Traumatic brain injury epidemiology

Traumatic brain injury epidemiology

In 2019, relevant articles and registries were identified via systematic review; study quality was higher in the high-income countries (HICs) than in the low- and middle-income countries (LMICs). Sixty-nine million (95% CI 64-74 million) individuals worldwide are estimated to sustain a TBI each year. The proportion of TBIs resulting from road traffic accidents was greatest in Africa and Southeast Asia (both 56%) and lowest in North America (25%). The incidence of RTA was similar in Southeast Asia (1.5% of the population per year) and Europe (1.2%). The overall incidence of TBI per 100,000 people was greatest in North America (1299 cases, 95% CI 650-1947) and Europe (1012 cases, 95% CI 911-1113) and least in Africa (801 cases, 95% CI 732-871) and the Eastern Mediterranean (897 cases, 95% CI 771-1023). The LMICs experience nearly 3 times more cases of TBI proportionally than HICs.

Sixty-nine million (95% CI 64-74 million) individuals are estimated to suffer TBI from all causes each year, with the Southeast Asian and Western Pacific regions experiencing the greatest overall burden of disease. Head injury following road traffic collision is more common in LMICs, and the proportion of TBIs secondary to road traffic collision is likewise greatest in these countries. Meanwhile, the estimated incidence of TBI is highest in regions with higher-quality data, specifically in North America and Europe 1).


Traumatic brain injury (TBI) is a critical public health and socio-economic problem throughout the world, making epidemiological monitoring of incidence, prevalence and outcome necessary.

Every 15 seconds someone suffers a traumatic brain injury (TBI) in the United States. TBI causes more deaths in males <35 years old than all other diseases combined, and it is estimated that 2% of the U.S. population lives with TBI-associated disability. Despite extensive research and success in animal studies, successful drug therapies have proved elusive in clinical trials 2).

It is one of leading causes of mortality and disability worldwide and is estimated to surpass many diseases by 2020 3) 4).

It is the leading cause of mortality and morbidity in children 5).

Nonaccidental head injury, as seen in domestic child abuse cases, is often associated with spine injury, and spinal subdural hematoma is the most frequent diagnosis. While spinal epidural hematomas are a rare occurrence, the incidence of spontaneous epidural hematomas occurring in nonaccidental head injury patients is even lower 6).

Epidemiology in China

Sun et al. conducted a nationally representative door-to-door survey in the general population across all age groups in 31 provinces in mainland China in 2013.

All participants were reviewed for a history of physician-diagnosed TBI by trained investigators using a structured questionnaire. TBI survivors were considered as prevalent cases at the prevalent time. The present study also examined the odds of TBI as a function of sex, age, and other demographical variables using logistic regression model. + Of 583,870 participants, 2,673 individuals had suffered from a TBI during their past life, yielding a weighted prevalence of being 442.4 (95% CI 342.2-542.6) per 100,000 person. The TBI prevalence increased with increasing age. The present study observed the multiadjusted ORs of TBI were 1.9 (95% CI 1.8-2.1) for the male, 1.9 (95% CI 1.2-3.1) for the farmers, 1.9 (95% CI 1.2-3.3) for the retiree or homemakers, 3.4 (95% CI 1.5-7.7), and 2.8 (95% CI 1.1-6.6) for those whose education were primary school and high school, respectively. The most common external cause was road traffic accidents among those who were aged 18-34 years old and those whose educational levels were middle school in both genders.

The results indicate TBI was substantially prevalent among Chinese population and underscore the need to develop national strategies to improve the safe education on road and traffic of TBI in rural residents and some subgroup population 7).

Epidemiology in the United States

The Centers for Disease Control and Prevention (CDC) estimate that more than 1.7 million each year in USA sustain TBI. Of these, approximately 1.4 million are treated and released from emergency centers, 275,000 are hospitalized, 80,000 suffer long-term disability and 52,000 die 8) ,and another 235,000 are hospitalized for non-fatal TBI 9).

Incidence of TBI in all industrialized countries is comparable to the U.S., with estimates ranging from 150 to more than 300 per 100,000

Annual incidence of approximately 250-600 patients per 100,000, and mortality of 17 cases per 100,000.

It is one of the most common causes of death in ordinary accidents, natural disasters, or warfare.

These injuries frequently occur outside, leaving injured individuals exposed to environmental temperature extremes before they are transported to a hospital.

Each year, approximately 100,000 patients require neurosurgical evacuation of an intracranial hematoma in the United States 10).

There are strong and demographically stable associations between TBI and substance use. These associations may not only increase the odds of injury but impair the quality of post injury recovery 11).

Epidemiology in India

The exact incidence is unavailable in India.

From August 2012 to May 2013 at Department of Neurosurgery, S.C.B. Medical College, Cuttack, Odisha, India. All the pertinent details from case records of hundred and forty-seven children <15 years with TBI were analyzed. Follow-up was done for 6 months at outpatients department.

Age wise, incidence and severity of TBI is more common in 10-15 years. Males outnumber females with a male: female ratio 2.19:1. Overall, road traffic accident (RTA) is the commonest mode of injury. Assault is not uncommon (7.48% cases). Falls is common in <5 years while RTA is common in 5-15 years. The extradural hematoma was the most common injury pattern; however, surgical consideration was maximal for fracture skull. Overall mortality was 7.48%. Diffuse axonal injury has the maximum individual potential for mortality. We noticed excellent recovery in 68.7%, disabilities in 17.68%, and persistent vegetative state in 5.45% cases.

TBI in children carries good outcome, if resuscitated and referred early to a neurotrauma center, and managed subsequently on an individualized basis with a well-organized team approach. Severe TBI in children has a poor outcome 12).

Epidemiology in Europe

Traumatic brain injury (TBI) is a common reason for presentation at the emergency department (ED) and hospital admission in Europe.

In total, 28 epidemiological studies on TBI from 16 European countries were identified in the literature. A great variation was found in case definitions and case ascertainment between studies. Falls and road traffic accidents (RTA) were the two most frequent causes of TBI, with falls being reported more frequently than RTA 13).

In 2006 it was difficult to reach a consensus on all epidemiological findings across the 23 published European studies because of critical differences in methods employed across the reports 14).

Spain

2015

A search was conducted in the PubMed electronic database using the terms: epidemiology, incidence, brain injur*, head injur* and Europe. Only articles published in English and reporting on data collected in Europe between 1990 and 2014 were included. In total, 28 epidemiological studies on TBI from 16 European countries were identified in the literature. A great variation was found in case definitions and case ascertainment between studies. Falls and road traffic accidents (RTA) were the two most frequent causes of TBI, with falls being reported more frequently than RTA. In most of the studies a peak TBI incidence was seen in the oldest age groups. In the meta-analysis, an overall incidence rate of 262 per 100,000 for admitted TBI was derived.

Interpretation of published epidemiologic studies is confounded by differences in inclusion criteria and case ascertainment. Nevertheless, changes in epidemiological patterns are found: falls are now the most common cause of TBI, most notably in elderly patients. Improvement of the quality of standardised data collection for TBI is mandatory for reliable monitoring of epidemiological trends and to inform appropriate targeting of prevention campaigns 15).

Romania

A coordinated strategy to evaluate this public health problem in Romania would first of all rely on a related advanced monitoring system, to provide precise information about the epidemiology, clinical and paraclinical data, but concerning the social and economic connected consequences, too 16).

References

1)

Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, Agrawal A, Adeleye AO, Shrime MG, Rubiano AM, Rosenfeld JV, Park KB. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018 Apr 1:1-18. doi: 10.3171/2017.10.JNS17352. [Epub ahead of print] PubMed PMID: 29701556.
2)

Maas, A. I. R., Menon, D. K., et al. (2012). “Re-orientation of clinical research in traumatic brain injury: report of an international workshop on comparative effectiveness research.” Journal of Neurotrauma 29(1): 32-46.
3)

Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation 2007;22:341-53. Back to cited text no. 1
4)

Lopez AD, Murray CC. The global burden of disease, 1990-2020. Nat Med 1998;4:1241-3.
5)

K. S. Quayle, D. M. Jaffe, N. Kuppermann et al., “Diagnostic testing for acute head injury in children: when are head computed tomography and skull radiographs indicated?” Pediatrics, vol. 99, no. 5, article e11, 1997.
6)

Rangwala SD, Birk DM, Tobin MK, Hahn YS, Nikas DC. Spontaneous Resolution of Spinal Epidural Hematoma Resulting from Domestic Child Abuse: Case Report. Pediatr Neurosurg. 2016 Sep 20. [Epub ahead of print] PubMed PMID: 27644085.
7)

Sun D, Jiang B, Ru X, Sun H, Fu J, Wu S, Wang L, Wang L, Zhang M, Liu B, Wang W; for the NESS-China investigators. Prevalence and Altered Causes of Traumatic Brain Injury in China: A Nationwide Survey in 2013. Neuroepidemiology. 2019 Dec 18:1-8. doi: 10.1159/000501911. [Epub ahead of print] PubMed PMID: 31851999.
8)

Faul M, Xu L, Wald MM & Coronado VG. (2010). Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control
9)

Corrigan JD, Selassie AW, Orman JA. The epidemiology of traumatic brain injury. J Head Trauma Rehabil 2010; 25: 72–80.
10)

Feinberg M, Mai JC, Ecklund J. Neurosurgical Management in Traumatic Brain Injury. Semin Neurol. 2015 Feb;35(1):50-56. Epub 2015 Feb 25. PubMed PMID: 25714867.
11)

Ilie G, Mann RE, Hamilton H, Adlaf EM, Boak A, Asbridge M, Rehm J, Cusimano MD. Substance Use and Related Harms Among Adolescents With and Without Traumatic Brain Injury. J Head Trauma Rehabil. 2014 Nov 25. [Epub ahead of print] PubMed PMID: 25427256.
12)

Satapathy MC, Dash D, Mishra SS, Tripathy SR, Nath PC, Jena SP. Spectrum and outcome of traumatic brain injury in children <15 years: A tertiary level experience in India. Int J Crit Illn Inj Sci. 2016 Jan-Mar;6(1):16-20. PubMed PMID: 27051617.
13) , 15)

Peeters W, van den Brande R, Polinder S, Brazinova A, Steyerberg EW, Lingsma HF, Maas AI. Epidemiology of traumatic brain injury in Europe. Acta Neurochir (Wien). 2015 Oct;157(10):1683-96. doi: 10.1007/s00701-015-2512-7. Epub 2015 Aug 14. PubMed PMID: 26269030.
14)

Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J. A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien). 2006 Mar;148(3):255-68; discussion 268. Review. PubMed PMID: 16311842.
16)

Popescu C, Anghelescu A, Daia C, Onose G. Actual data on epidemiological evolution and prevention endeavours regarding traumatic brain injury. J Med Life. 2015 Jul-Sep;8(3):272-7. Review. PubMed PMID: 26351526; PubMed Central PMCID: PMC4556905.

Severe traumatic brain injury outcome

Severe traumatic brain injury outcome

There has been a secular trend towards reduced incidence of severe traumatic brain injury in the first world, driven by public health interventions such as seatbelt legislation, helmet use, and workplace health and safety regulations. This has paralleled improved outcomes following TBI delivered in a large part by the widespread establishment of specialised neurointensive care 1).

Effect of trauma center designation in severe traumatic brain injury outcome

see Effect of trauma center designation in severe traumatic brain injury outcome


Mortality or severe disability affects the majority of patients after severe traumatic brain injury (TBI). Adherence to the brain trauma foundation severe traumatic brain injury guidelines has overall improved outcomes; however, traditional as well as novel interventions towards intracranial hypertension and secondary brain injury have come under scrutiny after series of negative randomized controlled trials. In fact, it would not be unfair to say there has been no single major breakthrough in the management of severe TBI in the last two decades. One plausible hypothesis for the aforementioned failures is that by the time treatment is initiated for neuroprotection, or physiologic optimization, irreversible brain injury has already set in. Lazaridis et al., and others, have developed predictive models based on machine learning from continuous time series of intracranial pressure and partial pressure of brain tissue oxygen. These models provide accurate predictions of physiologic crises events in a timely fashion, offering the opportunity for an earlier application of targeted interventions. In a article, Lazaridis et al., review the rationale for prediction, discuss available predictive models with examples, and offer suggestions for their future prospective testing in conjunction with preventive clinical algorithms 2).


Determining the prognostic significance of clinical factors for patients with severe head injury can lead to an improved understanding of the pathophysiology of head injury and to improvement in therapy. A technique known as the sequential Bayes method has been used previously for the purpose of prognosis. The application of this method assumes that prognostic factors are statistically independent. It is now known that they are not. Violation of the assumption of independence may produce errors in determining prognosis. As an alternative technique for predicting the outcome of patients with severe head injury, a logistic regression model is proposed. A preliminary evaluation of the method using data from 115 patients with head injury shows the feasibility of using early data to predict outcome accurately and of being able to rank input variables in order of their prognostc significance. 3).


A prospective and consecutive series of 225 patients with severe head injuries who were managed in a uniform way was analyzed to relate outcome to several clinical variables. Good recovery or moderate disability were achieved by 56% of the patients, 10% remained severely disabled or vegetative, and 34% died. Factors important in predicting a poor outcome included the presence of intracranial hematoma, increasing age, motor impairment, impaired or absent eye movements or pupillary light reflexes, early hypotension, hypoxemia or hypercarbia, and raised intracranial pressure over 20 mm Hg despite artificial ventilation. Most of these predictive factors were assessed on admission, but a subset of 158 patients was identified in whom coma was present on admission and was known to have persisted at least until the following day. Although the mortality in this subset (40%) was higher than in the total series, it was lower than in several comparable reported series of patients with severe head injury. Predictive correlations were equally strong in the entire series and in the subset of 158 patients with coma. A plea is made for inclusion in the definition of “severe head injury” of all patients who do not obey commands or utter recognizable words on admission to the hospital after early resuscitation 4).


Survival rate of isolated severe TBI patients who required an emergent neurosurgical intervention could be time dependent. These patients might benefit from expedited process (computed tomographic scan, neurosurgical consultation, etc.) to shorten the time to surgical intervention 5).

The impact of a moderate to severe brain injury can include:

Cognitive deficits including difficulties with:

Attention Concentration Distractibility Memory Speed of Processing Confusion Perseveration Impulsiveness Language Processing “Executive functions” Speech and Language

not understanding the spoken word (receptive aphasia) difficulty speaking and being understood (expressive aphasia) slurred speech speaking very fast or very slow problems reading problems writing Sensory

difficulties with interpretation of touch, temperature, movement, limb position and fine discrimination Perceptual

the integration or patterning of sensory impressions into psychologically meaningful data Vision

partial or total loss of vision weakness of eye muscles and double vision (diplopia) blurred vision problems judging distance involuntary eye movements (nystagmus) intolerance of light (photophobia) Hearing

decrease or loss of hearing ringing in the ears (tinnitus) increased sensitivity to sounds Smell

loss or diminished sense of smell (anosmia) Taste

loss or diminished sense of taste Seizures

the convulsions associated with epilepsy that can be several types and can involve disruption in consciousness, sensory perception, or motor movements Physical Changes

Physical paralysis/spasticity Chronic pain Control of bowel and bladder Sleep disorders Loss of stamina Appetite changes Regulation of body temperature Menstrual difficulties Social-Emotional

Dependent behaviors Emotional ability Lack of motivation Irritability Aggression Depression Disinhibition Denial/lack of awareness


Both single predictors from early clinical examination and multiple hospitalization variables/parameters can be used to determine the long-term prognosis of TBI. Predictive models like the IMPACT or CRASH prognosis calculator (based on large sample sizes) can predict mortality and unfavorable outcomes. Moreover, imaging techniques like MRI (Magnetic Resonance Imaging) can also predict consciousness recovery and mental recovery in severe TBI, while biomarkers associated with stress correlate with, and hence can be used to predict, severity and mortality. All predictors have limitations in clinical application. Further studies comparing different predictors and models are required to resolve limitations of current predictors 6).

References

1)

Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury. J Neurol. 2019 Sep 28. doi: 10.1007/s00415-019-09541-4. [Epub ahead of print] PubMed PMID: 31563989.
2)

Lazaridis C, Rusin CG, Robertson CS. Secondary Brain Injury: Predicting and Preventing Insults. Neuropharmacology. 2018 Jun 6. pii: S0028-3908(18)30279-X. doi: 10.1016/j.neuropharm.2018.06.005. [Epub ahead of print] Review. PubMed PMID: 29885419.
3)

Stablein DM, Miller JD, Choi SC, Becker DP. Statistical methods for determining prognosis in severe head injury. Neurosurgery. 1980 Mar;6(3):243-8. PubMed PMID: 6770283.
4)

Miller JD, Butterworth JF, Gudeman SK, Faulkner JE, Choi SC, Selhorst JB, Harbison JW, Lutz HA, Young HF, Becker DP. Further experience in the management of severe head injury. J Neurosurg. 1981 Mar;54(3):289-99. PubMed PMID: 7463128.
5)

Matsushima K, Inaba K, Siboni S, Skiada D, Strumwasser AM, Magee GA, Sung GY, Benjaminm ER, Lam L, Demetriades D. Emergent operation for isolated severe traumatic brain injury: Does time matter? J Trauma Acute Care Surg. 2015 Aug 28. [Epub ahead of print] PubMed PMID: 26317818.
6)

Gao L, Wu X. Prediction of clinical outcome in severe traumatic brain injury. Front Biosci (Landmark Ed). 2015 Jan 1;20:763-771. PubMed PMID: 25553477.

Cervical traumatic spinal cord injury outcome

Cervical traumatic spinal cord injury outcome

Injury to the spine and spinal cord is one of the common cause of disability and death. Several factors affect the outcome; but which are these factors (alone and in combination), are determining the outcomes are still unknown.

Based on parameters from the International Standards, physicians are able to inform patients about the predicted long-term outcomes, including the ability to walk, with high accuracy. In those patients who cannot participate in a reliable physical neurological examination, magnetic resonance imaging and electrophysiological examinations may provide useful diagnostic and prognostic information. As clinical research on this topic continues, the prognostic value of the reviewed diagnostic assessments will become more accurate in the near future. These advances will provide useful information for physicians to counsel tSCI patients and their families during the catastrophic initial phase after the injury 1).

In cervical traumatic spinal cord injury (TSCI), the therapeutic effect of timing of surgery on neurological recovery remains uncertain. Additionally, the relationship between the extent of decompression, imaging biomarker evidence of injury severity, and the outcome are incompletely understood.

Aarabi et al., investigated the effect of timing of decompression on long-term neurological outcome in patients with complete spinal cord decompression confirmed on postoperative MRI. AIS grade conversion was determined in 72 AIS grades A, B, and C patients 6 months after confirmed decompression. Thirty-two patients underwent decompressive surgery ultra-early (<12 hours), 25 early (12-24 hours), and 15 late (>24-138.5 hours) after injury. Age, gender, injury mechanism, intramedullary lesion length (IMLL) on MRI, admission ASIA motor score, and surgical technique were not statistically different between groups. Motor complete patients (p=0.009) and those with fracture-dislocations (p=0.01) tended to be operated earlier. Improvement of one grade or more was present in 55.6% in AIS grade A, 60.9% in AIS grade B, and 86.4% in AIS grade C patients. Admission AIS motor score (p=0.0004) and pre-operative IMLL (p=0.00001) were the strongest predictors of neurological outcome. AIS grade improvement occurred in 65.6%, 60%, and 80% of patients who underwent decompression ultra-early, early, and late, respectively (p=0.424). Multiple regression analysis revealed that IMLL was the only significant variable predictive of AIS grade conversion to a better grade (odds ratio, 0.908; CI, 0.862-0.957; p<0.001).

They conclude that in patients with postoperative MRI confirmation of complete decompression following cervical TSCI, pre-operative IMLL, not the timing of surgery, determine the long-term neurological outcome 2).


Preclinical and class III clinical data suggest improved outcomes by maintaining the mean arterial pressure > 85 mm Hg and avoiding hypoxemia at least for 7 days following cervical SCI, and this level of monitoring and support should occur in the ICU 3).


100 cases of patients under 18 years at accident with acute traumatic cervical spinal cord injury admitted to spinal cord injury SCI centers participating in the European Multi-center study about SCI (EMSCI) between January 2005 and April 2016 were reviewed. According to their age at the accident, age 13 to 17, patients were selected for the adolescent group. After applying in- and exclusion criteria 32 adolescents were included. Each adolescent patient was matched with two adult SCI patients for analysis.

ASIA Impairment scale (AIS) grade, neurological, sensory, motor level, total motor score, and Spinal Cord Independence Measure (SCIM III) total score.

Mean AIS conversion, neurological, motor and sensory levels, as well as total motor score, showed no significant statistical difference in adolescents compared to the adult control group after a follow up of 6 months. Significantly higher final SCIM scores (p < 0.05) in the adolescent group compared to adults as well as a strong trend for a higher gain in SCIM score (p < 0.061) between first and last follow up was found.

Neurological outcome after traumatic cervical SCI is not superior in adolescents compared to adults in this cohort. Significantly higher SCIM scores indicate more functional gain for adolescent patients after traumatic cervical SCI. Juvenile age appears to be an independent predictor for a better functional outcome. 4).


A prospective observational study at single-center with all patients with cervical spinal cord injury (SCI), attending our hospital within a week of injury during a period of October 2011 to July 2013 was included for analysis. Demographic factors such as age, gender, etiology of injury, preoperative American Spinal Injury Association (ASIA) grade, upper (C2-C4) versus lower (C5-C7) cervical level of injury, image factors on magnetic resonance imaging (MRI), and timing of intervention were studied. Change in neurological status by one or more ASIA grade from the date of admission to 6 months follow-up was taken as an improvement. Functional grading was assessed using the functional independence measure (FIM) scale at 6 months follow-up.

A total of 39 patients with an acute cervical spine injury, managed surgically were included in this study. Follow-up was available for 38 patients at 6 months. No improvement was noted in patients with ASIA Grade A. Maximum improvement was noted in ASIA Grade D group (83.3%). The improvement was more significant in lower cervical region injuries. Patients with cord contusion showed no improvement as opposed to those with just edema wherein; the improvement was seen in 62.5% of patients. The percentage of improvement in cord edema ≤3 segments (75%) was significantly higher than edema with >3 segments (42.9%). Maximum improvement in FIM score was noted in ASIA Grade C and patients who had edema (especially ≤3 segments) in MRI cervical spine.

Complete cervical SCI, upper-level cervical cord injury, patients showing MRI contusion, edema >3 segments group have a worst improvement in neurological status at 6 months follow-up 5).


A total of 66 patients diagnosed with traumatic cervical SCI were selected for neurological assessment (using the International standards for neurological classification of spinal cord injury [ISNCSCI]) and functional evaluation (based on the Korean version Modified Barthel Index [K-MBI] and Functional Independence Measure [FIM]) at admission and upon discharge. All of the subjects received a preliminary electrophysiological assessment, according to which they were divided into two groups as follows: those with cervical radiculopathy (the SCI/Rad group) and those without (the SCI group).

A total of 32 patients with cervical SCI (48.5%) had cervical radiculopathy. The initial ISNCSCI scores for sensory and motor, K-MBI, and total FIM did not significantly differ between the SCI group and the SCI/Rad group. However, at discharge, the ISNCSCI scores for motor, K-MBI, and FIM of the SCI/Rad group showed less improvement (5.44±8.08, 15.19±19.39 and 10.84±11.49, respectively) than those of the SCI group (10.76±9.86, 24.79±19.65 and 17.76±15.84, respectively) (p<0.05). In the SCI/Rad group, the number of involved levels of cervical radiculopathy was negatively correlated with the initial and follow-up motors score by ISNCSCI.

Cervical radiculopathy is not rare in patients with traumatic cervical SCI, and it can impede neurological and functional improvement. Therefore, detection of combined cervical radiculopathy by electrophysiological assessment is essential for the accurate prognosis of cervical SCI patients in the rehabilitation unit 6).

References

1)

van Middendorp JJ, Goss B, Urquhart S, Atresh S, Williams RP, Schuetz M. Diagnosis and prognosis of traumatic spinal cord injury. Global Spine J. 2011 Dec;1(1):1-8. doi: 10.1055/s-0031-1296049. PubMed PMID: 24353930; PubMed Central PMCID: PMC3864437.
2)

Aarabi B, Akhtar-Danesh N, Chryssikos T, Shanmuganathan K, Schwartzbauer G, Simard MJ, Olexa J, Sansur C, Crandall K, Mushlin H, Kole M, Le E, Wessell A, Pratt N, Cannarsa G, Diaz Lomangino C, Scarboro M, Aresco C, Oliver J, Caffes N, Carbine S, Kanami M. Efficacy of Ultra-Early (<12 hours), Early (12-24 hours), and Late (>24-138.5 hours) Surgery with MRI-Confirmed Decompression in AIS grades A, B, and C Cervical Spinal Cord Injury. J Neurotrauma. 2019 Jul 16. doi: 10.1089/neu.2019.6606. [Epub ahead of print] PubMed PMID: 31310155.
3)

Schwartzbauer G, Stein D. Critical Care of Traumatic Cervical Spinal Cord Injuries: Preventing Secondary Injury. Semin Neurol. 2016 Dec;36(6):577-585. Epub 2016 Dec 1. Review. PubMed PMID: 27907962.
4)

Geuther M, Grassner L, Mach O, Klein B, Högel F, Voth M, Bühren V, Maier D, Abel R, Weidner N, Rupp R, Fürstenberg CH; EMSCI study group, Schneidmueller D. Functional outcome after traumatic cervical spinal cord injury is superior in adolescents compared to adults. Eur J Paediatr Neurol. 2018 Dec 11. pii: S1090-3798(18)30247-2. doi: 10.1016/j.ejpn.2018.12.001. [Epub ahead of print] PubMed PMID: 30579697.
5)

Srinivas BH, Rajesh A, Purohit AK. Factors affecting the outcome of acute cervical spine injury: A prospective study. Asian J Neurosurg. 2017 Jul-Sep;12(3):416-423. doi: 10.4103/1793-5482.180942. PubMed PMID: 28761518; PubMed Central PMCID: PMC5532925.
6)

Kim SY, Kim TU, Lee SJ, Hyun JK. The prognosis for patients with traumatic cervical spinal cord injury combined with cervical radiculopathy. Ann Rehabil Med. 2014 Aug;38(4):443-9. doi: 10.5535/arm.2014.38.4.443. Epub 2014 Aug 28. PubMed PMID: 25229022; PubMed Central PMCID: PMC4163583.
WhatsApp WhatsApp us
%d bloggers like this: