Pediatric Severe Traumatic Brain Injury

Pediatric Severe Traumatic Brain Injury

see Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition.

New level II and level III evidence-based recommendations and an algorithm provide additional guidance for the development of local protocols to treat pediatric patients with severe traumatic brain injury. The intention is to identify and institute a sustainable process to update these Guidelines as new evidence becomes available 1).

Greenan et al., used database research to evaluate admission clinical and CT scan characteristics for use as a decision tool to help clinicians caring for children with very severe traumatic brain injury. It may help clinicians identify children who can benefit the most from aggressive medical and surgical intervention 2).


Sarnaik et al., failed to detect mortality differences across age strata in children with severe TBI. We have discerned novel associations between age and various markers of injury-unrelated to AHT-that may lead to testable hypotheses in the future 3).

References

1)

Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, Davis-O’Reilly C, Hart EL, Bell MJ, Bratton SL, Grant GA, Kissoon N, Reuter-Rice KE, Vavilala MS, Wainwright MS. Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: Update of the Brain Trauma Foundation Guidelines, Executive Summary. Pediatr Crit Care Med. 2019 Mar;20(3):280-289. doi: 10.1097/PCC.0000000000001736. PubMed PMID: 30830016.
2)

Greenan K, Taylor SL, Fulkerson D, Shahlaie K, Gerndt C, Krueger EM, Zwienenberg M. Selection of children with ultra-severe traumatic brain injury for neurosurgical intervention. J Neurosurg Pediatr. 2019 Apr 5:1-10. doi: 10.3171/2019.1.PEDS18293. [Epub ahead of print] PubMed PMID: 30952132.
3)

Sarnaik A, Ferguson NM, O’Meara AMI, Agrawal S, Deep A, Buttram S, Bell MJ, Wisniewski SR, Luther JF, Hartman AL, Vavilala MS; Investigators of the ADAPT Trial. Age and Mortality in Pediatric Severe Traumatic Brain Injury: Results from an International Study. Neurocrit Care. 2018 Jun;28(3):302-313. doi: 10.1007/s12028-017-0480-x. PubMed PMID: 29476389.

Effect of trauma center designation in severe traumatic brain injury outcome

Effect of trauma center designation in severe traumatic brain injury outcome

Trauma center designation is significantly associated with functional independence (FI) and independent expression (IE) (defined as a functional independence measure component of 4) after severe traumatic brain injury, but not moderate traumatic brain injuryProspective study is warranted to verify and explore factors contributing to this discrepancy 1).

Patients with severe traumatic brain injury treated in American College of Surgeons (ACS)-designated level 1 trauma centers have better survival rates and outcomes than those treated in ACS-designated level 2 trauma center2).

In 2019 a study showed superior functional outcomes and lower mortality rates in patients undergoing a neurosurgical procedurefor severe traumatic brain injury in level 1 trauma center3).

References

1)

Brown JB, Stassen NA, Cheng JD, Sangosanya AT, Bankey PE, Gestring ML. Trauma center designation correlates with functional independence after severe but not moderate traumatic brain injury. J Trauma. 2010 Aug;69(2):263-9. doi: 10.1097/TA.0b013e3181e5d72e. PubMed PMID: 20699734.
2)

DuBose JJ, Browder T, Inaba K, Teixeira PG, Chan LS, Demetriades D. Effect of trauma center designation on outcome in patients with severe traumatic brain injury. Arch Surg. 2008 Dec;143(12):1213-7; discussion 1217. doi: 10.1001/archsurg.143.12.1213. PubMed PMID: 19075174.
3)

Chalouhi N, Mouchtouris N, Saiegh FA, Starke RM, Theofanis T, Das SO, Jallo J. Comparison of Outcomes in Level I vs Level II Trauma Centers in Patients Undergoing Craniotomy or Craniectomy for Severe Traumatic Brain Injury. Neurosurgery. 2019 Jan 24. doi: 10.1093/neuros/nyy634. [Epub ahead of print] PubMed PMID: 30690608.

Traumatic spinal cord injury treatment

Early decompression surgery post-SCI can enhance patient outcomes, but does not directly facilitate neural repair and regeneration. Currently, there are no U.S. Food and Drug Administration-approved pharmacological therapies to augment motor function and functional recovery in individuals with traumatic SCI.

Acute traumatic spinal cord injury (SCI) is a devastating event with far-reaching physical, emotional, and economic consequences for patients, families, and society at large. Timely delivery of specialized care has reduced mortality; however, long-term neurological recovery continues to be limited. In recent years, a number of exciting neuroprotective and regenerative strategies have emerged and have come under active investigation in clinical trials, and several more are coming down the translational pipeline. Among ongoing trials are RISCIS (riluzole), INSPIRE study (Neuro-Spinal Scaffold), MASC (minocycline), and SPRING (VX-210). Microstructural MRI techniques have improved our ability to image the injured spinal cord at high resolution. This innovation, combined with serum and cerebrospinal fluid (CSF) analysis, holds the promise of providing a quantitative biomarker readout of spinal cord neural tissue injury, which may improve prognostication and facilitate stratification of patients for enrollment into clinical trials. Given evidence of the effectiveness of early surgical decompression and growing recognition of the concept that “time is spine,” infrastructural changes at a systems level are being implemented in many regions around the world to provide a streamlined process for transfer of patients with acute SCI to a specialized unit. With the continued aging of the population, central cord syndrome is soon expected to become the most common form of acute traumatic SCI; characterization of the pathophysiologynatural history, and optimal treatment of these injuries is hence a key public health priority. Collaborative international efforts have led to the development of clinical practice guidelines for traumatic SCI based on robust evaluation of current evidence 1).

1)

Badhiwala JH, Ahuja CS, Fehlings MG. Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine. 2018 Dec 20;30(1):1-18. doi: 10.3171/2018.9.SPINE18682. Review. PubMed PMID: 30611186.
× How can I help you?
WhatsApp WhatsApp us
%d bloggers like this: