X, Nie M, Bie L. Factors correlated with the postoperative recurrence of chronic subdural hematoma: An umbrella study of systematic reviews and meta-analyses. EClinicalMedicine. 2021 Dec 20;43:101234. doi: 10.1016/j.eclinm.2021.101234. PMID: 34988412; PMCID: PMC8703229.
2)

Bartley A, Bartek J Jr, Jakola AS, Sundblom J, Fält M, Förander P, Marklund N, Tisell M. Effect of Irrigation Fluid Temperature on Recurrence in the Evacuation of Chronic Subdural Hematoma: A Randomized Clinical Trial. JAMA Neurol. 2022 Nov 21. doi: 10.1001/jamaneurol.2022.4133. Epub ahead of print. PMID: 36409480.
3)

Mahmoodkhani M, Sharafi M, Sourani A, Tehrani DS. Half-Saline Versus Normal-Saline as Irrigation Solutions in Burr Hole Craniostomy to Treat Chronic Subdural Hematomata: A Randomized Clinical Trial. Korean J Neurotrauma. 2022 Sep 29;18(2):221-229. doi: 10.13004/kjnt.2022.18.e47. PMID: 36381457; PMCID: PMC9634318.

Chronic Subdural Hematoma Surgical Technique

Chronic Subdural Hematoma Surgical Technique

(1) Twist drill craniostomy for chronic subdural hematoma is a relatively safe technique that can be employed under local anesthesia and thus can be considered as first-line treatment in high-risk surgical candidates. (2) Single and double burr hole craniotomies have shown comparable results. (3) Intraoperative irrigation during burr-hole craniostomy doesn’t affect the outcome. (4) Drain insertion after hematoma evacuation lowers the recurrence risk. (5) Position of the drain is not significant but early drain removal is associated with higher recurrence rates. (6) Craniotomy is associated with high morbidity and mortality, hence should be reserved for recurrent and large septate hematoma cases. (7) Head elevation in the postoperative period reduces recurrence. (8) Embolization of the middle meningeal artery (EMMA): A novel treatment modality, is promising but requires further approval in terms of large sample-sized multicenter randomized control trials. In conclusion, further research is required on the subject to formulate guidelines regarding the management of this common neurosurgical emergency 1)


Due to the lack of consensus treatment, tissue plasminogen activator (tPA) has begun to be investigated to promote drainage and has shown promise in some early studies in reducing recurrence rates.


The most usual procedures for chronic subdural hematoma treatment include single or multiple burr hole drainage craniectomy. There is still controversy, however, about the risks and benefits of the different surgical approaches and types of drainage.

Till 1970s, craniotomy was the most commonly used method. Burr hole trephination for chronic subdural hematoma became the most preferred method from 1980s. In 1977Twist drill craniostomy for chronic subdural hematoma was introduced. Closed system drainage after a Burr hole (BH) or a Twist drill (TD) became the most frequently used surgical method 2).

Pre-operative evaluation of radiological features of CSDHs is crucial in determining the right indication for minimally invasive drainage. Minimally invasive treatments of CSH may reduce the use of anaesthetic drugs and worsening of pre-existing neurodegenerative disorders 3).

The duration of procedure was significantly more in Burr-Hole Craniostomy BHC than in Twist-Drill Craniostomy TDC. In postoperative outcome, there was no significant difference in the GCS score, motor power improvement, motor power deterioration, overall clinical improvement, and improvement in CT scans of both the groups. Postoperative residue requiring reoperation was significantly more in TDC group. There was no significant difference in the development acute SDH, reoperation rate, complications, death, and hospital stay in both the groups. Avoiding the complications of general anesthesia and giving the equal postoperative improvement and complications of BHC, the TDC is considered as an effective alternative to the BHC in the surgical management of CSDH 4)

Although nonsurgical treatment is often successful, trephination has more advantages, such as rapid resolution of the symptoms and short period of hospitalization. Nonsurgical treatment is possible in asymptomatic patients with a small CSDH. For the symptomatic patients with CSDH, trephination is the treatment of choice, either by BH or TD. In gray zone between surgery and medical treatment, shared decision making can be an ideal approach. For chronic subdural hematoma recurrences, repeated trephination is still effective for patients with a low risk of recurrence. If the risk of recurrence is high, additional management would be helpful. For the refractory CSDHs, it is necessary to obliterate the subdural space 5).


Chronic subdural hematoma treatment in the elderly include observation, operative burr holes or craniotomy, and bedside twist drill drainage. The decision on which technique to use should be determined by weighing the comorbidities and symptoms of the patient with the potential risks and benefits.

Chronic subdural hematoma are ideally treated with surgical drainage. Despite this common practice, there is still controversy surrounding the best surgical procedure. With lack of clear evidence of a superior technique, surgeons are free to base the decision on other factors that are not related to patient care.

Originally, CSDHs were treated by open craniotomy 6) 7) 8) 9). Later burr hole trephination (BHT) was adopted because it was less invasive with lower morbidity and recurrence rates when compared with standard craniotomy 10) 11) 12) 13) 14) 15).

The traditional methods include evacuation via a burr hole with closed system drainage with or without irrigation, two burr-hole craniostomy with closed system drainage with irrigation or craniotomy, with subdural drain or without drain placement.

Minicraniotomy (MC) emerged as an attractive alternative to BHT as it allows better visualisation of the subdural cavity, enabling better haemostasis and resection of membranes.

Although bedside twist drill evacuation may avoid operating room costs and anesthetic complications in an elderly patient population and allow earlier anticoagulation resumption treatment if necessary, there is also a risk of morbidity if uncontrolled bleeding is encountered or the patient is unable to tolerate the bedside procedure. However, bedside twist drill craniostomy is a reasonable and effective option for the treatment of subacute/chronic SDH in patients who may not be optimal surgical candidates 16).


Subperiosteal vs Subdural Drain After Burr-Hole Drainage of Chronic Subdural Hematoma: A Randomized Clinical Trial (cSDH-Drain-Trial) 17).

see Burr hole trephination for chronic subdural hematoma.

see Twist drill craniostomy for chronic subdural hematoma.

see Subdural drain for chronic subdural hematoma.

see Subdural evacuating port system for chronic subdural hematoma.

see Subperiosteal drain for chronic subdural hematoma

see Craniotomy for chronic subdural hematoma.

see Chronic subdural hematoma neuroendoscopy.


1)

Siddique AN, Khan SA, Khan AA, Aurangzeb A. Surgical Treatment Options For Chronic Subdural Haematoma. J Ayub Med Coll Abbottabad. 2022 Jul-Sep;34(3):550-556. doi: 10.55519/JAMC-03-10225. PMID: 36377174.
2) , 5)

Lee KS. How to Treat Chronic Subdural Hematoma? Past and Now. J Korean Neurosurg Soc. 2019 Mar;62(2):144-152. doi: 10.3340/jkns.2018.0156. Epub 2018 Nov 30. PubMed PMID: 30486622; PubMed Central PMCID: PMC6411568.
3)

Certo F, Maione M, Altieri R, Garozzo M, Toccaceli G, Peschillo S, Barbagallo GMV. Pros and cons of a minimally invasive percutaneous subdural drainage system for evacuation of chronic subdural hematoma under local anesthesia. Clin Neurol Neurosurg. 2019 Oct 10;187:105559. doi: 10.1016/j.clineuro.2019.105559. [Epub ahead of print] PubMed PMID: 31639631.
4)

Thavara BD, Kidangan GS, Rajagopalawarrier B. Comparative Study of Single Burr-Hole Craniostomy versus Twist-Drill Craniostomy in Patients with Chronic Subdural Hematoma. Asian J Neurosurg. 2019 Apr-Jun;14(2):513-521. doi: 10.4103/ajns.AJNS_37_19. PubMed PMID: 31143272; PubMed Central PMCID: PMC6516027.
6)

Ernestus R, Beldzinski P, Lanfermann H, Klug N. Chronic subdural hematoma: surgical treatment and outcome in 104 patients. Surg Neurol 1997;48:220–5.
7)

McKissock W, Richardson A, Bloom WH. Subdural hematoma: a review of 389 cases. Lancet 1960;1:1365–9.
8)

Tyson G et al. The role of craniectomy in the treatment of chronic subdural hematomas. J Neurosurg 1980;52:776–81.
9)

Putnam IJ, Cushing H. Chronic subdural hematoma. Its pathology, its relation to pachymeningitis hemorrhagica, and its surgical treatment. Arch Surg 1925;11:329–93.
10)

Chronic Almenawer S et al. Subdural hematoma management: a systematic review and meta-analysis of 34829 patients. Ann Surg 2014;259(3):449–57.
11)

Lee J, Ebel H, Ernestus R, Klug N. Various surgical treatments of chronic subdural hematoma and outcome in 172 patients: is membranectomy necessary? Surg Neurol 2004;61:523–5528.
12)

Ducruet A et al. The surgical management of chronic subdural hematoma. Neurosurg Rev 2012;35:155–69.
13)

Leroy H et al. Predictors of functional outcomes and recurrence of chronic subdural. J Clin Neurosci 2015;22:1895–900.
14)

Regan J, Worley E, Shelburne C, Pullarkat R, Burr Watson J. Hole Washout versus craniotomy for chronic subdural hematoma: patient outcome and cost analysis. PLoS One 2015;10(1):1–8.
15)

Mondorf Y, Abu-Owaimer M, Gaab M, Oertel J. Chronic subdural hematoma – Craniotomy versus burr hole trephination. Br J Neurosurg 2009;23(6):612–6.
16)

Garber S, McCaffrey J, Quigley EP, MacDonald JD. Bedside Treatment of Chronic Subdural Hematoma: Using Radiographic Characteristics to Revisit the Twist Drill. J Neurol Surg A Cent Eur Neurosurg. 2016 Jan 25. [Epub ahead of print] PubMed PMID: 26807616.
17)

Agrawal A, Pacheco-Hernandez A, Moscote-Salazar LR. Letter: Subperiosteal vs Subdural Drain After Burr-Hole Drainage of Chronic Subdural Hematoma: A Randomized Clinical Trial (cSDH-Drain-Trial). Neurosurgery. 2019 Aug 6. pii: nyz289. doi: 10.1093/neuros/nyz289. [Epub ahead of print] PubMed PMID: 31387117.

Middle meningeal artery embolization for chronic subdural hematoma trials

Middle meningeal artery embolization for chronic subdural hematoma trials

Several randomized controlled trials are planned or ongoing. In most of these trials, conventional neurosurgical treatment with or without adjunctive endovascular embolization is compared.


Given the encouraging results with a 91% long-term success rate in the series of Link et al., a large scale clinical trial is warranted 1).

https://clinicaltrials.gov/ct2/show/NCT03307395


A proposed trial aimed to conduct a head-to-head comparison between neurosurgical and endovascular treatment as stand-alone treatments.

The trial is academically driven and funded within existing public healthcare systems and infrastructure. Patients with uni- or bilateral cSDH, presenting with mild-to moderate symptoms, and admitted to neurosurgery on clinical grounds will be offered participation. Subjects are randomized 1:1 between conventional neurosurgical treatment (control) and endovascular embolization of the middle meningeal artery (intervention). Primary endpoint is reoperation due to clinically and/or radiologically significant recurrence within 3 months. Secondary endpoints include safety, technical success rate, neurological disability, and quality of life.

There are mounting retrospective data suggesting eMMA, as sole treatment or as an adjunctive to neurosurgery for cSDH, is safe and effective with a reoperation rate lower than neurosurgical hematoma evacuation alone. If randomized controlled trials confirm these findings, there is a potential for a paradigm shift in the treatment of cSDH where a minimally invasive procedure can replace open surgery in a large and oftentimes old and fragile patient cohort.

Trial registration: ClinicalTrials.gov, ClinicalTrials.gov Identifier NCT05267184 . Registered March 4, 2022 2).


MEMBRANE is an investigator-initiated, single-center, randomized controlled trial. Male, female, and diverse patients older than 18 years scheduled for surgical evacuation of a first chronic subdural hematoma will be assigned in a 1:1 fashion by block randomization to the chronic subdural hematoma treatment (surgery plus endovascular MMA embolization) or the control group (surgery alone). The primary trial endpoint is chronic subdural hematoma recurrence within 3 months of follow-up after surgery. Secondary endpoints comprise neurological deficits assessed by the modified Rankin Scale (mRS) and recurrence- or intervention-associated complications (see Chronic subdural hematoma surgery complications) see Middle meningeal artery embolization for chronic subdural hematoma complications during 3 months of follow-up. Assuming a risk difference of 20% of rebleeding and surgical revision, a power of 80%, and a drop-out rate of 10%, 154 patients will be enrolled in this trial, employing an adaptive O’Brien-Fleming approach with a planned interim analysis halfway.

The MEMBRANE trial will provide the first clinical experimental evidence on the effectiveness of endovascular embolization of the MMA as an adjunct to surgery to reduce the risk of recurrence after the evacuation of cSDH.

Trial registration: German Clinical Trials Registry (Deutsches Register Klinischer Studien [DRKS]) DRKS00020465. Registered on 18 Nov 2021 3).


1)

Link TW, Boddu S, Paine SM, Kamel H, Knopman J. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma: A Series of 60 Cases. Neurosurgery. 2019 Dec 1;85(6):801-807. doi: 10.1093/neuros/nyy521. PMID: 30418606.
2)

Drake M, Ullberg T, Nittby H, Marklund N, Wassélius J. Swedish trial on embolization of middle meningeal artery versus surgical evacuation in chronic subdural hematoma (SWEMMA)-a national 12-month multi-center randomized controlled superiority trial with parallel group assignment, open treatment allocation and blinded clinical outcome assessment. Trials. 2022 Nov 8;23(1):926. doi: 10.1186/s13063-022-06842-4. PMID: 36348417.
3)

Hoenning A, Lemcke J, Rot S, Stengel D, Hoppe B, Zappel K, Schuss P, Mutze S, Goelz L. Middle Meningeal Artery Embolization Minimizes Burdensome Recurrence Rates After Newly Diagnosed Chronic Subdural Hematoma Evacuation (MEMBRANE): study protocol for a randomized controlled trial. Trials. 2022 Aug 22;23(1):703. doi: 10.1186/s13063-022-06506-3. PMID: 35996195.
WhatsApp WhatsApp us
%d bloggers like this: