Effect of trauma center designation in severe traumatic brain injury outcome

Effect of trauma center designation in severe traumatic brain injury outcome

Trauma center designation is significantly associated with functional independence (FI) and independent expression (IE) (defined as a functional independence measure component of 4) after severe traumatic brain injury, but not moderate traumatic brain injuryProspective study is warranted to verify and explore factors contributing to this discrepancy 1).

Patients with severe traumatic brain injury treated in American College of Surgeons (ACS)-designated level 1 trauma centers have better survival rates and outcomes than those treated in ACS-designated level 2 trauma center2).

In 2019 a study showed superior functional outcomes and lower mortality rates in patients undergoing a neurosurgical procedurefor severe traumatic brain injury in level 1 trauma center3).

References

1)

Brown JB, Stassen NA, Cheng JD, Sangosanya AT, Bankey PE, Gestring ML. Trauma center designation correlates with functional independence after severe but not moderate traumatic brain injury. J Trauma. 2010 Aug;69(2):263-9. doi: 10.1097/TA.0b013e3181e5d72e. PubMed PMID: 20699734.
2)

DuBose JJ, Browder T, Inaba K, Teixeira PG, Chan LS, Demetriades D. Effect of trauma center designation on outcome in patients with severe traumatic brain injury. Arch Surg. 2008 Dec;143(12):1213-7; discussion 1217. doi: 10.1001/archsurg.143.12.1213. PubMed PMID: 19075174.
3)

Chalouhi N, Mouchtouris N, Saiegh FA, Starke RM, Theofanis T, Das SO, Jallo J. Comparison of Outcomes in Level I vs Level II Trauma Centers in Patients Undergoing Craniotomy or Craniectomy for Severe Traumatic Brain Injury. Neurosurgery. 2019 Jan 24. doi: 10.1093/neuros/nyy634. [Epub ahead of print] PubMed PMID: 30690608.

Traumatic spinal cord injury treatment

Early decompression surgery post-SCI can enhance patient outcomes, but does not directly facilitate neural repair and regeneration. Currently, there are no U.S. Food and Drug Administration-approved pharmacological therapies to augment motor function and functional recovery in individuals with traumatic SCI.

Acute traumatic spinal cord injury (SCI) is a devastating event with far-reaching physical, emotional, and economic consequences for patients, families, and society at large. Timely delivery of specialized care has reduced mortality; however, long-term neurological recovery continues to be limited. In recent years, a number of exciting neuroprotective and regenerative strategies have emerged and have come under active investigation in clinical trials, and several more are coming down the translational pipeline. Among ongoing trials are RISCIS (riluzole), INSPIRE study (Neuro-Spinal Scaffold), MASC (minocycline), and SPRING (VX-210). Microstructural MRI techniques have improved our ability to image the injured spinal cord at high resolution. This innovation, combined with serum and cerebrospinal fluid (CSF) analysis, holds the promise of providing a quantitative biomarker readout of spinal cord neural tissue injury, which may improve prognostication and facilitate stratification of patients for enrollment into clinical trials. Given evidence of the effectiveness of early surgical decompression and growing recognition of the concept that “time is spine,” infrastructural changes at a systems level are being implemented in many regions around the world to provide a streamlined process for transfer of patients with acute SCI to a specialized unit. With the continued aging of the population, central cord syndrome is soon expected to become the most common form of acute traumatic SCI; characterization of the pathophysiologynatural history, and optimal treatment of these injuries is hence a key public health priority. Collaborative international efforts have led to the development of clinical practice guidelines for traumatic SCI based on robust evaluation of current evidence 1).

1)

Badhiwala JH, Ahuja CS, Fehlings MG. Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine. 2018 Dec 20;30(1):1-18. doi: 10.3171/2018.9.SPINE18682. Review. PubMed PMID: 30611186.

Traumatic cervical spinal cord injury outcome

Injury to the spine and spinal cord is one of the common cause of disability and death. Several factors affect the outcome; but which are these factors (alone and in combination), are determining the outcomes are still unknown.

Based on parameters from the International Standards, physicians are able to inform patients about the predicted long-term outcomes, including the ability to walk, with high accuracy. In those patients who cannot participate in a reliable physical neurological examination, magnetic resonance imaging and electrophysiological examinations may provide useful diagnostic and prognostic information. As clinical research on this topic continues, the prognostic value of the reviewed diagnostic assessments will become more accurate in the near future. These advances will provide useful information for physicians to counsel tSCI patients and their families during the catastrophic initial phase after the injury 1).

Preclinical and class III clinical data suggest improved outcomes by maintaining the mean arterial pressure > 85 mm Hg and avoiding hypoxemia at least for 7 days following cervical SCI, and this level of monitoring and support should occur in the ICU 2).


100 cases of patients under 18 years at accident with acute traumatic cervical spinal cord injury admitted to spinal cord injury SCI centers participating in the European Multi-center study about SCI (EMSCI) between January 2005 and April 2016 were reviewed. According to their age at accident, age 13 to 17, patients were selected for the adolescent group. After applying in- and exclusion criteria 32 adolescents were included. Each adolescent patient was matched with two adult SCI patients for analysis.

ASIA Impairment scale (AIS) grade, neurological, sensory, motor level, total motor score, and Spinal Cord Independence Measure (SCIM III) total score.

Mean AIS conversion, neurological, motor and sensory levels as well as total motor score showed no significantly statistical difference in adolescents compared to the adult control group after follow up of 6 months. Significantly higher final SCIM scores (p < 0.05) in the adolescent group compared to adults as well as a strong trend for a higher gain in SCIM score (p < 0.061) between first and last follow up was found.

Neurological outcome after traumatic cervical SCI is not superior in adolescents compared to adults in this cohort. Significantly higher SCIM scores indicate more functional gain for the adolescent patients after traumatic cervical SCI. Juvenile age appears to be an independent predictor for a better functional outcome. 3).


A prospective observational study at single-center with all patients with cervical spinal cord injury (SCI), attending our hospital within a week of injury during a period of October 2011 to July 2013 was included for analysis. Demographic factors such as age, gender, etiology of injury, preoperative American Spinal Injury Association (ASIA) grade, upper (C2-C4) versus lower (C5-C7) cervical level of injury, imageological factors on magnetic resonance imaging (MRI), and timing of intervention were studied. Change in neurological status by one or more ASIA grade from the date of admission to 6 months follow-up was taken as an improvement. Functional grading was assessed using the functional independence measure (FIM) scale at 6 months follow-up.

A total of 39 patients with an acute cervical spine injury, managed surgically were included in this study. Follow-up was available for 38 patients at 6 months. No improvement was noted in patients with ASIA Grade A. Maximum improvement was noted in ASIA Grade D group (83.3%). The improvement was more significant in lower cervical region injuries. Patient with cord contusion showed no improvement as opposed to those with just edema wherein; the improvement was seen in 62.5% patients. Percentage of improvement in cord edema ≤3 segments (75%) was significantly higher than edema with >3 segments (42.9%). Maximum improvement in FIM score was noted in ASIA Grade C and patients who had edema (especially ≤3 segments) in MRI cervical spine.

Complete cervical SCI, upper-level cervical cord injury, patients showing MRI contusion, edema >3 segments group have worst improvement in neurological status at 6 months follow-up 4).


A total of 66 patients diagnosed with traumatic cervical SCI were selected for neurological assessment (using the International standards for neurological classification of spinal cord injury [ISNCSCI]) and functional evaluation (based on the Korean version Modified Barthel Index [K-MBI] and Functional Independence Measure [FIM]) at admission and upon discharge. All of the subjects received a preliminary electrophysiological assessment, according to which they were divided into two groups as follows: those with cervical radiculopathy (the SCI/Rad group) and those without (the SCI group).

A total of 32 patients with cervical SCI (48.5%) had cervical radiculopathy. The initial ISNCSCI scores for sensory and motor, K-MBI, and total FIM did not significantly differ between the SCI group and the SCI/Rad group. However, at discharge, the ISNCSCI scores for motor, K-MBI, and FIM of the SCI/Rad group showed less improvement (5.44±8.08, 15.19±19.39 and 10.84±11.49, respectively) than those of the SCI group (10.76±9.86, 24.79±19.65 and 17.76±15.84, respectively) (p<0.05). In the SCI/Rad group, the number of involved levels of cervical radiculopathy was negatively correlated with the initial and follow-up motors score by ISNCSCI.

Cervical radiculopathy is not rare in patients with traumatic cervical SCI, and it can impede neurological and functional improvement. Therefore, detection of combined cervical radiculopathy by electrophysiological assessment is essential for accurate prognosis of cervical SCI patients in the rehabilitation unit 5).

References

1)

van Middendorp JJ, Goss B, Urquhart S, Atresh S, Williams RP, Schuetz M. Diagnosis and prognosis of traumatic spinal cord injury. Global Spine J. 2011 Dec;1(1):1-8. doi: 10.1055/s-0031-1296049. PubMed PMID: 24353930; PubMed Central PMCID: PMC3864437.
2)

Schwartzbauer G, Stein D. Critical Care of Traumatic Cervical Spinal Cord Injuries: Preventing Secondary Injury. Semin Neurol. 2016 Dec;36(6):577-585. Epub 2016 Dec 1. Review. PubMed PMID: 27907962.
3)

Geuther M, Grassner L, Mach O, Klein B, Högel F, Voth M, Bühren V, Maier D, Abel R, Weidner N, Rupp R, Fürstenberg CH; EMSCI study group, Schneidmueller D. Functional outcome after traumatic cervical spinal cord injury is superior in adolescents compared to adults. Eur J Paediatr Neurol. 2018 Dec 11. pii: S1090-3798(18)30247-2. doi: 10.1016/j.ejpn.2018.12.001. [Epub ahead of print] PubMed PMID: 30579697.
4)

Srinivas BH, Rajesh A, Purohit AK. Factors affecting outcome of acute cervical spine injury: A prospective study. Asian J Neurosurg. 2017 Jul-Sep;12(3):416-423. doi: 10.4103/1793-5482.180942. PubMed PMID: 28761518; PubMed Central PMCID: PMC5532925.
5)

Kim SY, Kim TU, Lee SJ, Hyun JK. Prognosis for patients with traumatic cervical spinal cord injury combined with cervical radiculopathy. Ann Rehabil Med. 2014 Aug;38(4):443-9. doi: 10.5535/arm.2014.38.4.443. Epub 2014 Aug 28. PubMed PMID: 25229022; PubMed Central PMCID: PMC4163583.
WhatsApp WhatsApp us
%d bloggers like this: